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Abstract. We develop a class of differential motion trackers
that automatically stabilize when in finite domains. Most dif-
ferential trackers compute motion only relative to one previ-
ous frame, accumulating errors indefinitely. We estimate pose
changes between a set of past frames, and develop a proba-
bilistic framework for integrating those estimates. We use an
approximation to the posterior distribution of pose changes as
an uncertainty model for parametric motion in order to help
arbitrate the use of multiple base frames. We demonstrate this
framework on a simple 2D translational tracker and a 3D, 6-
degree of freedom tracker.

1 Introduction

Tracking the pose of an object requires that image transformation pa-
rameters be recovered for each frame of a video sequence. A common
class of approaches for estimating these parameters involves accumu-
lating motion parameters between pairs of temporally adjacent frames.
These differential techniques suffer from accumulated drift which limits
their effectiveness when dealing with long video sequences. The pro-
posed method reduces this drift by anchoring each frame to many past
frames. We then use a maximum likelihood formalism to fuse these pose
change estimates to obtain poses which exhibits less error.

Various methodologies for avoiding drift have been proposed. For
example, [2] and [5] compute the pose of an object by bringing it into
registration with the first frame in the video sequence. This approach
restricts the range of appearances to be near the initial pattern unless
complicated model acquisition techniques are employed. Another ap-
proach is to use subject-independent models that are refined over time
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([1,9]), but the accuracy of these methods is often limited by the coarse-
ness of their models, though strong prior motion models can sometimes
be used to obtain better accuracy (eg, [14]).

In this paper we show how typical differential tracking algorithms
can be stabilized without changing the core structure of the tracker. We
relax the restriction that only temporally adjacent frames will be used
for differential tracking, allowing high-quality pose change measure-
ments to compensate for poor quality ones. We compute pose changes
between each frame and several anchor frames that are close in pose
and appearance to it. These differential motion estimates are then com-
bined to provide a robust estimate of pose for each frame. Conceptually,
previous frames are used as an image-based model of the object being
tracked, alleviating the need to construct an explicit model of the scene
as is done in [11] and [4], for example.

The next section provides a maximum likelihood framework for dif-
ferential tracking. We then augment this model to incorporate addi-
tional anchor frames. In order to find the maximum likelihood poses
in this augmented model, it is necessary to measure the uncertainty
in each pose estimate, so we develop an error measure for parametric
pose estimation. We then discuss details involved in implementing our
algorithm and apply our framework to a simple 2D tracking problem
where camera motion is restricted to fronto-parallel translation over a
synthetic planar object. Expeirments in sections 4.1 and 4.2 show how
to augment the 6-DOF tracker of [3] with our framework and demon-
strate its use in tracking heads through large rotations and computing
egomotion in long sequences.

2 Differential tracking as maximum likelihood

We propose a measurement model suitable for representing differential
trackers. We then frame our drift-reduced tracker in this model by
adding additional measurement nodes. In order to cast tracking as a
maximum likelihood problem, we develop an error model for estimating
parametric pose change.

2.1 A measurement model

Consider a sequence of images yo --- y: with associated object poses
&+ &r. Let 88 = d(&1,&) be the pose change between frames with
pose & and &;. If the parametrization is additive, d just subtracts &g
from &;. In the affine case, d computes A~'[A(&)A(&) Y], where A
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returns a 3x3 affine matrix given a 6 dimensional vector, and A~!
returns the six parameters of the affine transformation given an affine
matrix. We also define d~1 such that d=1(d(&1, &), &) = &1 Estimating
the pose change between frames y;_1 and y; results in a pose difference
8, with distribution p(6f_;|yi—1, y:)-

Assuming that pose governs everything about appearance, 0f_; is
conditionally independent of y;—; and y; given &_1 and &,
so p(8|lyi—1,v:) = p(6|&—1,&)t. Figure 1 depicts the resulting inde-
pendence diagram for a differential tracker. The joint density of mea-
surements {d} and poses {¢} is

p({€},{6}) = {ﬁ}H C e, &)

Finding the set of ML poses {£} involves computing

arg H{lg}Xp({ﬁ}l{ﬂ)

