
Proceedings of the WWW 10th
International Conference, Hong Kong,
May 2001.

Annotea: An Open RDF Infrastructure for

Shared Web Annotations

José Kahan,1 Marja-Riitta Koivunen,2 Eric Prud’Hommeaux2

and Ralph R. Swick2

1 W3C INRIA Rhone-Alpes
2 W3C MIT Laboratory for Computer Science

{kahan, marja, eric, swick}@w3.org

Abstract. Annotea is a Web-based shared annotation system
based on a general-purpose open RDF infrastructure, where
annotations are modeled as a class of metadata. Annotations
are viewed as statements made by an author about a Web doc-
ument. Annotations are external to the documents and can be
stored in one or more annotation servers. One of the goals of
this project has been to re-use as much existing W3C technol-
ogy as possible. We have reached it mostly by combining RDF
with XPointer, XLink, and HTTP. We have also implemented
an instance of our system using the Amaya editor/browser and
a generic RDF database, accessible through an Apache HTTP
server. In this implementation, the merging of annotations with
documents takes place within the client. The paper presents
the overall design of Annotea and describes some of the issues
we have faced and how we have solved them.

1 Introduction

One of the basic milestones in the road to a Semantic Web [22] is the as-
sociation of metadata to content. Metadata allows the Web to describe
properties about some given content, even if the medium of this content
does not directly provide the necessary means to do so. For example,
a metadata schema for digital photos [15] allows the Web to describe,
among other properties, the camera model used to take a photo, shut-
ter speed, date, and location. An interesting side effect, is that a same
piece of metadata can be used not only for describing content, but also
to organize and classify it, thus setting up other properties we had not

690 José Kahan, Marja-Riitta Koivunen, et al.

thought about at first. For example, we can use it to search for photos
of a given location taken at a given time.

A first step towards building a Semantic Web is to have the in-
frastructure needed to handle and associate metadata with content. In
order to reach this goal, we have been developing Annotea, a shared
Web annotation system. In its simplest form, a Web annotation [25] can
be seen as a remark about a document identified by a URI, made by
the author of the document or by a third party, with or without author
knowledge. In a shared Web annotation system, annotations are stored
in specialized servers. Annotations are shared in that everyone having
access to an annotation server should be able to consult the annotations
associated with a given document and add their own annotations.

From a general viewpoint, annotations can be considered as meta-
data: they associate remarks to existing documents. We chose to use
the annotation scenario to drive our initial metadata infrastructure de-
velopment as it is a relatively simple metadata application and it would
allow us to concentrate on the general details of the infrastructure with-
out getting lost with the more specific details of the application. The
most important goal of this project has been to use as much exist-
ing W3C specifications as possible. This paper describes how we have
reached this goal by combining RDF with XPointer, XLink, and HTTP

The paper concentrates on describing the Annotea RDF infrastruc-
ture and its implementation in Amaya. Section 2 gives the overall de-
sign of Annotea. Section 3 describes the client implementation. Section
4 briefly discusses differences with related work by others. Section 5
concludes the paper and presents our perspectives for future work on
Annotea.

2 Design

In this section we describe the architecture of the Annotea system and
the RDF annotation schema. We start with a discussion of the require-
ments that motivate some of the aspects of our design.

2.1 Requirements

Since the early design of Annotea, we decided to build an infrastructure
that was based on generic RDF, with annotations being one possible
instantiation of the infrastructure. This choice has allowed us to con-
centrate more on the infrastructure than on the application itself. We
now list the principal requirements that have shaped Annotea (given
in no particular order):

Annotea: An Open RDF Infrastructure 691

– Open technologies. Many of the existing annotation systems are
based in proprietary schemes or protocols. This makes it hard to
extend them. Annotea is built on top of open standards to simplify
the interoperability of Annotea with other annotation systems and
to maximize the extensibility of the data this system can carry.

– Annotated documents are well-formed, structured documents. Many
Web annotation systems allow users to annotate any kind of re-
source that has a URI. To simplify our design, we decided to limit
annotated resources to those that have a structure, that is, any
HTML or XML-based document, including other annotations.

– Annotations are first class Web resources. As any other Web re-
source, each annotation should be associated with a URI.

