
Proceedings of IJCAI-01,
pp. 1365–1371, August, 2001.

Resolving Ambiguities to Create a Natural
Computer-Based Sketching Environment

Christine J. Alvarado and Randall Davis

MIT Artificial Intelligence Laboratory
{calvarad, davis}@ai.mit.edu

Abstract. Current computer-based design tools for mechani-
cal engineers are not tailored to the early stages of design. Most
designs start as pencil and paper sketches, and are entered into
CAD systems only when nearly complete. Our goal is to create
a kind of “magic paper” capable of bridging the gap between
these two stages. We want to create a computer-based sketch-
ing environment that feels as natural as sketching on paper,
but unlike paper, understands a mechanical engineer’s sketch
as it is drawn. One important step toward realizing this goal
is resolving ambiguities in the sketch— determining, for exam-
ple, whether a circle is intended to indicate a wheel or a pin
joint—and doing this as the user draws, so that it doesn’t in-
terfere with the design process. We present a method and an
implemented program that does this for freehand sketches of
simple 2-D mechanical devices.

1 Sketching conceptual designs

Engineers typically make several drawings in the course of a design,
ranging from informal sketches to the formal manufacturing drawings
created with drafting tools. Drawing is far more than an artifact of the
design process; it has been shown to be essential at all stages of the
design process [16]. Yet almost all early drawings are still done using
pencil and paper. Only after a design is relatively stable do engineers
take the time to use computer aided design or drafting tools, typically
because existing tools are too difficult to use for the meager payoff they
provide at this early stage.

Our aim is to allow designers to sketch just as they would on paper,
e.g., without specifying in advance what component they are drawing,
yet have the system understand what has been sketched. We want to



606 Christine J. Alvarado and Randall Davis

have the input be as unconstrained as possible, in order to make inter-
action easy and natural; our route to accomplishing this is to build a
sufficiently powerful sketch recognizer.

It is not yet obvious that a freehand sketching interface will be more
effective in real use than a carefully designed menu-based system. In
order to do the comparison experiments, however, we must first build
powerful sketch-based systems. It is the construction of such a system
that is the focus of this paper.

The value of sketching as an interface and the utility of intelligent
sketch understanding has gained increasing attention in recent years
(e.g., [6]). Some early research was concerned with single stroke clas-
sification ([11]), while more recent work ([4, 7]) puts groups of strokes
together to form larger components. A number of efforts (e.g., [3], [8])
have acknowledged the necessity of representing ambiguities that arise
in interpreting strokes, but have not substantially addressed how to
resolve those ambiguities.

Given the frequency of ambiguities in a sketch, a tool that con-
stantly interrupts the designer to ask for a choice between multiple
alternatives would be cumbersome. Our work is thus focused, in part,
on creating a framework in which to both represent and use contex-
tual (top-down) knowledge to resolve the ambiguities. We built a pro-
gram called ASSIST (A Shrewd Sketch Interpretation and Simulation
Tool) that interprets and understands a user’s sketch as it is being
drawn, providing a natural-feeling environment for mechanical engi-
neering sketches.

The program has a number of interesting capabilities.

– The basic input to the program is a sketch, i.e., a sequence of strokes
drawn “while the system watches,” not a finished drawing to be
interpreted only after it is complete.

– Sketch interpretation happens in real time, as the sketch is being
created.

– The program allows the user to draw mechanical components just
as on paper, i.e., as informal sketches, without having to pre-select
icons or explicitly identify the components.

– The program uses a general architecture for both representing am-
biguities and adding contextual knowledge to resolve the ambigui-
ties.

– The program employs a variety of knowledge sources to resolve
ambiguity, including knowledge of drawing style and of mechanical
engineering design.

– The program understands the sketch, in the sense that it recog-
nizes patterns of strokes as depicting particular components, and



A Natural Computer-Based Sketching Environment 607

illustrates its understanding by running a simulation of the device,
giving designers a way to simulate their designs as they sketch them.

We describe the system and report on a pilot user study evaluating
the naturalness of the program’s interface and the effectiveness of its
interpretations.

2 Designing with ASSIST

Fig. 1. A car on a hill, as drawn by the user in ASSIST.

