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Abstract. Steerable microphone arrays provide a flexible in-
frastructure for audio source separation. In order for them to
be used effectively in perceptual user interfaces, there must
be a mechanism in place for steering the focus of the array
to the sound source. Audio-only steering techniques often per-
form poorly in the presence of multiple sound sources or strong
reverberation. Video-only techniques can achieve high spatial
precision but require that the audio and video subsystems be
accurately calibrated to preserve this precision. We present an
audio-video localization technique that combines the benefits
of the two modalities. We implement our technique in a test en-
vironment containing multiple stereo cameras and a room-sized
microphone array. Our technique achieves an 8.9 dB improve-
ment over a single far-field microphone and a 6.7 dB improve-
ment over source separation based on video-only localization.

1 Introduction

Many current perceptual user interface applications require high-quality
audio signals for acceptable performance. Examples include automated
speech recognition (ASR) and smart teleconferencing. When hands-free
operation is required, the most common ways to obtain audio signals
for these applications are to use close-talking microphones that are at-
tached to the speakers of interest or to use single-element directional
microphones pointed at the speakers of interest.

However, both of these techniques leave much to be desired. Close-
talking microphones require that each user be equipped with his own
microphone, while directional microphones are often bulky and are lim-
ited to a fixed beam pattern, thus restricting their ability to track mul-
tiple users.
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An alternate technique that has become more attractive with the
decreasing cost of computation and digital communication is the mi-
crophone array. A microphone array consists of several microphones in
fixed locations relative to each other. The microphones’ audio signals
can be filtered and summed to perform spatial filtering of the audio
sources in the room. By altering the filters applied to the individual
microphones’ signals, sounds coming from different regions of the room
can be selectively amplified or attenuated.

Microphone arrays address many of the problems inherent in more
passive audio capture techniques. Unlike close-talking microphone sys-
tems, microphone arrays do not require users to remember to wear
special equipment when they anticipate that they will interact with
the environment. Instead, microphone arrays have, as a fundamental
property, an explicit notion of the spatial relationships among sound
sources.

This association between sound and location makes a microphone
array a powerful tool in the context of perceptive environments. In com-
bination with additional sensors and contextual information from the
environment, a microphone array can effectively amplify and separate
sounds of interest from complex background noise.

To focus a microphone array, the location of the speaker(s) of in-
terest must be known in order for the microphone array to modify its
filter response to amplify the selected speakers. A number of techniques
exist for localizing sound sources using the array data itself [12], but the
performance of these localization techniques tends to degrade signifi-
cantly in the presence of reverberation and/or multiple sound sources.
Unfortunately, most common office and meeting room environments
are highly reverberant, with reflective wall and table surfaces, and will
normally contain multiple speakers.

In our application, we can take advantage of other sensors in the
perceptive environment domain to perform multimodal localization of
multiple speakers despite reverberation. Because the wavelength of visi-
ble light is much smaller than the wavelength of audible sound, cameras
can be much more precise in their localization, and multiple users can
be more easily segmented in space.

Cameras, however, are not perfect for steering a microphone ar-
ray. It may be difficult to obtain a precise joint calibration between
the cameras and the microphone array. In addition, the features that
a camera-based system can most easily track, such as extremities of
the body, are not directly relevant to the microphone array; the micro-
phone array requires information about the location of the speaker’s
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mouth, which is difficult to obtain from wide-angle camera views of the
environment.

Because of these issues, a microphone array aimed using only in-
formation from a set of cameras will likely be incorrectly aimed, re-
sulting in a loss of several decibels of performance and an undesirable
spectral coloration of the signal of interest. In spite of these problems,
video localization information is accurate enough to restrict the range
of possible acoustic source locations to a region small enough to allow
for acoustic localization techniques to operate without severe problems
with reverberation and multiple speakers.

As far as we are aware, our system is the first visually guided large-
aperature microphone array. This paper demonstrates the use of 3-D
visual localization in combination with acoustic localization to acquire
high-quality audio speech signals from moving users in a perceptually
enabled environment.

2 Background

This work brings together techniques from array signal processing with
techniques from vision-based person tracking to implement a system
that can selectively amplify audio from a selected speaker as he moves
through the room. Much work has been done in both of these areas.
The relevant background is summarized below.

2.1 Microphone arrays

Microphone arrays are a special case of the more general problem of
sensor arrays, which have been studied extensively in the context of
applications such as radar and sonar [11]. The Huge Microphone Array
project[10] is investigating the use of very large arrays containing hun-
dreds of microphones. Their work concentrates on audio-only solutions
to array processing. Another related project is Wang and Brandstein’s
audio-guided active camera[13], which uses audio localization to steer
a camera on a pan/tilt base.

