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Abstract. We develop a view-normalization approach to multi-
view face and gait recognition. An image-based visual hull
(IBVH) is computed from a set of monocular views and used to
render virtual views for tracking and recognition. We determine
canonical viewpoints by examining the 3-D structure, appear-
ance (texture), and motion of the moving person. For optimal
face recognition, we place virtual cameras to capture frontal
face appearance; for gait recognition we place virtual cameras
to capture a side-view of the person. Multiple cameras can be
rendered simultaneously, and camera position is dynamically
updated as the person moves through the workspace. Image
sequences from each canonical view are passed to an unmodi-
fied face or gait recognition algorithm. We show that our ap-
proach provides greater recognition accuracy than is obtained
using the unnormalized input sequences, and that integrated
face and gait recognition provides improved performance over
either modality alone. Canonical view estimation, rendering,
and recognition have been efficiently implemented and can run
at near real-time speeds.

1 Introduction

Person tracking and recognition systems should ideally integrate infor-
mation from multiple views, and work well even when people are far
away. Two key issues that make this challenging are varying appearance
due to changing pose, and the relatively low resolution of images taken
at a distance. We have designed a system for real-time multi-modal
recognition from multiple views that substantially overcomes these two
problems.
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To address the first issue we adopt a view-normalization approach
and use an approximate shape model to render images for recognition
at canonical poses. These images are sent to externally provided recog-
nition modules which assume view-dependent input. For distant ob-
servations view-normalization must not presume accurate 3-D models
are available; our system is designed for environments where relatively
coarse-disparity stereo range images or segmented monocular views are
provided. We have chosen to use shape models derived from silhouette
information since they are practically computable in real time from
these types of input data.

To overcome the second issue, we adopt a multi-modal recognition
strategy. Low-resolution information makes it less likely that recogni-
tion using any single modality will be accurate enough for many desired
applications. By combining cues together, we can obtain increased per-
formance. A typical drawback of multi-modal approaches is that they
presume different types of imagery as input. Face recognition usually
works best with front-parallel images of the face, whereas gait recog-
nition often requires side-view sequences of people walking. It can be
difficult in practice to simultaneously acquire those views when the
person is moving along a variable path. We propose a method for view-
normalization which performs this automatically, generating appropri-
ately placed virtual views for each modality.

We have implemented a system for integrated face and gait recog-
nition using a shape model based on an image-based visual hulls. Our
recognition algorithms were separately developed for view-dependent
recognition. In our system a small number of static calibrated cameras
observe a workspace and generate segmented views of a person; these
are used to construct a 3-D visual hull model. Canonical virtual camera
positions are estimated, and rendered images from those viewpoints are
passed to the recognition methods.

In the following section we will review some of the previous work
related to multi-view, pose-invariant face and gait recognition. We will
consider different approximate shape models for virtual view rendering,
and argue for the use of the image-based visual hull algorithm due
to its appealing tradeoff of accuracy and computational efficiency. We
will then present new methods for estimating canonical frames given
visual hull representations, based on shape, appearance, and motion
cues. Finally, we will show recognition results integrating face and gait
cues with separately developed view-dependent recognition modules.
The particular modules we have used for our current experiments are
based on principle components analysis and spatio-temporal templates,
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for face and gait respectively, but our framework is applicable to any
view-dependent face or gait recognition method.

2 Previous work

To achieve pose-invariance, recognition models generally must incor-
porate information from multiple views of an object’s pose. Broadly
speaking, there are several classes of techniques for view-independent
face recognition, including modular learning, elastic matching, view-
interpolation, and geometric warping. Our visual hull approach is an
instance of the last category, using multiple views and silhouette inputs.