Figure 1 shows a session in which the user has drawn a simple car
on a hill. The user might begin by drawing the body of the car, a free-
form closed polygon. As the user completes the polygon, the system
displays its interpretation by replacing the hand-drawn lines (shown in
Figure 1) with straight blue lines. Next the user might add the wheels of
the car, which also turn blue as they are recognized as circular bodies.
The user can then “attach” the wheels with pin joints that connect
wheels to the car body and allow them to rotate. The user might then
draw a surface for the car to roll down, and anchor it to the background
(the “x” indicates anchoring; anything not anchored can fall). Finally,
the user can add gravity by drawing a downward pointing arrow not
attached to any object. The user’s drawing as re-displayed by ASSIST
is shown in Figure 2.

The system recognizes the various components in the drawing by
their form and context; when the “Run” button is tapped, it transfers



608 Christine J. Alvarado and Randall Davis

Fig. 2. The sketch as displayed by ASSIST.

the design to a two-dimensional mechanical simulator which shows what
will happen (Figure 3).1

Fig. 3. The sketch simulated, showing the consequences.

Note that the user drew the device without using icons, menu com-
mands, or other means of pre-specifying the components being drawn.
Note, too, that there are ambiguities in the sketch, e.g., both the wheels
of the car and pin joints are drawn using circles, yet the system was

1 We use Working Model 2D from Knowledge Revolution, a commercial
mechanical simulator; any simulator with similar capabilities would do as
well.



A Natural Computer-Based Sketching Environment 609

able to select the correct interpretation despite these ambiguities, by
using the knowledge and techniques discussed below. The automatic
disambiguation allowed the user to sketch without interruption.

Figure 4 shows a session in which the user has drawn a more inter-
esting device, a circuit breaker, and run a simulation of its behavior.

Note that ASSIST deals only with recognizing the mechanical com-
ponents in the drawing and is, purposely, literal-minded in doing so.
Components are assembled just as the user drew them, and component
parameters (e.g. spring constants, magnitudes of forces, etc)̇ are set
to default values. The car in Figures 1–3, for example, wobbles as it
runs down the hill because the axles were not drawn in the center of
the wheels. The combination of literal-minded interpretation and de-
fault parameter values can produce device behavior other than what
the user had in mind. Other work in our group has explored the inter-
esting and difficult problem of communicating and understanding the
intended behavior of a device once it has been drawn using ASSIST
[10].

3 Embedding intelligent assistance

We created a model for sketch understanding and ambiguity resolution
inspired by the behavior of an informed human observer, one that rec-
ognizes the sketch by relying on both low-level (i.e., purely geometric)
routines and domain specific knowledge.

One interesting behavior of an informed observer is that interpre-
tation begins as soon as the designer begins sketching. While not a
required strategy—people can obviously interpret a finished sketch—
there are advantages in ease of use and in speed from having the pro-
gram do its interpretation in parallel with drawing. Ease of use arises
because the program can provide an indication of its interpretation of
parts of the sketch as soon as they are drawn, making it easier for the
user to correct a misinterpretation. Interpretation is faster because in-
cremental interpretation effects a divide and conquer strategy: parts
of the drawing interpreted correctly can provide useful context when
interpreting parts drawn subsequently.2

A second interesting behavior of an informed observer is the ability
to accumulate multiple interpretations and defer commitment. Con-
sider for example the objects in Figure 5. Are the strokes in 5a going
to become part of a ball and socket mechanism (5b), or are they the
2 The program also seems faster because it is working while the user is

drawing, reducing the user’s wait.



610 Christine J. Alvarado and Randall Davis

Fig. 4. A sketch of a circuit breaker (left) and its simulation (right).



A Natural Computer-Based Sketching Environment 611

beginning of a gear (5c)? Committing too soon to one interpretation
precludes the other. Hence interpretation must be capable of revision
in the face of new information.

There is clearly a need to balance out the desire for interpretation
occurring in parallel with drawing, and the need to avoid premature
commitment. We discuss below how our system accomplishes this.

(b) (c)

(a)

Fig. 5. An example of ambiguity: The bold strokes in (b) and (c) are identical
to the strokes in (a).