Many problems can be addressed through array processing. The two
array processing problems that are relevant to our system are beam-
forming and source localization.

Beamforming is a type of spatial filtering in which the signals from
individual array elements are filtered and added together to produce
an output that amplifies signals coming from selected regions of space
and attenuates sounds from other regions of space. In the simplest form
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of beamforming, delay-and-sum beamforming, each channel’s filter is a
pure delay. The delay for each channel is chosen such that signals from
a chosen “target location” are aligned in the array output. Signals from
other locations will tend to be combined incoherently. For example, if
a three element array consists of elements that are 2, 4, and 7 meters
away from a target location, the elements’ signals should be delayed by
the time that it takes for sound to travel 5, 3, and 0 meters, respectively.
This type of beamforming is simple and robust to small uncertainties
in microphone and target locations.

Source localization is a complementary problem to beamforming
whose goal is to estimate the location of a signal source. One way
to do this is to beamform to all candidate locations and to pick the
location that yields the strongest response. This method works well,
but the amount of computation required to do a full search of a room
is prohibitively large. Another method for source localization consists
of estimating relative delays among channels and using these delays to
calculate the location of the source. Delay-estimation techniques are
computationally efficient but tend to perform poorly in the presence of
multiple sources and/or reverberation.

A number of projects [2–4] have used vision to steer a microphone
array, but because they use a single camera to steer a far-field array,
they cannot obtain or make use of full 3-D position information; they
can only select sound coming from a certain direction.

For microphone arrays that are small in size compared to the dis-
tance to the sources of interest, incoming wavefronts are approximately
planar. Because of this, only source direction can be determined; source
distance remains ambiguous. When the array is large compared to the
source distance, the sphericity of the incoming wavefronts is detectable,
and both direction and distance can be determined. These effects of ar-
ray size apply both to localization and to beamforming, so if sources
at different distances in the same direction must be separated, a large
array must be used.

As a result, with large arrays the signal-to-noise ratio (for a given
source) at different sensors will vary with source location. Because of
this, signals with better signal-to-noise ratios should be weighted more
heavily in the output of the array. Our formulation of the steering
algorithm presented below takes this into account.

2.2 Person tracking

Tracking people in known environments has recently become an active
area of research in computer vision. Several person-tracking systems
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have been developed to detect the number of people present as well
as their 3D position over time. These systems use a combination of
foreground/background classification, clustering of novel points, and
trajectory estimation over time in one or more camera views [6, 9].

Color-based approaches to background modeling have difficulty with
illumination variation due to changing lighting and/or video projection.
To overcome this problem, several researchers have supported the use
of background models based on stereo range data [6, 8]. Unfortunately,
most of these systems are based on computationally intense, exhaustive
stereo disparity search.

We have developed a system that can perform dense, fast range-
based tracking with modest computational complexity. We apply or-
dered disparity search techniques to prune most of the disparity search
computation during foreground detection and disparity estimation, yield-
ing a fast, illumination-insensitive 3D tracking system. Details of our
system are presented in [5]; here we review the details of our visual
tracking system which are relevant to the integration with audio pro-
cessing in our microphone array.

When tracking multiple people, we have found that rendering an or-
thographic vertical projection of detected foreground pixels is a useful
representation (see also [1, 9]). A ”plan view” image facilitates corre-
spondence in time since only 2D search is required. Previous systems
would segment foreground data into regions prior to projecting into a
plan-view, followed by region-level tracking and integration, potentially
leading to sub-optimal segmentation and/or object fragmentation. In-
stead, we develop a technique that altogether avoids any early segmen-
tation of foreground data. We merge the plan-view images from each
view and estimate over time a set of trajectories that best represents
the integrated foreground density. Trajectory estimation is performed
by finding connected components in a spatio-temporal filtered volume.

To estimate the trajectory of objects over time, we combine infor-
mation from multiple stereo views. The true extent of an individual
object in a given image is generally difficult to identify. An optimal
trajectory segmentation should consider the assignment of an individ-
ual pixel to all possible trajectories estimated over time. Systems which
perform an early segmentation and grouping of foreground data before
trajectory estimation preclude this possibility.

We adopt a late-segmentation strategy that finds the best trajec-
tory in an integrated spatio-temporal representation by combining fore-
ground pixels from each view. By assuming that objects move on a
ground plane, a “plan-view assumption” allows us to completely model
instantaneous foreground information as a 2-D orthographic density
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Fig. 1. Detecting locations of users in a room using multiple views and plan-
view integration. Three people are standing in a room, though not all are
visible to each camera. Foreground points are projected onto a ground plane.
Ground plane points from all cameras are then superimposed into a single
data set before clustering the points to find person locations.