T
= argmax » Inp(6}_1[&-1,&) (1)
{6 =

We can show that the traditional method of computing pose changes
and updating pose estimates is in fact the ML solution by assuming that
the performance of the tracker depends only on pose change and not
on absolute pose. As a result, p(§|yi—1,y:) = p(d|d(&, &—1)). Making a
final Gaussianity assumption on the posterior, we obtain:

p(81&,&-1) = N(0f_15d(&r, E-1), A1) (2)

Equation (1) can now be rewritten as

argmanH(s gtvgt 1)HAtt 1 (3)

The minimum value for this problems is 0, and occurs when

t
i = d(&, 1)
—1/st
& =d (6;1,&-1), (4)
! This implies that given the pose, there is no other source of uncertainty in
the appearance of a frame. As will be shown later, imager noise is funnelled

into p(d|ys—1,y¢) by other means, alleviating the need for a cumbersome
integration step here.
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Fig. 1. Independence diagram for a simple pose tracker. The tracker measures
pose differences {0} between adjacent frames.

confirming that the traditional update equation does indeed maximize
likelihood given the simplifying assumptions we’ve made. Note that
A¢ 11 drops out of the optimization, and so it is not necessary to com-
pute the error in pose changes.

2.2 Using multiple base frames to reduce drift
To improve pose estimation, we invoke two principal insights:

1. When the trajectory comes close to crossing itself (ie, { ~ &, t >
s), tracking should be performed between frames y; and y, as well.

2. Information about the pose of future frames can be used to adjust
the pose estimate of past frames.

Proposition 1) provides redundant reliable information which allows
us to better estimate pose. Proposition 2) is appealing since returning
near a previously visited point can disambiguate measurements if in-
formation from the future is allowed to affect the past. Hence, in figure
2, we would do well to compute a pose change estimate between y; and
all frames that lie in the shaded region, and allow these measurements
to influence the pose of frames y; - - - y;.

We augment the measurement model laid out in the previous sec-
tion to incorporate these additional measurements. To improve perfor-
mance, we can also incorporate knowledge about the dynamics of the
pose parameters. Figure 3 shows how to update the graphical model of
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Fig. 2. When estimating the pose of frame y:, we should take into account
the pose change between y; and y:—1 as well as all other frames which are in
the shaded region.

5t+1 t+ 2 t+3
t t+1 t+ 2

5t+2 t+3
t t+1

Fig. 3. The measurement model when multiple base frames are used. A dy-
namical model for pose change is also added (horizontal arrows).
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the differential tracker to incorporate the added information. The joint
of the poses and observations becomes

T
p({&}.{6}) = H &lee—) I p6916r.€0)

(f.9)€ D

where D is the set of pairs of frames between which we have calculated
the pose change. Using the Gaussian uncertainty model of (2), the ML
poses are

argr&i}p Z ||5€71 _d(gt)ft_l)”/‘t,t—l
(f.9)€ D

T
3 € &), (5)

t=1

where we have assumed that the pose dynamics are Brownian with
covariance A4. The optimization problem can be thought of as relaxing
a spring system where the natural length of a spring between nodes £y
and &, is 5? and its stiffness is Af;

Unlike the minimization problem of the traditional tracker, we now
need to know Ay ;. An approximation to Ay 4 is derived in the following
two sections.

2.3 Estimating pose change

The simplest pose change tracker computes the maximum likelihood
pose difference 5,?71 by assuming that y; can be warped back to y;—1.
Camera noise and any change in appearance that is not modelled by
warping is modelled with identically distributed and independent Gaus-
sian noise of unspecified variance added to every pixel. The generative
model of y;_1 is then:

Yi- 1( ) =yl —u(z;6;_,)) + w(z)
P—1(@)lye(2),0; 1) = N (g1 (2); (6)
ye(a —u(z;6;_1)), 07,)

where w(x) is Gaussian and white over space and time, and has con-
stant variance o2 over the image. N'(z; u, 0?) is a Gaussian distribution
with means p and variance 2. u(z; d) is the warping function: it is used
to displace a pixel at location x to location = + wu(xz;0) in the target
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image. The ML estimate, §, maximizes the posterior p(|yt, ye—1). This
is equivalent to minimizing a sum-of-squared error function over §:

0= argmax p(0ye, yi—1) (7)
= arg;ninZ[yt—1($) — yi(z —u(;9))]?