Several authors have developed methods for recognition using a set
of distinct view categories. The well-known eigenfaces paradigm was ex-
tended to recognize a set of different poses using an eigenspace for each
view [17]. Rather than using replicated classifiers for distinct views,
several authors have investigated elastic matching or view interpolation
methods [21, 22]. Beymer and Poggio introduced a method for interpo-
lating face views for recognition given dense correspondences, using a
Radial Basis Function paradigm [2]. Seitz [19] developed a view mor-
phing technique which used dense correspondences to interpolate rigid
views of an object, but did not apply this technique to recognition.

Generalizing the notion of elastic matching, recognition based on
principle components analysis of shape and texture distributions has
been shown to be able to model and recognize a range of object poses[8].
When a model has been constructed fast optimization of shape and
texture coefficients is possible. However, all these methods have gener-
ally presumed either knowledge of face pose and/or an accurate, dense
depth or correspondence field during model training. This can be dif-
ficult to acquire in practice, so we have focused on geometric warping
methods.

2.1 Geometric models

If we presume a model of the underlying geometry of the object, we can
use that geometry to warp one view onto another view. For tracking
faces, previous authors have used planar [3] and ellipsoidal [1] mod-
els to bring images into a canonical view. Several authors have used
affine, cylindrical and ellipsoidal models for warping views during mo-
tion tracking [9, 6, 1].

Simple shape models are often inaccurate for view warping. More
complex models may be used, such as warping with a depth map ob-
tained from a laser range scanner. But as model detail increases, it
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becomes difficult to precisely align a static model with dynamically
changing observations. This negates the value of the detailed features.
To overcome these problems, we would like to use a dynamic model
of actual object shape, computed in real-time from the object being
tracked. Dynamic models can be recovered from a variety of sources,
but we will restrict ourselves to models recovered from a set of regular
cameras.

We know the relative camera positions between the views, so if
we accurately knew the depth at each pixel we could simply apply
view morphing or traditional rigid motion warping. However, our source
views are monocular and widely separated, so it is difficult to determine
correspondences using traditional methods for multi-view matching.

With a rich statistical 3-D shape model of the object class, such
as developed in [4], we could estimate a 3-D shape directly from the
set of 2-D appearance images, and use that to render a high-quality
image from the desired view. While this is an appealing idea, we would
like our method to be general, and will not in practice assume such a
statistical range model is available.

An equally appealing approach would be to apply voxel coloring or
carving techniques [19, 11], to recover a discrete 3-D volumetric repre-
sentation, and then use volume rendering techniques to generate the
canonical view. However, these systems are computationally expensive,
and require a specified discretization in 3-D which may not be optimal
to re-render a given viewpoint.

We are interested in dynamic 3-D shape models that are computable
without requiring dense correspondence or volumetric reconstruction.
We will use a model which is computable solely from silhouette input,
which we can obtain either from monocular analysis or segmentation
of coarse-disparity range data.

2.2 Visual hulls

The concept of visual hull (VH) was introduced in [12]. A VH of an
object is the maximal volume that creates all the possible silhouettes of
the object. The VH is known to include the object, and to be included
in the object’s convex hull. In practice, the VH is usually computed
with respect to a finite (often small) number of silhouettes.

An efficient technique consists of computing an image-based VH
(IBVH) ([15]). For a desired viewpoint, for each pixel in the resulting
image the intersection of the corresponding viewing ray and the VH
is computed. The computation can be performed in 2D image planes,
resulting in an algorithm that renders a desired view of n2 pixels in
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(a) Input

(b) Output

Fig. 1. (a) An example of rendering virtual views with an image-based visual
hulls: the images obtained at the 4 cameras (top row) and their segmentation
(bottom row). (b) The polyhedral VH model built from the input silhouettes
in (a) (top pair), and synthetic views (bottom pair) rendered by a “virtual
camera” corresponding to a frontal viewpoint. The view from the back has
poor texture but reasonable shape.
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Fig. 2. An example of tracking body position and orientation using a Kalman
Filter: input from one of the cameras (top row), synthetic frontal view (middle
row) and synthetic side-view (bottom row).

