Proceedings of the 2001 Workshop on
Perceptual User Interfaces (PUI’01),
Orlando, FL, May 2001.

Sketch Based Interfaces: Early Processing
for Sketch Understanding

Tevfik Metin Sezgin,! Thomas Stahovich? and Randall Davis!

L MIT Artificial Intelligence Laboratory
{mtsezgin, davis}@ai.mit.edu
2 CMU Department of Mechanical Engineering
stahov@andrew.cmu.edu

Abstract. Freehand sketching is a natural and crucial part
of everyday human interaction, yet is almost totally unsup-
ported by current user interfaces. We are working to combine
the flexibility and ease of use of paper and pencil with the
processing power of a computer, to produce a user interface
for design that feels as natural as paper, yet is considerably
smarter. One of the most basic steps in accomplishing this is
converting the original digitized pen strokes in a sketch into
the intended geometric objects. In this paper we describe an
implemented system that combines multiple sources of knowl-
edge to provide robust early processing for freehand sketching.

1 Introduction

Freehand sketching is a familiar, efficient, and natural way of expressing
certain kinds of ideas, particularly in the early phases of design. Yet this
archetypal behavior is largely unsupported by user interfaces in general
and by design software in particular, which has for the most part aimed
at providing services in the later phases of design. As a result designers
either forgo tool use at the early stage or end up having to sacrifice
the utility of freehand sketching for the capabilities provided by the
tools. When they move to a computer for detailed design, designers
usually leave the sketch behind and the effort put into defining the
rough geometry on paper is largely lost.

We are working to provide a system where users can sketch nat-
urally and have the sketches understood. By “understood” we mean
that sketches can be used to convey to the system the same sorts of

624 Tevfik Metin Sezgin, Thomas Stahovich and Randall Davis

information about structure and behavior as they communicate to a
human engineer.

Such a system would allow users to interact with the computer
without having to deal with icons, menus and tool selection, and would
exploit direct manipulation (e.g., specifying curves by sketching them
directly, rather than by specifying end points and control points). We
also want users to be able to draw in an unrestricted fashion. It should,
for example, be possible to draw a rectangle clockwise or counterclock-
wise, or with multiple strokes. Even more generally, the system, like
people, should respond to how an object looks (e.g., like a rectangle),
not how it was drawn. This will, we believe, produce a sketching in-
terface that feels much more natural, unlike Graffiti and other gesture-
based systems (e.g., [9], [14]), where pre-specified motions (e.g., an L-
shaped stroke or a clockwise rectangular stroke) are required to specify
a rectangular shape.

The work reported here is part of our larger effort aimed at provid-
ing natural interaction with software, and with design tools in particu-
lar. That larger effort seeks to enable user to interact with automated
tools in much the same manner as they interact with each other: by
informal, messy sketches, verbal descriptions, and gestures. Our over-
all system uses a blackboard-style architecture [6], combining multiple
sources of knowledge to produce a hierarchy of successively more ab-
stract interpretations of a sketch.

Our focus in this paper is on the very first step in the sketch under-
standing part of that larger undertaking: interpreting the pixels pro-
duced by the user’s strokes and producing low level geometric descrip-
tions such as lines, ovals, rectangles, arbitrary polylines, curves and
their combinations. Conversion from pixels to geometric objects is the
first step in interpreting the input sketch. It provides a more compact
representation and sets the stage for further, more abstract interpreta-
tion (e.g., interpreting a jagged line as a symbol for a spring).

2 The sketch understanding task

Sketch understanding overlaps in significant ways with the extensive
body of work on document image analysis generally (e.g., [2]) and
graphics recognition in particular (e.g., [16]), where the task is to go
from a scanned image of, say, an engineering drawing, to a symbolic
description of that drawing.