– Annotations are typed. At the same time that an annotation can be
seen as metadata related to an annotated document, annotations
themselves can have distinct properties. The type of an annotation
is metadata about the annotation itself. It allows users to classify
the annotations as they are creating them (for example, saying this
annotation is a comment or an erratum about a given document).

– Annotation types can be defined by users. Different users have dif-
ferent views and needs. Annotea should make it possible for any
user group to define their own annotation types.

– Annotation properties must be described with an RDF schema [20,
5].

– Annotations are stored in generic RDF databases.
Rather than making a specialized annotation server, we decided
to view the servers as generic RDF databases. This is important as
it will allow users, in the general Semantic Web picture, to reuse
the information stored in such databases without having to change
them.

– No assumptions on User Interface. Annotea describes how meta-
data can be associated with documents and how to query the RDF
databases. It does not specify how a user agent must present the
metadata to the user. We do predict, though, that some user inter-
face consistency is needed. However, with our approach it is easy
to provide additional views of the metadata.

– Local (private) and remote (shared) annotations. Annotations can
be stored either locally in the user’s host computer or in an an-
notation server. We assume that local annotations are private and
remote ones shared. An annotation server is responsible for con-
trolling access to the annotations that it stores.

– Multiple annotation servers. Having a centralized
server may present both scalability [16] and privacy problems. User

692 José Kahan, Marja-Riitta Koivunen, et al.

groups must be able to easily set up an annotation server and define
who can consult it. Thus, in an Annotea instantiation, there may
be a number of annotation servers. We do not attempt to solve the
general scalability problem at this time.

2.2 Annotea and its operation

Fig. 1. The basic architecture of Annotea.

In Annotea, annotations are described with a dedicated RDF schema
and are stored in annotation servers (Fig. 1). The annotation server
stores the annotations in an RDF database. Users can query a server
to either retrieve an existing annotation, post a new annotation, modify
an annotation, or delete an annotation. All communication between a
client and an annotation server uses the standard HTTP methods [21].

The annotations that we handle are collections of various statements
about a document. They may be comments, typographical corrections,
hypothesis or ratings, but there is always an author that makes a state-
ment about the document or some part of it at a certain time. This
is illustrated in Figure 2, where an author makes a statement about
a document named XDoc. An annotation is represented as a set of
metadata and an annotation body.

The metadata of an annotation is modeled according to an RDF
schema and gives information such as the date of creation of the anno-
tation, name of the author, the annotation type (e.g., comment, query,
correction...) the URI of the annotated document, and an XPointer
that specifies what part of the document was annotated. The metadata

Annotea: An Open RDF Infrastructure 693

also includes a URI to the body of the annotation, which we assume
to be an XHTML document. The annotation metadata does not say
how the annotations must be presented to the user. This choice is left
open to the developer of the client. Section 2.3 describes the annotation
schema further in detail.

Annotations are stored in generic RDF databases, which are ac-
cessible through an HTTP server. The following scenario explains the
interaction between these components when a user creates a new anno-
tation document. For simplicity, we will suppose that annotations are
displayed by highlighting the annotated text in the document.

– The user browses a document.
– The user selects some text on the document and tells its browser

that he wants to annotate this text.
– The browser pops up a new window, where the user can type the

text of his annotation and choose the type of the annotation.
– The user then publishes the annotation to a given annotation server.

To do this, the browser generates an RDF description of the an-
notation that includes the metadata and the body and sends it to
the server, using the HTTP POST method. The server assigns a
URI to the annotation and to the body and replies with an RDF
statement that includes these URIs.

– If the user further modifies the annotation, he will publish it directly
to the URI that was assigned.

Note that the first time that a user publishes an annotation, this
annotation does not have any URI. It is the server that assigns the
URI. When the user requests the URI from the server later, the server
will reply with the annotation metadata.

We now describe the scenario where the user browses an annotated
document. We suppose this user has previously configured his browser
with the list of annotation servers that he wants to query.

– The user browses a document
– The browser queries each of the annotation servers, requesting via

an HTTP GET method the annotation metadata that is associated
with the document’s URI.

– Each server replies with an RDF list of the annotation metadata.
If the server is not storing any related annotations, it replies with
an HTTP 404 Not Found message.

– For each list of annotations that it receives, the browser parses the
metadata of each annotation, resolves the XPointer of the annota-
tion and, if successful, highlights the annotated text.