O(kn2) where k is the number of input images (the number of views).
A variant of this algorithm provides a polyhedral 3D approximation of
the VH [14]. This O(k2n2) algorithm represents contour of each silhou-
ette as a polygon set, and computes in 2D image planes the pairwise
intersections between every pait of cones, resulting in k − 1 polygon
sets for each silhouette. Intersection of these polygons set at each cone
face defines the 3D polyhedron; this is the approximation of the surface
of the VH with a polygonal mesh.

After the VH is constructed, its surface is texture-mapped based on
the original images ([14]). Let θi be the angle between the viewing ray
of the virtual camera for a given pixel p, and the viewing ray of the
i-th camera for p. Then each view is assigned a weight 1 − θi/maxiθi,
and the value of p in the synthetic view is a weighted sum of the values
in the original images.

Figure 1 shows an example of the original images, and the resulting
VH without and with texture. The VH allows us to render a synthetic
view of the object from desired viewpoints, at a moderate computa-
tional cost, and also provides information about the object’s 3D loca-
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tion and shape. We use this information to track the position and pose
of a user in the environment, and to reduce the complex task of view-
invariant recognition to the simpler one of view-normalized recognition.

3 Tracking and estimating canonical views

To render virtual views for recognition, we need to determine the canon-
ical pose of the camera which will generate the most discriminative
view. In general, one could formulate the view selection process as part
of the overall recognition framework, as in [5]. Indeed, given freedom
to design the recognition method as well as to select the optimal view,
a general optimization would be necessary. In our current work, how-
ever, we presume the use of external, black-box recognition engines for
face and gait recognition. These methods have been constructed with
the explicit assumption of a canonical view, so we use them directly.
For faces we place the camera in the plane fronto-parallel to the face,
and for gait sequences we place the camera so that it observes a side-
view of the walking sequence. We have developed algorithms based on
motion analysis and pattern detection to estimate these viewpoints. A
strong assumption that we make is that the person is walking and gen-
erally facing forward; this allows us to use trajectory analysis to help
constrain the search for canonical views.

3.1 Trajectory analysis

Without loss of generality we presume that the XZ-plane of our co-
ordinate system is the ground plane, and the Y axis is the normal to
the ground. We estimate the location of the centroid of the subject by
taking the center of gravity of the VH c = 〈cx, cy, cz〉. The method of
computing c depends on the VH algorithm. For the polyhedral VH, it
is simply the centroid of the polyhedral model, which can be computed
while building the model. This method was used in all the experiments
described in this paper. For the sampled VH, one estimates the VH
by integrating the volume enclosed within the endpoints of the ray in-
tervals, and computes the zero-th moment of that volume. A third,
more ad-hoc approach consisting of computation of the 3D bounding
prism (which can be done directly from the silhouettes) and taking its
centroid, was found by us to be inferior in practice.

Given the estimated centroids of the VH in two consecutive frames
ct and ct+1, we estimate the motion of the object between t and t + 1
by ∆c = ct+1 − ct. Under the assumption that the motion is parallel
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Fig. 3. Trajectory estimated from sequence in Figure 2. Frames shown in
top row of Figure 2 are marked with an asterisk. Virtual views are generated
along the tangent and normal to this trajectory for face and gait recognition,
respectively.

to the XZ plane, we consider the projection of ∆c on that plane as the
motion vector.

We shall call the set of the synchronized views obtained at time t
a multiframe ft. The VH computed from ft will be denoted by V Ht.
Instantaneously, we need to fit a straight line z = mx+ b to the (noisy)
centroid observations. This is done by solving a linear least-squares
optimization problem, for the 〈xt, zt〉 in each multiframe V Ht. This
gives us the unit vector vt in the estimated direction of the person at
time t. Once we have established the direction, we can place a “virtual
camera”, say, in front of the person, at a desired distance δ:

Ot = ct + δvt (1)

For a general trajectory, we use a constant-velocity Kalman filter to
recover the centroid path.