Differences arise because sketching is a realtime, interactive process,
and we want to deal with freehand sketches, not the precise diagrams
found in engineering drawings. As a result we are not analyzing careful,

Sketch Based Interfaces 625

finished drawings, but are instead attempting to respond in real time to
noisy, incomplete sketches. The noise is different as well: noise in a free-
hand sketch is typically not the small-magnitude randomly distributed
variation common in scanned documents. There is also an additional
source of very useful information in an interactive sketch: as we show
below, the timing of pen motions can be very informative.

Sketch understanding is a difficult task in general as suggested by
reports in previous systems (e.g., [9]) of a recognition rate of 63%, even
for a sharply restricted domain where the objects to be recognized are
limited to rectangles, circles, lines, and squiggly lines (used to indicate
text).

Our domain—-mechanical engineering design—presents the additional
difficulty that there is no fixed set of shapes to be recognized. While
there are a number of traditional symbols with somewhat predictable
geometries (e.g., symbols for springs, pin joints, etc.), the system must
also be able to deal with bodies of arbitrary shape that include both
straight lines and curves. As consequence, accurate early processing
of the basic geometry—finding corners, fitting both lines and curves—
becomes particularly important.

3 System description

Sketches can be created in our system using any of a variety of devices
that provide the experience of freehand drawing while capturing pen
movement. We have used traditional digitizing tablets, a Wacom tablet
that has an LCD-display drawing surface (so the drawing appears un-
der the stylus), and a Mimio whiteboard system. In each case the pen
motions appear to the system as mouse movements, with position sam-
pled at rates between 30 and 150 points/sec, depending on the device
and software in use.

In the description below, by a single stroke we mean the set of points
produced by the drawing implement between the time it contacts the
surface (mouse-down) and the time it breaks contact (mouse-up). This
single path may be composed of multiple connected straight and curved
segments (see, Fig. 1).

Our approach to early processing consists of three phases approz-
imation, beautification, and basic recognition. Approximation fits the
most basic geometric primitives—lines and curves—to a given set of pix-
els. The overall goal is to approximate the stroke with a more compact
and abstract description, while both minimizing error and avoiding
over-fitting. Beautification modifies the output of the approximation
layer, primarily to make it visually more appealing without changing

626 Tevfik Metin Sezgin, Thomas Stahovich and Randall Davis

its meaning, and secondarily to aid the third phase, basic recognition.
Basic recognition produces interpretations of the strokes, as for ex-
ample, interpreting a sequence of four lines as a rectangle or square.
(Subsequent recognition, at the level of mechanical components, such
as springs, and pin joints is accomplished by another of our systems

[1)-

3.1 Stroke approximation

Stroke processing consists of detecting vertices at the endpoints of lin-
ear segments of the stroke, then detecting and characterizing curved
segments of the stroke.

Vertex detection We use the sketch in Fig. 1 as a motivating example
of what should be done in the vertex detection phase. Points marked
in Fig. 1 indicate the corners of the stroke, where the local curvature
is high.

Note that the vertices are marked only at what we would intuitively
call the corners of the stroke (i.e., endpoints of linear segments). There
are, by design, no vertices marked on curved portions of the stroke be-
cause we want to handle these separately, modeling them with curves
(as described below). This is unlike the well studied problem of piece-
wise linear approximation [13].

Fig. 1. The stroke on the left contains both curves and straight line segments.
The points we want to detect in the vertex detection phase are indicated with
large dots in the figure on the right. The beginning and the end points of the
stroke are indicated with smaller dots.

Our approach takes advantage of the interactive nature of sketch-
ing, combining information from both stroke direction and speed data.

Sketch Based Interfaces 627

Fig. 2. Stroke representing a square.

Consider as an example the square in Fig. 2; Fig. 3 shows the direction,
curvature (change in direction with respect to arc length) and speed
data for this stroke. We locate vertices by looking for points along the
stroke that are minima of speed (the pen slows at corners) or maxima
of the absolute value of curvature.!

While extrema in curvature and speed typically correspond to ver-
tices, we cannot rely on them blindly because noise in the data in-
troduces many false positives. To deal with this we use average based

filtering.