Audio-Video Array Source Separation 547

projection. Over time, we compute a 3-D spatio-temporal plan-view
volume.

We project (xj , yj, dj) from each foreground point pj into world co-
ordinates (Uj , Vj , Wj). (See Figure 4.) U, V are chosen to be orthogonal
axes on the ground plane, and W normal to the ground plane. We then
compute the spatio-temporal plan view volume (Figure 1), with

P (u, v, t) =
∑

{pj |Uj=u,Vj=v,tj=t}
1

Each independently moving object in the scene generates a contin-
uous volume in the spatio-temporal plan view volume P (u, v, t). When
the trajectories of moving objects do not overlap, the trajectory esti-
mation is easy and consists in running a connected-component analysis
in P (u, v, t) (each component is then a trajectory).

When the trajectories of moving objects overlap (e.g. crossing of
two people), the volume associated with these trajectories in P (u, v, t)
also overlap and make the extraction of trajectories more difficult. In
order to overcome this, a graph is built from a piece-wise connected-
component analysis of P (u, v, t). Nodes correspond here to trajectory
crossing and branches to non-ambiguous trajectories between two cross-
ing. A color histogram is then estimated for each branch of the graph
(using all images associated with this branch). Trajectories are esti-
mated by finding in the graph the paths consisting of branches having
the most similar color histograms. This may be done instantaneously
using a greedy search strategy or using the slower but optimal dynamic
programming technique described in [5].

3 Large-array volume selection

Our system performs both audio localization and beamforming with a
large, ceiling-mounted microphone array. Localization uses information
from both audio and video, while beamforming uses only the audio
data and the results of the localization processing. A large array gives
the ability to select a volume of 3-D space, rather than simply form a
2-D beam of enhanced response as anticipated by the standard array
localication algorithms. However, the usual assumption that of con-
stant target signal-to-noise ratio (SNR) across the array does not hold
when the array geometery is large (array width on same scale as target
distance.) As described below, we need to model the SNR term in the
array localization algorithm.
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3.1 Localization

Our system uses the location estimate from the vision tracker as the
initial guess from which to begin a gradient ascent search for a local
maximum in beam output power. Beam power is defined as the integral
over a half-second window of the square of the output amplitude.

It is difficult to characterize the error in the tracker’s estimate be-
cause this error depends on the person’s position in the room, the per-
son’s appearance, and a number of other characteristics of the situation.
However, experience leads us to believe that the vision tracker is accu-
rate to within less than one meter. Gradient ascent to the nearest local
maximum can therefore be expected to converge to the location of the
speaker of interest when no other speakers are very close by.

Gradient ascent is complicated by the fact that there are many high-
spatial-frequency ripples superimposed on the large-scale peak whose
maximum we wish to find. These small ripples in the response result in
many undesirable local maxima that must be avoided. Because speech
is a broadband signal, it is possible to start the gradient ascent using a
low-passed version of the speech signal. As the peak is approached, the
cut-off frequency of the filter can be raised, thus incorporating more of
the signal into the location estimate. This technique is similar to one
used in [7] as part of an exhaustive search for a power maximum.

3.2 Source separation

For small microphone arrays, the relative SNRs of the individual chan-
nels do not vary significantly as a function of source location. This is,
however, not true for larger microphone arrays. For our array, which is
roughly 4 meters across, we must take into account the fact that some
elements will have better signals than others. Specifically, if we assume
that we have signals x1 and x2 which are versions of the unit-variance
desired signal, s, that have been contaminated by unit-variance uncor-
related noise, we can analyze the problem as follows:

x1 = a1s + n1

x2 = a2s + n2

In this model, the signal to noise ratios of x1 and x2 will be a2
1 and

a2
2, respectively. Their optimal linear combination will be of the form

y = bx1 + x2. Because of the uncorrelated noise assumption, the SNR
of this combination will be
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Fig. 2. Array power response as a function of position (single speaker close-
up). This plot shows the array output power as the array’s focus is scanned
through a plane centered on a speaker.



550 Kevin Wilson, Neal Checka, et al.

−4
−3

−2
−1

0
1

2
3

4

−4

−2

0

2

4

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Position (meters)

S
N

R
 (

d
B

)

Fig. 3. Array power response as a function of position (two speakers). This
plot shows the array output power as the array’s focus is scanned through a
plane centered on one speaker while another speaker is nearby. The central
speaker is easily discernible in the plot, but the peak corresponding to the
weaker speaker is difficult to distinguish among the sidelobe peaks.
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SNR(y) =
(ba1 + a2)2

b2 + 1

By taking the derivative of this expression with respect to b and
setting the result equal to zero, one finds that the optimal value of b is:

b =
a1

a2
=

SNR(x1)
SNR(x2)

Because of the symmetry of the signals, this result implies that,
in general, individual elements’ signals should be scaled by a constant
proportional to the square root of their SNRs.