Figures 2 and 3 demonstrates the results of the method. Input from
only one camera out of four is shown for reference. While the orientation
estimate is not perfect, we keep track of the orientation after the person



Integrated Face and Gait Recognition 531

turns at about 60 degrees, and can automatically produce synthetic
frontal (middle row of Figure 2) and profile (bottom row) views. (Note
that there are some texture rendering artifacts present in the profile
sequence–these are visually distracting but do not cause problems for
our silhouette based gait algorithm.)

The assumption of fronto-parallel motion implicit in our trajectory
analysis can be relaxed by combining the motion-based orientation esti-
mate with one based on face-detection, as described in the next section.

3.2 Detection-based view estimation

Fig. 4. View-normalized gait and face recognition features based on trajec-
tory in Figure 3.

A pattern detection approach can be applied to a set of rendered
virtual views to find those that are most “canonical” relative to a de-
sired class. For faces, we use a real-time face-detection method [20]
to detect the frontal view condition. This implementation, which uses
small number of highly-relevant features, can process images of 400x300
pixels in roughly .07 seconds. However, we need to apply it to much
smaller images. Given the VH of a person, and assuming roughly up-
right body pose, we need to consider only the top part of the VH. In
our experiments we chose to look at the top 1.5 feet. We place the vir-
tual camera at the distance that would produce the desired resolution
of the image (in the described setup, 60x60 pixels).

If no trajectory information is available, we can search a circle of
views around the 3-D location of a users head (Figure 5). If trajectory
information is available, the head area is then rendered for a small
range of spatial angles around the currently estimated face orientation.
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Fig. 5. Virtual views can also be generated based on the position of the users
head and a ground plane constraint.

A set of 25 such images has the same total size as one 300x300 image,
and takes similar time for a face detector to process.

We also reduce the scale space, since the virtual camera is placed
at a known distance from the VH, thus leading only a small range of
possible sizes of the face.

4 Recognition on virtual sequences

We take the virtual sequences rendered from canonical viewpoints and
input them to view-dependent face and gait recognition algorithms.
Typically these methods are based on 2-D or 2.5-D (XY+T) analysis.

4.1 Gait recognition

Human gait can serve as a discriminative feature for visual recognition,
as suggested by theoretical biometric ([10]) and empirical ([7, 16, 18])
results. Here we applied a simple gait recognition scheme based on sil-
houette extent analysis, which was developed separately from our work.
The basic method is reported in [13] and was successfully demonstrated
on sequences where the direction of motion was explicitly parallel to
the camera plane.
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(a) Partition
of a silhou-
ette

(b) Fitting
an ellipse to
each region

Fig. 6. Computing the feature vector for gait recognition. From [13].

The gait dynamics feature vector consists of smoothed versions of
moment features in image regions containing the walking person. For
each silhouette of a gait video sequence, we find the centroid of the
whole silhouette and divide it into 7 regions using the centroid. For
each of the regions, we fit an ellipse to describe the centroid, the aspect
ratio and the orientation of the portion of foreground object visible
in that region(Figure 6(b)). These silhouette–based features are com-
puted for each frame of a video sequence. These time-varying signals
from a video sequence are compressed across time using the mean and
standard deviation of the centroid, aspect ratio, and orientation of each
region. The time-compressed features from all 7 regions together form
a gait feature vector. A diagonal covariance Gaussian model is used
for each of these features, and a nearest neighbor classifier is used to
decide which person has walking dynamics closest to the query fea-
ture vector. This method is surprisingly simple, but works in a range
of realistic conditions [13]. More complex models, including those that
recover kinematic biometrics and/or periodic features, could also be
easily integrated into our framework.