Fig. 3. Direction, curvature and speed graphs for the stroke in Fig. 2

Average based filtering

We want to find extrema corresponding to vertices while avoiding those
due to noise. To increase our chances at doing this, we look for ex-
trema in those portions of the curvature and speed data that lie beyond
a threshold. Intuitively, we are looking for maxima of curvature only
where the curvature is already high and minima of speed only where
the speed is already low. This will help to avoid selecting false positives

! From here on for ease of description we use curvature to mean the absolute
value of the curvature data.

628 Tevfik Metin Sezgin, Thomas Stahovich and Randall Davis

of the sort that would occur say, when there is a brief slowdown in an
otherwise fast section of a straight stroke.

To avoid the problems posed by choosing a fixed threshold, we
set the threshold based on the mean of each data set.? We use these
thresholds to separate the data into regions where it is above/below the
threshold and select the global extrema in each region that lies above
the threshold.

S N
At

0

Fig. 4. Curvature graph for the square in Fig. 2 with the threshold dividing
it into regions.

05
04

1o Ly h

Fig. 5. Speed graph for the stroke in Fig. 2 with the threshold dividing it
into regions.

2 The exact threshold has been determined empirically; for curvature data
the threshold is the mean, while for the speed the threshold is 90% of the
mean.

Sketch Based Interfaces 629

Application to curvature data

Fig. 4 shows the curvature graph partitioned into regions of high
and low curvature. Note that this reduces but doesn’t eliminate the
problem of false positives introduced by noise in the stroke. We deal
with the false positives using the hybrid fit generation scheme described
below.?

While average based filtering performs better than simply compar-
ing the curvature data against a hard coded threshold, it is still clearly
not free of empirical constants. As we explain when considering future
work, scale space provides a better approach for dealing with noisy
data without having to make a priori assumptions about the scale of
relevant features.

Application to speed change

Our experience is that curvature data alone rarely provides sufficient
reliability. Noise is one problem, but variety in angle changes is an-
other. Fig. 6 illustrates how curvature fit alone misses a vertex (at the
upper right) because the curvature around that point was too small to
be detected in the context of the other, larger curvatures. We solve this
problem by incorporating speed data into our decision as an indepen-
dent source of guidance.

Fig. 6. At left the original sketch of a piece of metal; at right the fit generated
using only curvature data.

3 An alternative approach is to detect consecutive almost-collinear edges
(using some empirical threshold for collinearity) and combine them into
one edge, removing the vertex in between. Our hybrid fit scheme deals with
the problem without the need to decide what value to use for “almost-
collinear.”

630 Tevfik Metin Sezgin, Thomas Stahovich and Randall Davis

Just as we did for the curvature data, we reduce the number of
false extrema by average based filtering, then look for speed minima.
The intuition here is simply that pen speed drops when going around
a corner in the sketch. Fig. 7 shows (at left) the speed data for the
sketch in Fig. 6, along with the polygon drawn from the speed-detected
vertices (at right).

Fig. 7. At left the speed graph for the piece; at right the fit based on only
speed data.

Using speed data alone has its shortcomings as well. Polylines formed
from a combination of very short and long line segments can be prob-
lematic: the maximum speed reached along the short line segments may
not be high enough to indicate the pen has started traversing another
edge, with the result that the entire short segment is interpreted as the
corner. This problem arises frequently when drawing thin rectangles,
common in mechanical devices. Fig. 8 illustrates this phenomena. In
this figure, the speed fit misses the upper left corner of the rectangle
because the pen failed to gain enough speed between the endpoints
of the short vertical segment. The curvature fit, by contrast, detects
all corners, along with some other vertices that are artifacts due to
hand dynamics during freehand sketching. This illustrates the utility
of having both fits available.

We use information from both sources, generating hybrid fits by
combining the set of candidate vertices derived from curvature data
F; with the candidate set from speed data Fj, taking into account the
system’s certainty that each candidate is a real vertex.