This is the traditional least squares formulation for tracking, derived
in a probabilistic framework. Various total-least squares formulations
which allow y; to be noisy as well have been proposed [13, 8]. We have
demonstrated that pose change estimation computes the mode of the
distribution p(d|yt, y:—1). To fully qualify this distribution, we still need
to compute its covariance A;¢—1.

2.4 Uncertainty in motion estimates

Probabilistic methods for computing uncertainty in optical flow have
been proposed in [12,8]. We approximate the posterior p(&|ys, y:—1) by
fitting a Gaussian distribution at the mode § computed by the pose esti-
mator. The derivation is based on the approximation made in Laplace’s
method (see [6] for a note on the subject).

Using Bayes rule, we can rewrite the log-posterior:

log p(6|ye, ye—1) = log p(ye—110, yt) (8)
+ log p(d]y:) — log p(yi—1lyt)

Since 4 is taken to be the ML estimate, the first derivative of (8) van-
ishes at 0. Assuming uniform p(8]y,) (this is the case if p(d) is itself
uniform, since we can glean nothing about future poses from a single
image), the Hessian of (8) becomes

2 2

9 7]
H = 55 108p(0lye, y1—1) = 555 10g p(ye-1lye, 9)

The Taylor expansion of (8) about its mode is therefore:

log p(6|ye, ye—1) = 1ng($|yta Yi—1)
2

1 .0 N
+ §A5 Wlogp(yt_ﬂyt,zs)AcS

+ H.O.T,

where A§ = 6 — 6. Dropping high order terms and exponentiating, we
obtain a Gaussian approximation to the posterior:

(01t ye1) ~ cvexp (%(5 —5THS - 5))
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This Gaussian has mean ¢ as expected, and its variance is A¢ ;1 =
—H~'. In this case, H is the Hessian of the log of

P(Ye-1lye, 5) = Hp(wt(%“))

= HN(Z/t—l(ﬂ?); ye(x — u(x; 5)), afu),

which is found to be

1 ouT

ou
—% . % (ytfl

V2hi-1 — Vi Vi) =,
zYt—1 9tV ) 95

where y/1 = yi(z — u(2;0)) is the reconstructed y;_; and iy (x) =
yi—1(x) — §1—1(w) is the reconstruction residual?. Since in practice the
reconstruction error is small, we can further approximate H by:

Syt
oh 96

ou

H: %,

Vyi-1(2)[Vy—1(2)]")

Finally, 02, can be estimated as

7=+ Sl () — el — ulas8)). )

x

Our final estimate of the variance of p(d|y, y1—1) is:

-1
R ou” )
At,tfl = 0121, 8 8_1(; vytfl(x)vytfl(x)Ta_’g

This expression has an intuitive interpretation which makes it suitable
as an approximation of the posterior covariance. 62, can be interpreted
as the RMS reconstruction error after warping according to the recov-
ered pose change. H can be interpreted as the average sensitivity of
each component of §, weighted by the strength of the features in the
image. This is because Vy(z)Vy(x)? represents the strength of a fea-
ture at location z (see [10]), and 2%(x;§) is a measure of the sensitivity
of § at various points in the image.

To illustrate this point, we compute the sensitivity of a transla-
tional and an affine tracker. In the translational case, u(z;d) = 6. So

2 In deriving this expression, we have assumed that 9?u/0§% = 0. ie, u is
linear wrt 9.
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%u(x; d) = L. The covariance becomes

-1

: (10)

~2
Atranslation =0y

Z VyVyT

which is just the reconstruction error weighted by a measure of how
textured the image is.
In the case of an affine tracker, the partial of u is:

9 . [xy1000
%u(x’(s)_{OOOxyl]'

If we set Vy;_1(2)Vys_1(z)T = I, effectively assigning to all points the
same feature properties, the covariance becomes

-1
22y

wyy’y 0
N x 1
Aaffine = 0'120 § 4

x

22 xy x
0 awzyy’y
z y 1

According to this expression, points away from the center of the coor-
dinate system reduce the uncertainty in the multiplicative portion of
the affine transformation more than the central points. In addition all
points contribute equally to the translation parameters. Both observa-
tions are consistent with our expectation.