Ideally, we would like to have complete knowledge of the strengths
and statistical relationships among the noise signals at the individual
sensors. This information is not easy to obtain, but because of our large
array and multiple stereo cameras, it is easy for us to use our location
estimate to weight individual channels assuming a 1/r attenuation due
to the spherical spreading of the source. Assuming 1/r attenuation
from a source to each microphone, we have an = 1/rn in the above
equations, so the optimal weighting factor for channel n is 1/rn. This
is intuitively appealing since it means that microphones far from the
source contribute relatively little to the array output.

 

Fig. 4. The test environment. On the left is a schematic view of the envi-
ronment with stereo cameras represented by black triangles and microphones
represented by empty circles. On the right is a photograph of the environment
with microphones and camera locations highlighted.
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4 Results

Our test environment, depicted in Figure 4, is a conference room
equipped with 32 omnidirectional microphones spread across the ceiling
and 2 stereo cameras on adjacent walls.

The audio and video subsystems were calibrated independently, and
for our experiments, we performed a joint calibration by finding the
least-squares best-fit alignment between the two coordinate systems.

Table 1. Audio-video localization performance comparison

Localization Technique SNR (dB)

Single microphone −6.6

Video only −4.4

Audio only 2.0

Audio-Video 2.3

Figure 3 is an example of what happens when multiple speakers are
present in the room. Audio-only gradient ascent could easily find one
of the undesirable local maxima. Because our vision-based tracker is
accurate to within one meter, we can safely assume that we will find
the correct local maximum even in the presence of interferers.

To validate our localization and source separation techniques, we
ran an experiment in which two speakers spoke simultaneously while
one of them moved through the room. We tracked the moving speaker
with the stereo tracker and processed the corresponding audio stream
using three different localization techniques. For each, we used a refer-
ence signal collected with a close-talking microphone to calculate both
a time-averaged SNR (Table 1) and a sequence of short-time SNRs
(Figure 5).

As a reference for performance comparison, we use the signal from a
single microphone near the center of the room. This provides no spatial
selectivity, but for our scenario it tends to receive the desired speech
more strongly than the interfering speech. The SNR for this case is
negative because of a combination of the interfering speaker and diffuse
noise from the room’s ventilation system.

To evaluate the video-only approach, we steer the microphone ar-
ray directly to the location returned by the stereo tracker. If the stereo
tracker could reliably return the location of the speaker’s mouth, this
method would work quite well. For our system, this technique improves
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Fig. 5. Short-time signal-to-noise ratio comparison. We calculate a sequence
of SNRs for non-overlapping half-second windows of audio. Much of the vari-
ation in the SNR of audio-video result is due to variations in speech energy.
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the SNR by 2.2 dB, which, while noticeable, is not close to the theoret-
ical performance of a 32 element array (15 dB in uncorrelated noise).
Figure 5 shows large fluctuations in SNR for this and other methods.
For some t, all three curves are low, corresponding to times when the
speaker pauses between words. Other fluctuations for this technique,
however, are due to stereo tracking errors and other biases of the stereo
system or microphone array.

To evaluate the audio-only approach, we search the room for the
location of maximum acoustic power and steer the array to that loca-
tion. For our test scenario, this worked quite well when tracking the
louder speaker. Even so, there are several points in time where the ar-
ray locks onto the interfering speaker. When attempting to track the
quieter speaker, this method fails completely.

The fourth entry in Table 1 and Figure 5 uses the stereo tracker’s
location estimate as the initial guess from which to perform gradient
ascent in the signal output power. This technique’s average SNR is well
above that of either the single-microphone or video-only methods, and
its short-time SNRs are consistently highest or nearly the highest of
any of the four techniques.

These experiments demonstrate that audio-video localization is su-
perior to video alone in our environment. We believe our approach
improves upon audio-only localization in cases where there are multi-
ple simultaneous speakers and the reverberant energy is nearly equal or
greater than the direct path energy. The initial position estimate pro-
vided by video localization reduces the amount of computation required
compared to an unconstrained audio-only search.

5 Conclusion

We have implemented a computationally efficient hybrid sound source
localization scheme. This scheme makes use of the complementary in-
formation available in the audio and video streams available in our test
environment and is suitable for use as part of perceptive environments
requiring high-quality audio signals for higher-level applications such
as automated speech recognition.

In the future, we plan to incorporate more sophisticated beamform-
ing techniques into our system to further improve the SNR of the out-
put. In addition, we hope to be able to feed the final results of the
audio-video localization back to the vision subsystem to allow it to
refine its location and trajectory estimates.
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