Generating hybrid fits
Hybrid fit generation occurs in three stages: computing vertex certain-
ties, generating a set of hybrid fits, and selecting the best fit.

Our certainty metric for a curvature candidate vertex v; is the scaled
magnitude of the curvature in a local neighborhood around the point,
computed as |d;_ — d;y|/l. Here [is the curve length between points

Sketch Based Interfaces 631

(a) Input, 63 (b) Using (¢) Using
points speed data, curvature
4 vertices data, 7
vertices

Fig. 8. Average based filtering using speed data misses a vertex. The cur-
vature fit detects the missed point (along with vertices corresponding to the
artifact along the left edge of the rectangle).

Si—k, Sitr and k is a small integer defining the neighborhood size
around v;. The certainty metric for a speed fit candidate vertex wv;
is a measure of the pen slowdown at the point, 1 — v;/Umqs, Where
Umae 18 the maximum pen speed in the stroke. The certainty values are
normalized to [0, 1].

While both of these metrics are designed to produce values in [0, 1],
they have different scales. As the metrics are used only for ordering
within each set, they need not be numerically comparable across sets.
Candidate vertices are sorted by certainty within each fit.

The initial hybrid fit Hy is the intersection of Fy and Fs. A succes-
sion of additional fits is then generated by appending to H; the highest
scoring curvature and speed candidates not already in H;.

To do this, on each cycle we create two new fits: H! = H; + v
(i.e., H; augmented with the best remaining speed fit candidate) and
H! = H; +vq (i.e., H; augmented with the best remaining curvature
candidate). We use least squares error as a metric of the goodness of a
fit: the error ¢; is computed as the average of the sum of the squares of
the distances to the fit from each point in the stroke S:

1

= 157 > 0DSQ(s, H;)

ses

2

Here ODSQ stands for orthogonal distance squared, i.e., the square of
the distance from the stroke point to the relevant line segment of the
polyline defined by H,;. We compute the error for H] and for H/; the
higher scoring of these two (i.e., the one with smaller least squares error)
becomes H;y1, the next fit in the succession. This process continues
until all points in the speed and curvature fits have been used. The
result is a set of hybrid fits.

632 Tevfik Metin Sezgin, Thomas Stahovich and Randall Davis

In selecting the best of the hybrid fits the problem is as usual trading
off more vertices in the fit against lower error. Here our approach is
simple: We set an error upper bound and designate as our final fit
Hy, the H; with the fewest vertices that also has an error below the
threshold.

Handling curves The approach described thus far yields a good ap-
proximation to strokes that consists solely of line segments, but as
noted our input may include curves as well, hence we require a means
of detecting and approximating them.

The polyline approximation Hy generated in the process described
above provides a natural foundation for detecting areas of curvature:
we compare the Euclidean distance /1 between each pair of consecutive
vertices in Hy to the accumulated arc length I between those vertices
in the input S. The ratio I3/l is very close to 1 in the linear regions of
S, and significantly higher than 1 in curved regions.

We approximate curved regions with Bézier curves, defined by two
end points and two control points. Let u = S;, v = S, ¢ < j be the end
points of the part of S to be approximated with a curve. We compute
the control points as:

clzkf1+v
ngkfg-i-u

1
k= 3 Z |Sk — Skl

i<k<j

where #; and i, are the unit length tangent vectors pointing inwards
at the curve segment to be approximated. The 1/3 factor in k controls
how much we scale £; and 5 in order to reach the control points; the
summation is simply the length of the chord between S; and ;.4

As in fitting polylines, we want to use least squares to evaluate the
goodness of a fit, but computing orthogonal distances from each .S; in
the input stroke to the Bézier curve segments would require solving
a fifth degree polynomial. (Bézier curves are described by third degree
polynomials, hence computing the minimum distance from an arbitrary
point to the curve involves minimizing a sixth degree polynomial, equiv-
alent to solving a fifth degree polynomial.) A numerical solution is both

4 The 1 /3 constant was determined empirically, but works very well for
freehand sketches. As we discovered subsequently, the same constant was
independently chosen in [15].