Third, while commitment should be deferred, it must of course be
made eventually, and determining when to make that commitment is
not easy. Timing information can assist. Consider the case of circles:
Because circles are low-level structures, it is likely that they will be used
in higher-level structures, as for example when a circle turns out to be
part of a pulley system. One way of dealing with this is to use timing
data: the system gets to “watch” the sketch being drawn and knows
when each stroke was made. If, some time after the circle has been
drawn, it has still not been used in any other structure, the observer
can plausibly guess that it will not be incorporated into another piece
and should be interpreted as an independent circular body.3

Finally, parts may remain ambiguous even when a piece of the draw-
ing is finished. To resolve these residual ambiguities, the observer uses
his knowledge of mechanical engineering components and how they
combine. Consider, for example, the small circles inside the larger cir-
cles in Figure 2; ASSIST determines that these are more likely to be
pivot joints than additional circular bodies, both because small circles

3 A body is any hunk of material not otherwise interpreted as a more special-
ized component (like a spring, pin joint, etc.). The car body is a polygonal
body; its wheels are circular bodies.



612 Christine J. Alvarado and Randall Davis

typically indicate pin joints and because bodies do not typically overlap
without some means of interconnection (i.e., the pin joint).

Our system incorporates each of these observations: it begins inter-
preting the sketch as soon as the user starts drawing; it accumulates
multiple interpretations, deferring commitment until sufficient evidence
(e.g., stroke timing) accumulates to suggest a component has been fin-
ished, and it resolves ambiguities by relying on knowledge from the
domain about how components combine.

4 ASSIST’s interpretation and disambiguation
process

ASSIST’s overall control structure is a hierarchical template-matching
process, implemented in a way that produces continual, incremental in-
terpretation and re-evaluation as each new stroke is added to the sketch.
Each new stroke triggers a three stage process of recognition, reason-
ing and resolution. Recognition generates all possible interpretations
of the sketch in its current state, reasoning scores each interpretation,
and resolution selects the current best consistent interpretation. After
each pass through the three stages the system displays its current best
interpretation by redrawing the sketch.

4.1 Recognition

In the recognition stage, ASSIST uses a body of recognizers, small
routines that parse the sketch, accumulating all possible interpretations
as the user draws each stroke. A recognizer takes as input raw strokes
and previously recognized objects, and if the input fits its template,
produces a new object. For example, the circle recognizer reports a
circle if all the points on a stroke lie at roughly the same distance
from the average X and Y coordinate of the stroke.4 The circle is then
available to other recognizers, e.g., the pulley recognizer.

4.2 Reasoning

In the second stage the system scores each interpretation using a variety
of different sources of knowledge that embody heuristics about how
people draw and how mechanical parts combine.
4 In other work we describe recognizers that use more sophisticated early

processing of basic geometry [14].



A Natural Computer-Based Sketching Environment 613

Temporal evidence People tend to draw all of one object before
moving to a new one. Our system considers interpretations that were
drawn with consecutive strokes to be more likely than those drawn with
non-consecutive strokes.

Additional evidence comes from “longevity:” the longer a figure
stays unchanged, the stronger its interpretation becomes, because as
time passes it becomes more likely that the figure is not going to be
turned into anything else by additional strokes.

Simpler is netter We apply Occam’s razor and prefer to fit the fewest
parts possible to a given set of strokes. For example, any polygonal body
(e.g., the car body in Figure 2) could have been interpreted as a set of
(connected) individual rods, but the system prefers the interpretation
“body” because it fits many strokes into a single interpretation.

More specific is better Our system favors the most specific inter-
pretation. Circles, for example, (currently) have three interpretations:
circular bodies, pin joints, and the “select” editing gesture. The selec-
tion gesture is the most specific interpretation, in the sense that every
circle can be a circular body or pin joint, but not every circle can be a
selection gesture (e.g., if it does not encircle any objects). Hence when
a circle contains objects inside of it, the system prefers to interpret it
as a selection gesture.

Domain knowledge ASSIST uses basic knowledge about how me-
chanical components combine. For example, a small circle drawn on
top of a body is more likely to be a pin joint than a circular body.

User feedback User feedback also supplies guidance. The “Try Again”
button (see the bottom of Figure 1) permits the user to indicate that
something was recognized incorrectly, at which point the system dis-
cards that interpretation and offers the user an ordered list of alter-
native interpretations. Conversely the system can be relatively sure an
interpretation is correct if the user implicitly accepts it by continuing
to draw.

Combining evidence The heuristics described above all indepen-
dently provide evidence concerning which interpretation is likely to be
correct. Our method of combining these independent sources involves



614 Christine J. Alvarado and Randall Davis

distinguishing between two categories of evidence: categorical and sit-
uational.