3 Results: a simple 2D tracker

We first show results when tracking the position of an aperture moving
over an image. & represents the current pixel location of the aperture
and y; denotes the image captured through the aperture. Since & only
parametrizes translation, a simple motion model with w(z;d) = ¢ is
adequate. Figure 4 shows the pose estimates from a differential tracker
which finds pose changes by minimizing (8) using gradient descent. The
update is according to (4) and is additive.

The algorithm estimates the pose change between consecutive 50x50
pixel windows which translate by an average of 5.6 pixels each step
along a spiral path. The average error in estimating ¢ is around 0.66
pixels, which after 626 iterations, results in approximately 55 pixels of
drift.
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To measure the uncertainty of the pose change estimator, we used
the pose covariance from equation (10). Figure 4 displays tracking per-
formance on the same aperture trajectory. The previous frame was
always used as an anchor frame, along with the 3 past frames which
were closest in pose to the previous frame. In 626 frames, tracking drifts
by at most 2.44 pixels and is off by 0.11 pixels at frame 623. Figure 5
compares the pose error of the two trackers over time. The the drift-
reduced tracker stops accumulating error after about 50 frames, while
the unenhanced tracker continues drifting.

To find the poses which maximize equation (5), we computed the
derivatives of the log-likelihood with respect to each pose:

0= s (BN

= Z Aig (67 = & + &)
(f=t.9)e D

+ > A0 — &+ &) (11)

(f,g=1)e D

Equation (11) is a sparse linear system in terms of the poses. Given a
fixed value for &, this system can be solved very efficiently (Matlab’s
backslash operator, which uses simple Gaussian elimination solves the
above 626 frame problem in less than a second).

4 Stabilized 3D tracking

Our method can also be applied to 3D tracking. We show results using
a rigid motion tracker with integrated intensity and depth constraints,
but our method is applicable to any parametric motion formulation,
with or without depth constraints.

Depth constraints have been shown to increase the accuracy of
gradient-based rigid motion tracking [3]. A depth constancy constraint
analogous to the traditional brightness constancy constraint can be
derived and yields:

—I, = [IgC Iy] u(x; )
~Zy = [ Zs Zy | u(;6) — Va(z,6) (12)

where 1I,., Z,, etc, are the partials of y; or y;—1. Together, these equa-
tions constrain the local motion 6! _; by using the image gradients.



Reducing Drift in Parametric Motion Tracking 567

Fig. 4. Estimates of the position of a 50x50 pixel aperture as it follows a
spiral path on the image. The position estimate is based solely on the im-
age acquired through the aperture. Top: traditional tracker. The estimated
trajectory (solid) terminates (marked by ’x’) with more than 55 pixels of
error relative to ground truth (dotted). Bottom: drift-reduced tracker, using
at most 4 past frames. The estimated trajectory ends less than 1 pixels from
the ground truth.
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Fig.5. Comparison of position error between simple tracker and drift-
reduced tracker.

When the camera model is perspective, a velocity [Vx, Vy, VZ]T at a
location in the real world results in image flow

-l
Uy Z |0 f~-y Vlz/
In the case of 3D motion, we define § = [0,0] where the three com-

ponents of J,, specify infinitesimal rotation and the three components
of d A specify translation. The warping function becomes:

uwid) = 5 |19 20 0w x o)

where X is the world coordinate of the image point z. Isolating § and

plugging u back into (12):
1
~Zy = [12: §2, ~(Z 4 2Z: +yZ,)] Q)
1
~Iy = [f1s f1, (2L, +y1,)] Q3 (13)

with R
Q=[1-X],
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where X is the 3x3 skew symmetric matrix formed by the real-world
coordinates corresponding to x and I is the 3x3 identity matrix. The
system of equation (13) is linear and highly overconstrained and can
be easily solved for 4.