Sketch Based Interfaces 633

computationally expensive and heavily dependent on the goodness of
the initial guesses for roots [12], hence we resort to an approximation.
We discretize the Bézier curve using a piecewise linear curve and com-
pute the error for that curve. This error computation is O(n) because
we impose a finite upper bound on the number of segments used in the
piecewise approximation.

If the error for the Bézier approximation is higher than our maxi-
mum error tolerance, the curve is recursively subdivided in the middle,
where middle is defined as the data point in the original stroke whose
index is midway between the indices of the two endpoints of the origi-
nal Bézier curve. New control points are computed for each half of the
curve, and the process continues until the desired precision is achieved.

Examples of the capability of our approach is shown in Fig. 9, a
hastily-sketched mixture of lines and curves. Note that all of the curved
segments have been modeled curves, rather than the piecewise linear
approximations that have been widely used previously.

Fig. 9. Examples of arbitrary stroke approximation. Boundaries of Bézier
curves are indicated with crosses, detected vertices are indicated with dots.

634 Tevfik Metin Sezgin, Thomas Stahovich and Randall Davis

3.2 Beautification

Beautification refers to the (currently minor) adjustments made to the
approximation layer’s output, primarily to make it look as intended. We
adjust the slopes of the line segments in order to ensure the lines that
were apparently meant to have the same slope end up being parallel.
This is accomplished by looking for clusters of slopes in the final fit
produced by the approximation phase, using a simple sliding-window
histogram. Each line in a detected cluster is then rotated around its
midpoint to make its slope be the weighted average of the slopes in that
cluster. The (new) endpoints of these line segments are determined by
the intersections of each consecutive pair of lines. This process (like any
neatening of the drawing) may result in vertices being moved; we chose
to rotate the edges about their midpoints because this produces vertex
locations that are close to those detected, have small least square errors
when measured against the original sketch, and look right to the user.
Fig. 10 shows the original stroke for the metal piece we had before, and
the output of the beautifier. Some examples of beautification are also
present in Fig. 13.

N
L

Fig. 10. At left the original sketch of a piece of metal revisited, and the final
beautified output at right.

3.3 Basic object recognition

The final step in our processing is recognition of the most basic ob-
jects that can be built from the line segments and curve segments pro-
duced thus far, i.e., simple geometric objects (ovals, circles, rectangles,
squares).

Recognition of these objects is done with hand-tailored templates
that examine various simple properties. A rectangle, for example, is
recognized as a polyline with 4 segments all of whose vertices are within
a specified distance of the center of the figure’s bounding box; a stroke

Sketch Based Interfaces 635

will be recognized as an oval if it has a small least squares error when
compared to an oval whose axes are given by the bounding box of the
stroke.

3.4 Evaluation

We have conducted a user study to measure the degree to which the
system is perceived as easy to use, natural and efficient. Study partici-
pants were asked to create a set of shapes using our system and Xfig,
a Unix tool for creating diagrams. Xfig is a useful point of comparison
because it is representative of the kinds of tools that are available for
drawing diagrams using explicit indication of shape (i.e., the user indi-
cates explicitly which parts of the sketch are supposed to be straight
lines, which curves, etc.) As in other such tools, XFig has a menu and
toolbar interface; the user selects a tool (e.g., for drawing polygons),
then creates the shapes piece by piece.

Fig. 11. Examples of the shapes used in the user study.

Thirteen subjects participated in our study, including computer sci-
ence graduate students, computer programmers and an architecture
student. Subjects were given sufficient time to get familiar with each

636 Tevfik Metin Sezgin, Thomas Stahovich and Randall Davis

system and then asked to draw a set of 10 shapes (examples given in
Fig 11). All of the subjects reported our system being easier to use,
efficient and more natural feeling. The subjects were also asked which
system they would prefer when drawing these sort of informal shapes on
a computer. All but one subject preferred our system; the sole dissenter
preferred a tablet surface that had the texture and feel of paper.