Categorical evidence ranks interpretations relative to one another
based on the first four knowledge sources described above. Each source
is implemented in the system as a set of rules that takes two interpre-
tations as input, and outputs an ordering between them. In processing
Figure 1, for example, the interpretation “body” is ranked higher than
the interpretation “connected rods,” based on the “Simpler is Better”
heuristic.

Situational evidence comes from implicit and explicit feedback from
the user. Explicit feedback is provided by use of the “Try Again” but-
ton; implicit feedback arises when the user keeps drawing after the
system displays an interpretation, suggesting that the user is satisfied
that the system has understood what has been drawn so far.

The system gives each interpretation two numeric scores, one from
each category of evidence. The categorical score is an integer from 0
to 10; the situational score is an integer from -11 to 11. These values
are chosen so that the situational dominates the categorical, because
we want user feedback to dominate general ranking rules. An interpre-
tation’s total score is simply the sum of its two scores.

To convert categorical evidence to a numerical score (so it can be
combined it with the situational score), we generate a total ordering of
all the interpretations consistent with the partial orders imposed by the
categorical evidence. We do a topological sort of the graph of partial
orders produced by the evidence and distribute scores evenly, from 0
to 10, over all the interpretations in the sorted graph.5

Situational scores start out at 0 and are strengthened or weakened
by evidence that can raise of lower the current value by 1 or by 11.
Situational evidence thus either modifies an interpretation’s value by a
small amount (1 unit) or declares it to be certainly correct or certainly
incorrect. The system declares an interpretation to be certainly correct
or certainly incorrect when the user explicitly accepts or rejects the in-
terpretation using the “Try Again” dialog box. The system strengthens

5 The system first removes cycles in the graph by collapsing strongly con-
nected components. Conceptually, this step indicates that the system will
give an equal score to all interpretations that have inconsistent ordering
given the evidence (i.e., one rule says A is more likely than B, while an-
other says B is more likely than A). In addition, if there are more than
11 interpretations, the top ten are assigned scores of 10 through 1; the
remaining interpretations all receive a score of 0.



A Natural Computer-Based Sketching Environment 615

an interpretation by a small amount each time strokes added by the
user are consistent with that interpretation.6

We developed this approach to accumulating and combining evi-
dence, and implemented our knowledge sources as a rule based system,
in order to provide a degree of modularity to the system. Our overall
approach to the problem is to take into account as many sources of
knowledge as prove useful in interpreting the sketch. We knew that it
would be impossible to identify and implement them all at the outset,
hence our design put a high premium on the ability to add and remove
sources of evidence easily.

4.3 Resolution

The third stage in the interpretation process involves deciding which
interpretation is currently the most likely. Our system uses a greedy al-
gorithm, choosing the interpretation with the highest total score, elim-
inating all interpretations inconsistent with that choice, and repeating
these two steps until no more interpretations remain to be selected.

The process is illustrated by the interpretation graph in Figure 6,
which shows in graphical form all of the possible interpretations of four
strokes (the top row of ovals): 4 separate lines, 4 rods, a quadrilateral,
rectangle, or square. The rod on the left has the highest score, so it
is chosen as a correct interpretation for stroke A. Choosing that in-
terpretation eliminates the interpretations of quadrilateral, rectangle
or square, because stroke A is needed in any of these interpretations.
In this context the other strokes are interpreted as rods because that
interpretation has the highest score of any remaining interpretation.

Recall that our interpretation process is continuous: all three stages
of processing occur after every new stroke is added to the sketch, and
the current best interpretation as selected by the greedy algorithm is
presented to the user. The process tends to settle down reasonably
quickly, in part because, as noted, we reward longevity. Hence once an
interpretation has been presented to the user and unchanged for some
period of time, it becomes increasingly unlikely to change.

5 Evaluation and results

Our initial evaluation of ASSIST has focused on its naturalness and
effectiveness. We asked subjects to sketch both on paper and using
6 The system does not yet weaken an interpretation by a small amount; we

have included this possibility for symmetry and possible future use.



616 Christine J. Alvarado and Randall Davis

rod rod rod rod

A B

1 1 1

2 2

3 3 3

4

4

5 3

1

22

Fig. 6. A recognition graph for four strokes; scores are shown at the left of
each interpretation.



A Natural Computer-Based Sketching Environment 617

ASSIST. We observed their behavior and asked them to describe how
ASSIST felt natural and what was awkward about using it.