The features used in this gait recognition algorithm are clearly view-
dependent, and it is generally impractical to collect data for each person
across all possible views. Recognition using a sequence rendered from a
virtual viewpoint in canonical position is an appealing alternative. For
each sequence of multiframes x, two silhouette sequences are produced
- a synthetic view from the left and from the right can be created for
each frame, relative to the estimated motion vector. We denote those by
sL and sR. Figure 4(top) shows an example view-normalized silhouette
input to the recognition method.
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Fig. 7. A rank-threshold plot for gait recognition using view-normalization
(solid line) versus using only the raw input silhouettes (dotted line).

We maintain an ID-tagged database of silhouette sequences, ob-
tained from the VH of the previously observed people. To recognize a
new sequence, we compute the distances between the feature vector of
sL and sR and those of all the silhouette sequences s in the database.
We exclude sL and sR themselves, and choose the minimum between
the two values as the distance between x and the other silhouettes.
Then, we normalize the vector

pg(x) =
[
1/ min

label(s)=1
dist(s,x), . . . , 1/ min

label(s)=K
dist(s,x)

]
(2)

The estimated confidence that x is actually from person k is denoted
pgk(x). Choosing k which maximizes this confidence gives our classifi-
cation decision.

4.2 Face recognition

When a scene is viewed by a small number of far-placed cameras, often
there is no view close enough to frontal to allow face recognition, and
even detection. For example, on all of the original textures in Figure
8(a) face detection fails. However, faces are easily detected in the frontal
virtual views, such as that shown in Figure 4(bottom) and Figure 8(b).
Figure 8(c) shows a sample of view-normalized model faces.

We consider face recognition algorithms that are trained on a database
with certain amount of view-dependence. Typically such a database
includes frontal views of faces. So far, we tested our approach with
eigenfaces.

For each multiframe xt, we render synthetic views of the top part
of VH for a small range of spatial angles around the estimated motion
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(a) Original (b)
VN

(c)

Fig. 8. Face detection typically fails on the input views due to varying pose
(a), but succeeds on the visual hull-based view-normalized image (b). Pairs
of view-normalized faces from the same individual are shown in (c). Con-
ventional view-dependent face recognition methods can match (b) to the
appropriate individual in (c) (top row, right or bottom row, second right).

vector. These images are processed by a face detector, and the ones
where a face was detected are included in a set of Facest(x). After
having seen n frames, the set Faces(x) =

⋃n
i=1 Facesi(x). If Faces(x)

is non-empty, we can use all the face images in it for recognition. Let
m = |Faces(x)|. Let D be an m×K matrix of distances between each
Ii ∈ Faces(x) and each one of the K eigenspaces represented in the
database:

Dij = |Ii − SjIi|, (3)

Then we compute for each image Ii a weight vector
wi = [1/Di1, . . . , 1/DiK ], which is further normalized to produce a

confidence vector. This vector describes the estimated confidence that
Ii belongs to the Kth person. We have m images, so for the whole
sequence x we compute the confidence vector

pf (x) =
1
m

m∑
i=1

wi. (4)

Our classification is then done by selecting
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x = argmax
j

pf j(x).

4.3 Multi-modal recognition

Finally, we combine the face and gait recognition results in order to
establish a higher confidence level. Since empirically the success rates
of face and gait classifiers were similar (c.f. Table 1(d)), we assigned
an equal weight of .5 when combining confidence vectors. Given pf (x)
and pg(x) for the observed sequence of multi-views x, we compute the
multi-modal confidence vector

pc(x) =

{
pg(x), if Faces(x) = ∅
(pg(x) + pf (x)) /2, otherwise.