Overall users praised our system because it let them draw shapes
containing curves and lines directly and without having to switch back
and forth between tools. We have also observed that with our system,
users found it much easier to draw shapes corresponding to the gestures
they routinely draw freehand, such as a star.

While the central point of this comparison was to determine how
natural it felt to use each system, we also evaluated our system’s ability
to produce a correct interpretation of each shape (i.e., interpret strokes
appropriately as lines or curves). Overall the system’s identification of
the vertices and approximation of the shapes with lines and curves was
correct 96% of the time on the ten figures.

In addition to the user studies we have conducted, we wrote a higher
level recognizer for evaluation purposes. The higher level recognizer
takes the geometric descriptions generated by the basic object recog-
nition module of our system and combines them into domain specific
objects.

Fig. 13 shows the original input and the program’s analysis for a
variety of simple but realistic mechanical devices drawn as freehand
sketches. The last two of them are different sketches for a part of the
direction reversing mechanism for a tape player. Recognized domain
specific components include gears (indicated by a circle with a cross),
springs (indicated by wavy lines), and the standard fixed-frame symbol
(a collection of short parallel lines). Components that are recognized
are replaced with standard icons scaled to fit the sketch.

An informal comparison of the raw sketch and the system’s approx-
imations shows whether the system has selected vertices where they
were drawn, fit lines and curves accurately, and successfully recognized
basic geometric objects. While informal, this is an appropriate evalua-
tion because the program’s goal is to produce an analysis of the strokes
that “looks like” what was sketched.

We have also begun to deal with overtracing, one of the (many)
things that distinguishes freehand sketches from careful diagrams. Fig. 12
illustrates one example of the limited ability we have thus far embodied
in the program.

Sketch Based Interfaces 637

/O /O

Fig. 12. An overtraced oval and a line along with and the system’s output.

4 Related work

In general, systems supporting freehand sketching lack one or more of
the properties that we believe a sketching system should have:

— It should be possible to draw arbitrary shapes with a single stroke,
(i.e., without requiring the user to draw objects in pieces).

— The system should do automatic feature point detection. The user
should not have to specify vertex positions by hand.

— The system should not have sketching modes for drawing different
geometric object classes (i.e., modes for drawing circles, polylines,
curves etc.).

— The sketching system should feel natural to the user.

The Phoenix sketching system [15] had some of the same motivation
as our work, but a more limited focus on interactive curve specification.
While the system provided some support for vertex detection, its focus
on curves led it to use Gaussian filters to smooth the data. While effec-
tive for curves, Gaussians tend to treat vertices as noise to be reduced,
obscuring vertex location. As a result the user was often required to
specify the vertices manually.

Work in [5] describes a system for sketching with constraints that
supports geometric recognition for simple strokes (as well as a con-
straint maintenance system and extrusion for generating solid geome-
tries). The set of primitives is more limited than ours: each stroke is
interpreted as a line, arc or as a Bézier curve. More complex shapes
can be formed by combinations of these primitives, but only if the user
lifts the pen at the end of each primitive stroke, reducing the feeling of
natural sketching.

The work in [3] describes a system for generating realtime spline
curves from interactively sketched data. They focus on using knot re-
moval techniques to approximate strokes known to be composed only
of curves, and do not handle single strokes that contain both lines and
curves. They do not support corner detection, instead requiring the

638 Tevfik Metin Sezgin, Thomas Stahovich and Randall Davis

user to specify corners and discontinuities by lifting the mouse but-
ton, or equivalently by lifting the pen. We believe our approach of
automatically detecting the feature points provides a more natural and
convenient sketching interface.