Fig. 7. A scale.

We tested the system on eleven people from our the laboratory, two
of whom had mechanical engineering design experience. All were asked
first to draw a number of devices on paper (Figures 7, 8, 9), to give
them a point of comparison and to allow use to observe differences in
using the two media.

They were then asked to draw the same systems using ASSIST
(they drew with a Wacom PL-400 tablet, an active matrix LCD display
that allows users to sketch and see their strokes appear directly under
the stylus). We asked them how often they felt the system got the
correct interpretation and how reasonable the misinterpretations were,
and asked them to compare using our system to drawing on paper and
to using a menu-based interface.

The system was successful at interpreting the drawings despite sub-
stantial degrees of ambiguity, largely eliminating the need for the user
to specify what he was drawing. As a consequence, a user’s drawing
style appeared to be only mildly more constrained than when drawing
on paper.

People reported that the system usually got the correct interpre-
tation of their sketch. Where the system did err, examination of its
performance indicated that in many cases the correct interpretation
had never been generated at the recognition step, suggesting that our
reasoning heuristics are sound, but we must improve the low-level rec-
ognizers. This work is currently under way.



618 Christine J. Alvarado and Randall Davis

Fig. 8. A Rube-Goldberg machine. The ball rolling down the incline sets in
motion a sequence of events that eventually pushes the block at the right
into the receptacle at bottom right. The device is an adaptation of the one
found in [Narayanan, 1995].

Fig. 9. A circuit breaker.



A Natural Computer-Based Sketching Environment 619

Users tended to draw more slowly and more precisely with ASSIST
than they did on paper. The most common complaint was that it was
difficult to do an accurate drawing because the system changed the
input strokes slightly when it re-drew them (to indicate its interpre-
tations). Users felt that the feedback given by ASSIST was effective
but at times intrusive. Our next generation of the system leaves the
path of the strokes unchanged, changing only their color to indicate
the interpretation.

For a more complete discussion responses to the system from a user
interface perspective, see [1].

6 Related work

The Electronic Cocktail Napkin (ECN) project [2, 5] attacks a similar
problem of sketch understanding and has a method for representing
ambiguity. Our system takes a more aggressive approach to ambiguity
resolution and as a result can interpret more complicated interactions
between parts. In order for ECN to to resolve ambiguity, the user must
either inform the system explicitly of the correct interpretation, or the
system must find a specific higher-level pattern that would provide the
context to disambiguate the interpretation of the stroke. Our system,
in contrast, takes into account both drawing patterns and knowledge
of drawing style.

[8] presents a general framework for representing ambiguity in recog-
nition-based interfaces. This work is similar in using a tree-like struc-
ture for representing ambiguity, but touches only briefly on ambiguity
resolution. Our work pushes these ideas one step further within the
domain of mechanical engineering by providing a framework and set of
heuristics for ambiguity resolution.

SILK [7] allows a user to sketch out rough graphical user interface
designs, then transform them into more polished versions. SILK ad-
dresses the notion of ambiguity, but limits its handling of it to single
parts, e.g., is this group of strokes a radio button or a check box? This
does not in general affect the interpretation of the other strokes in the
sketch. In contrast, our system can resolve ambiguities that affect the
interpretation of many pieces of the sketch.

A theoretical motivation to our work was provided by work in [13],
which outlines several goals in interpreting ambiguous sketches. Our
work implements many of the multiple representation and disambigua-
tion techniques suggested in their work.

We have also been motivated by work in mechanical system behav-
ior analysis, especially in the field of qualitative behavior extraction



620 Christine J. Alvarado and Randall Davis

and representation [12, 15]. The work by Stahovich aims to extract the
important design constraints from the designer’s rough sketch and is
less focused on the interface or sketch recognition process. It was nev-
ertheless the inspiration for our work in this area.

7 Future work

The work presented in this paper is a first step toward creating a natural
interface. It can usefully be expanded in several areas.

First, our current formulation of recognition and evidential reason-
ing is of course quite informal. This is a consequence of our focus at
this stage on the knowledge level, i.e., trying to determine what the
program should know and use to evaluate interpretations. Once the
content has become more stable and better understood, a more formal
process of evaluation and control (e.g., Bayes’ nets) may prove useful
both for speed and scaling.