For infinitesimal 3D updates, d(&1,&o) should be the real eigenvector
of eS1e~% [7], but we have found that d(¢1, &) = & — & is adequate in
practice. Drift reduction then consisted in solving equation (11) using
a sparse linear system solver.

4.1 Results: 6-DOF head tracker

We demonstrate the performance of the drift reduction algorithm on
this 3D tracker. Figure 6 describes the direction of a head as the subject
looks around the room. The nose moves by at most 20 cm throughout
the sequence and the head yaws by up to 80 degrees in each direc-
tion and pitches by up to a total of 55 degrees. The sequence is 800
frames long and corresponds to about 1.2 minutes of video. The face
was segmented from the background using the depth information only.
Pose changes were computed using the combined constraints of (13).
As shown in figure 7, after about 600 frames, the traditional tracker
has accumulated noticeable drift in its estimate of rotation, whereas the
drift-reduced tracker shows the pointer on the subject’s nose whenever
he returns to a near-frontal pose. Only appearance was used in finding
suitable anchor frames. Figure 8 plots the index of anchor frames used
for each frame. The protrusions from the diagonal line are produced as
the subject returns from a rotation. Note that the first frame is never
reused. The robustness is entirely due to recovering from drift accumu-
lated during each rotation by using frames observed while going into
the rotation.

4.2 Results: egomotion

The sequence summarized in figure 9 demonstrates that the drift re-
duced tracker can also be used for computing ego-motion. The task is
to hold the pointer in the same location relative to the real world as
the camera scans the room. Between frames 400 and 600, almost none
of the original scene is visible. By frame 610, the drift-reduced tracker
shows significant improvement over the traditional tracker, despite the
dearth of back frames before frame 630. The superior performance in
the early frames demonstrates the benefits of the batch/non-causal na-
ture of the drift-reduction algorithm and of allowing information in the
future influence the past. By frame 1050 the unenhanced tracker has
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Fig. 6. The sequence is 1.2 minutes long. The subject looks in all directions,
by up to 80 degrees from frontal in some directions. The sequence was cap-
tured at ~11 fps. The graph above provides an intuitive feel for the relative
magnitude of the rotations. It plots d, over time.
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800

Fig. 7. Left column: traditional tracker. Poses are updated according to (4).
Right column: drift-reduced tracker.
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Fig. 8. Anchor frames used by drift-reduced tracker. Each frame on the hori-
zontal axis is matched by appearance with 3 previous frame. The protrusions
show that as the subject returns from a rotation, frames on the way into the
rotation are used as anchor.

drifted far enough that all subsequent pose changes throw it even fur-
ther off track. Figure 10 shows a quantitive version of the results. After
600 frames, the traditional tracker starts to accumulate considerable
drift. During the same period, the drift-reduced tracker keeps track of
the real movement by using information prom similar previous frames
as shown in figure 12.
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Fig. 9. The camera begins panning from the center dot, in the direction of
the arrow. The dashed path marks the approximate trajectory of the center
of the camera (drawn by hand). Only the interior of the black rectangle is
visible to the camera (approximate), so that the intial pose is completely out
of view between frames 420 and 530.
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Fig. 10. Top: Horizontal translation. Bottom: Vertical Translation. The tra-
ditional tracker exhibits continual drift with respect to the drift-reduced
tracker.
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270

Fig.11. Left column: traditional tracker. Right column: drift-reduced
tracker. Beyond 1050 frames, the traditional tracker is no longer effective.
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Fig.12. Anchor frames used by drift-reduced tracker. Previously visited
poses are used effectively (eg, frames 300, 700, 1020).
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5 Conclusion

We have developed a framework for stabilizing parametric motion track-
ers in closed environments. Our method measures pose change between
frames which are similar in pose and appearance, and uses these mea-
surements to compute robust pose estimates. This improves stabil-
ity since additional pose change measurements provide robustness and
ground the tracking against commonly revisited sites. We derived an
uncertainty model for motion estimation and used it to frame the prob-
lem of incorporating these additional measurements into a non-causal
estimation framework. We demonstrated the benefits of using multiple
base frames in our maximum likelihood framework on a synthetic 2D
motion tracking problem and on 3D ego-motion computation and pose
estimation.
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