Zeleznik [7] describes a mode-based stroke approximation system
that uses simple rules for detecting the drawing mode. The user has to
draw objects in pieces, reducing the sense of natural sketching. Switch-
ing modes is done by pressing modifier buttons in the pen or in the
keyboard. In this system, a click of the mouse followed by immedi-
ate dragging signals that the user is drawing a line. A click followed
by a pause and then dragging of the mouse tells the system to enter
the freehand curve mode. Our system allows drawing arbitrary shapes
without any restriction on how the user draws them. There is enough
information provided by the freehand drawing to differentiate geomet-
ric shapes such as curves, polylines, circles and lines from one another,
so we believe requiring the user to draw things in a particular fashion
is unnecessary and reduces the natural feeling of sketching. Our goal
is to make computers understand what the user is doing rather than
requiring the user to sketch in a way that the computer can understand.

Among the large body of work on beautification, Igarashi et al. [8]
describes a system combining beautification with constraint satisfac-
tion, focusing on exploiting features such as parallelism, perpendicular-
ity, congruence and symmetry. The system infers geometric constraints
by comparing the input stroke with previous ones. Because sketches are
inherently ambiguous, their system generates multiple interpretations
corresponding to different ways of beautifying the input, and the most
plausible interpretation is chosen among these interpretations. The sys-
tem is interactive, requiring the user to do the selection, and doesn’t
support curves. It is, nevertheless, more effective then ours at beauti-
fication, but beautification is not the main focus of our work and is
present for the purposes of completeness.

The works in [15] and [3] describe methods for generating very accu-
rate approximations to strokes known to be curves with precision sev-
eral orders of magnitude below the pixel resolution. The Bézier approxi-
mations we generate are less precise but are sufficient for approximating
free-hand curves. We believe techniques in [15] and [3] are excessively
precise for free-hand curves, and the real challenge is detecting curved
regions in a stroke rather than approximating those regions down to
the numerical machine precision.

Sketch Based Interfaces 639

5 Future work

We are working to link this early processing to other work in our group
that has focused on recognition [1] of higher level mechanical objects.
This will provide the opportunity to add model-based processing of the
stroke, in which early operations like vertex localization may be usefully
guided by knowledge of the current best recognition hypothesis.

In addition, incorporating ideas from scale space theory looks like
a promising way of detecting different scales inherent in the data and
avoiding a priori judgments about the size of relevant features. In the
pattern recognition community [4], [11] and [10] apply some of the ideas
from scale space theory to similar problems. We are currently working
on ways of applying these techniques to speed and curvature data. We
believe this may allow us to deal more effectively with sketches that
contain relevant details at a variety of scales. There is no guaranteed
way of deciding which scales are important at the geometric level, so
using constraints and/or information provided by the domain of appli-
cation may help in scale selection.

Humans naturally seem to slow down when they draw things care-
fully as opposed to casually, so another interesting research direction
would be to explore the degree to which one can use the time it takes
to draw a stroke as an indication of how careful and precise the user
meant to be.

6 Conclusion

We have built a system capable of using multiple sources of information
to produce good approximations of freehand sketches. Users can sketch
on an input device as if drawing on paper and have the computer de-
tect the low level geometry, enabling a more natural interaction with
the computer, as a first step toward more natural user interfaces gen-
erally, and toward earlier use of automated tools in the design cycle in
particular.

640 Tevfik Metin Sezgin, Thomas Stahovich and Randall Davis

£4 TabletGul 1.0
Fle Edt Wndows Opfions Processing

o [7| I =2 abletGur 1.0

Fie Edt Windows Options FProcessing

=lolx|

In selection mode. Selectand dr:

|=[=]-

In selection mode. Selectand dr

T[of Jefafe] | [@[@[o]B]T]o]«]a]s]]

3 TablotGUI 1.0
File Edt Windows Options

BRT=TE| I ablotcL 1.0

Fle Edt Windows Opfions

In selection mode. Select and dr 0 Vertex (152,228) ¢ = 0.0 ,i= |

=10l x]