Second, in our efforts to combine the best properties of paper and
the digital medium we have yet to find many of the appropriate trade-
off points. How aggressive should the system be in its interpretations?
Forcing the user to correct the system immediately when it makes a
mistake greatly aids recognition, but may distract the designer by forc-
ing her to focus on the system’s recognition process rather than on
the design. In addition, some ambiguities are resolved as more of the
sketch is drawn, yet if the system waits for the sketch to be finished,
unraveling an incorrect interpretations can be a great deal of work.

In the same vein, it will be important to calibrate how important
true freehand sketching is to designers. The obvious alternative is a
icon-based system with graphical editing capabilities (e.g., moving and
resizing the standard components). Freehand drawing can be powerful,
but alternative interface styles need to be considered as well.

The system should also adapt to new users and their sketching style.
For example, one of our heuristics was that people draw all of one object
before moving onto the next, but there are of course exceptions. The
system should be able to adjust to this type of behavior and learn to
override its default heuristic.

8 Conclusion

CAD systems are rarely used in early design because they do not allow
for quick and natural sketching of ideas. To be useful here, computers



A Natural Computer-Based Sketching Environment 621

must allow the designer to sketch as on paper, yet provide benefits not
available with paper, such as the ability to simulate the system.

To provide an interface that feels natural yet interprets sketches as
the user draws, the system must be able to resolve ambiguities without
interrupting the user. This work provides one solution to problem of
ambiguity resolution in a framework of reasonable generality.

Acknowledgments

Luke Weisman and Mike Oltmans helped extensively in the develop-
ment of these ideas and this system. The work was supported in part
by the National Science Foundation, the MIT/Ford Motor Company
Collaboration, and MIT’s Project Oxygen.

References

1. Christine Alvarado and Randall Davis. Preserving the freedom of sketch-
ing to create a natural computer-based sketch tool. In Human Computer
Interaction International Proceedings, 2001.

2. Ellen Yi-Luen Do and Mark D. Gross. Drawing as a means to design
reasoning. AI and Design, 1996.

3. Mark Gross and Ellen Yi-Luen Do. Ambiguous intentions: a paper-like
interface for creative design. In Proceedings of UIST 96, pages 183–192,
1996.

4. Mark D. Gross. Recognizing and interpreting diagrams in design. In 2nd
Annual International Conference on Image Processing, pages 308–311,
1995.

5. Mark D. Gross. The electronic cocktail napkin - a computational en-
vironment for working with design diagrams. Design Studies, 17:53–69,
1996.

6. Marti Hearst. Sketching intelligent systems. IEEE Intelligent Systems,
pages 10–18, May/June 1998.

7. James A. Landay and Brad A. Myers. Sketching interfaces: Toward more
human interface design. IEEE Computer, 34(3):56–64, March 2001.

8. Jennifer Mankoff, Scott E Hudson, and Grefory D. Abowd. Providing
intergrated toolkit-level support for ambiguity in recogntiion-based in-
terfaces. In Proceedings of the CHI 2000 conference on Human factors
in computing systems, pages 368–375, 2000.

9. N. Hari Narayanan, Masaki Suwa, and Hiroshi Motoda. Behavior Hy-
pothesis from Schematic Diagrams, chapter 15, pages 501–534. The MIT
Press, Cambridge, Massachusetts, 1995.

10. Michael Oltmans. Understanding natually conveyed explanations of de-
vice behavior. Master’s thesis, Massachusetts Institute of Technology,
2000.



622 Christine J. Alvarado and Randall Davis

11. Dean Rubine. Specifying gestures by example. Computer Graphics, pages
329–337, July 1991.

12. Elisha Sacks. Automated modeling and kinematic simulation of mecha-
nisms. Computer-Aided Design, 25(2):107–118, 1993.

13. Eric Saund and Thomas P. Moran. Perceptual organization in an inter-
active sketch editing application. In ICCV 1995, 1995.

14. Tevik Metin Sezgin. Early processing in sketch understanding. Master’s
thesis, Massachusetts Institute of Technology, 2001.

15. T. Stahovich, R. Davis, and H.Shrobe. Generalting multiple new designs
from a sketch. Artificial Intelligence, 104(1-2):211–264, 1998.

16. David G. Ullman, Stephan Wood, and David Craig. The importance of
drawing in mechanical design process. Computer & Graphics, 14(2):263–
274, 1990.