(5)

(a)

5 0 0 0 0 0 0 0 0 1 0 0
0 4 0 0 0 0 0 0 1 0 0 1
0 0 3 0 0 0 0 1 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 1 0 0
0 0 0 0 0 3 0 0 0 0 1 0
0 0 0 0 0 0 6 0 0 0 0 0
0 0 0 1 0 0 0 4 0 0 1 1
0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 1 2 0
0 0 0 0 0 0 0 0 0 0 0 4

(b)

5 0 1 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 2 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 1
0 0 1 0 0 0 5 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 0 0 0 4

(c)

6 0 0 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0
1 0 3 0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 1 0 0
0 0 0 0 0 3 0 0 0 0 1 0
0 0 0 0 0 0 6 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 1 1
0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 0 0 0 4

(d)
Modality (chance) No VH-face No VH-gait No VH-gait VH-face VH-gait VH-gait

and face only only and face
Recognition rate .08 .31 .52 .44 .8 .87 .91

Table 1. Confusion matrices for (a) gait-only, (b) face-only, and (c) inte-
grated recognition using VH. Note that there was no face data obtained for
subject 8, who was wearing a hat during the experiments. (d) Summary of
the recognition results.

5 Results

We tested our methods using an installation with four monocular cam-
eras. Each were located at roughly the same height, approximately 45
degrees apart, yielding set of images like that in Figure 1. The inter-
section of their fields of view defines the working space of our system.
The cameras were calibrated off-line and temporally synchronized in
hardware.
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Silhouettes were computed using a simple color background model.
For each pixel, the mean and variance of its values are computed over
a large number of frames when the scene is known to contain no ob-
ject. Segmentation is performed with three steps. First, each pixel in
the data image is labelled ’background’ if its value is within two stan-
dard deviations from the mean, and ’foreground’ otherwise. Second, a
normalized correlation analysis is then computed for a small window
around each foreground pixel, and it is reset to background if the corre-
lation score is sufficiently high. Finally, a morphological close operation
is performed. The last two steps reduce the impact of shadows.

For 12 subjects we collected between 2 and 6 VH sequences as they
walked in an arbitrary direction through the visual hull workspace,
which was approximately 3m in diameter. The accuracy of gait clas-
sification was estimated using leave-one-out cross-validation. Figure 7
compares gait recognition performance using normalized vs. unnormal-
ized views. Accuracy vs. rank threshold is plotted for the each approach,
indicating the percentage of trials where the correct label was within
the top n predicted labels (where n is the rank-threshold value). As can
be seen, recognition with the unnormalized sequences was substantially
worse than with our view-normalization approach. A confusion matrix
for n = 1 is shown in Table 1(a)

View-normalized face recognition was also performed on these data,
using the method described above. Table 1(b) shows the results of clas-
sification using only the face observations. Finally, Table 1(c) shows the
confusion matrix for integrated recognition. Table 1(d) summarizes the
overall recognition rates for face-only, gait-only, and integrated recogni-
tion. Integrated recognition reduced the rank-threshold=1 recognition
error rate from 13% to 9%.

Note the significantly inferior performance of the recognition in both
modalities with the same data, but when no view-normalization is ap-
plied (Table 1 (d)). In this experiment, we used the images from all the
four cameras, where segmented silhouettes were fed to the gait classifier,
and face detection was used to extract faces from the textured camera
inputs (with silhouettes defining the search regions). Face recognition
performed especially poorly. In many sequences not a single face was
detected, which is not surprising after looking at Figure 8. In addition,
some false detections further decrease the performance.

6 Conclusions and future work

We have described a view-normalization approach for integrated track-
ing and recognition of people. Our system combines face and gait recog-
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nition methods, and information from multiple views. An image-based
visual hull is used for shape modeling and for trajectory tracking. Re-
sults were shown using view-dependent face and gait recognition mod-
ules, and were better than the unnormalized or single modality results.
Each component of the system runs at real-time speeds.

Currently the implementation uses monocular silhouettes based on
color segmentation with static backgrounds, but could be extended to
accommodate more sophisticated segmentation algorithms. Our system
works within the strict intersection of the field of view of all cameras,
but we expect this to be relaxed as a more general visual hull algorithm
is developed. Finally, our confidence integration method is clearly prim-
itive in present form, and should be extended to an explicit probabilistic
framework.
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