In selection mode. Select and dr 0 Vertex (152,228) ¢ = 0.0 ,i= |

[[@[-[o]T[of - Ta]+]«] | [=[@]o[C[T[B]"]a]«]w]

[E2 TabletGUI 1.0 B [= 9| % T =bletGUI 1.0

Fle Edt \indows Options

— (o x|
Fle Edt Windows Opfions
In recognition mode. 3Vertex(130,115) =00 ,1=3 In recognition mode. 5Verex (129, 116) £=00 ,i= 5
[z[@]=[n]T[o] «faf«]«| 2 e A T N
£&3 TabletGUI 1.0 P [=[3 I £ T abletGUI 1.0 (=[P}
Fie Edt Vindows Options

Fle Edt Windows Opfions

=

In recognition mode.

2Vertex(139,158) c= 0.0 ,i=2

[2[@] =R [T[e]v]afd]e

In recognition mode.

DVertex(143,157)c=00 ,i=0

[=[@] oD [T v a]a]a]

Fig. 13. Performance examples: The first two pair are sketches of a marble

dispenser mechanism and a toggle switch. The last two are sketches of the
direction reversing mechanism in a tape player.

Sketch Based Interfaces 641

References

10.

11.

12.

13.

14.

15.

16.

. Christine Alvarado. A natural sketching environment: Bringing the

computer into early stages of mechanical design. Master’s thesis, Mas-
sachusetts Institute of Technology, 2000.

H. S. Baird, H. Bunke, and K. Yamamoto. Structured document image
analysis. Springer-Verlag, Heidelberg, 1992.

M. Banks and E. Cohen. Realtime spline curves from interactively
sketched data. In SIGGRAPH, Symposium on 3D Graphics, pages 99—
107, 1990.

A. Bentsson and J. Eklundh. Shape representation by multiscale contour
approximation. IEEE PAMI 13, p. 85-93, 1992., 1992.

L. Eggli. Sketching with constraints. Master’s thesis, University of Utah,
1994.

Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, and D. Raj
Reddy. The HEARSAY-II speech understanding system: Integrating knowl-
edge to resolve uncertainty. Computing Surveys, 12:213-253, 1980.
Reprinted in: Readings in Artificial Intelligence, Bonnie L. Webber and
Nils J. Nilssen (eds.)(1981), pp 349-389. Morgan Kaufman Pub. Inc., Los
Altos, CA.

R. Zeleznik et al. Sketch: An interface for sketching 3d scenes. In Pro-
ceedings of SIGGRAPH’96, pages 163-170, 1996.

T. Igarashi et. al. Interactive beautification: A technique for rapid geo-
metric design. In UIST 97, pages 105-114, 1997.

James A. Landay and Brad A. Myers. Sketching interfaces: Toward more
human interface design. IEEE Computer, vol. 34, no. 83, March 2001,
pp. H6-64.

T. Lindeberg. Edge detection and ridge detection with automatic scale
selection. ISRN KTH/NA/P-96/06-SE, 1996., 1996.

A. Rattarangsi and R. T. Chin. Scale-based detection of corners of planar
curves. IEEFE Transactionsos Pattern Analysis and Machine Intelligence,
14(4):430-339, April 1992.

N. Redding. Implicit polynomials, orthogonal distance regression, and
closest point on a curve. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 191-199, 2000.

R. Rosin. Techniques for assessing polygonal approximations of curves.
7th British Machine Vision Conf., Edinburgh, 1996.

Dean Rubine. Specifying gestures by example. Computer Graphics,
25(4):329-337, 1991.

P. Schneider. Phoenix: An interactive curve design system based on the
automatic fitting of hand-sketched curves. Master’s thesis, University of
Washington, 1988.

K. Tombre. Analysis of engineering drawings. In GREC 2nd interna-
tional workshop, pages 257-264, 1997.