694 José Kahan, Marja-Riitta Koivunen, et al.

– If the user clicks on the highlighted text, the browser will use an
HTTP GET method to fetch the body of the annotation from the
URI specified in the metadata.

– Finally, the browser will open up a window showing the metadata
and the body.

In the above scenario, we divided the downloading of annotations
into two stages. First, the browser downloads the metadata of an an-
notation. Next, and only if the user requests it explicitly, the browser
downloads the body of the annotation. The motivation for this choice
is to reduce the amount of data that is being sent back to the browser.
In a heavily annotated document, sending the complete annotations
will consume resources and the user may not actually be interested in
seeing the body of all the annotations.

Note that once that an annotation is published to a server, it be-
comes a shared annotation. That is, any user with the correct access
rights may retrieve the annotations from the server. For the moment,
we expect that the HTTP server will enforce the access control to the
annotations, using the standard HTTP authentication mechanisms.

It is also possible to store annotations locally in the host computer
of the user, provided that the client simulates the reply to the first
query of the server. Our Amaya prototype, that we describe later in
Section 3, implements such a feature.

The next section presents the Annotation RDF schema. Appendix
A contains a more thorough presentation of the Annotea protocols.

2.3 RDF schema for annotations

The most important feature of an annotation is that it supports the
evolving needs of the collaborating groups. For instance, an annota-
tion system for classifying new technologies will need to expand their
annotation types to classify specific characteristics of the technologies
they are reviewing. Another working group may start with a set of an-
notation types and then modify this set according to the evolution of
their work. Annotea users may wish to define new types of annotations
as they use the system more. The group may also add relationships
to other objects that are specific to the group’s work. RDF provides
support for these needs, e.g., by allowing the expression of new rela-
tionships, by allowing new annotation types, and by supporting the
transformations from one annotation type to another.

RDF provides a simple yet very flexible framework for describing
properties of any Web resources. In its most simple level, RDF provides

Annotea: An Open RDF Infrastructure 695

Fig. 2. A basic annotation model with an author making a statement about
a document.

(resource, property, value) triples (Fig. 3). A single triple is a statement
that indicates that a resource has a given property with a given value.
The resource can be any Web resource identified by a URI. The value
may be a literal string or may be the URI of another Web resource.
Literal strings may contain XML markup. By design, RDF permits
separate communities to develop independent metadata vocabularies
and then freely mix statements using those vocabularies in a single
database of triples. In RDF, the property names themselves are Web
resources, and applications can use the URIs of those properties to
make other statements about the properties themselves, such as their
meaning and their relationship to other properties.

Fig. 3. RDF triple model.

The type of an annotation is defined by the user or the group by
declaring additional annotation classes. These classes are a part of the
RDF model and may be described on the Web in an RDF Schema [5].
The general annotation super class is called Annotation (more precisely,
its name is http://www.w3.org/2000/10/annotation-ns#Annotation

696 José Kahan, Marja-Riitta Koivunen, et al.

– a URI about which an application can expect to ask the Web for more
information) and we have defined several sample subclasses based on it
(Fig. 4). These subclasses are defined in a separate RDF Schema whose
namespace is http://www.w3.org/2000/10/annotationTypes#. Like-
wise, other user groups can easily create new subclasses. We can also
easily add new properties to the annotation classes, for instance, we
could add a property that defines an annotation set. This property can
then be queried with general RDF mechanisms and also presented as
text. However, to do more advanced presentations with the basic RDF
mechanisms we would need to develop presentation schemas for RDF.

Annotation A super class describing the common features of annotations.
Advice A subclass of Annotation representing advice to the reader.
Change A subclass of Annotation describing annotations that document

or propose a change to the source document.
Comment A subclass of Annotation describing annotations that are com-

ments.
Example A subclass of Annotation representing examples.
Explanation A subclass of Annotation representing explanations of con-

tent.
Question A subclass of Annotation representing questions about the con-

tent.
SeeAlso A subclass of Annotation representing a reference to another re-

source.

Fig. 4. Basic annotation classes.

Annotations are user made statements that consist of these main
parts: the body of the annotation, which contains the textual or graph-
ical content of the annotation, the link to the annotated document with
a location within the document, an identification of the person mak-
ing the annotation and additional metadata related to the annotation.
By using RDF we can take advantage of other work on Web metadata
vocabularies wherever possible. Specifically, we use the Dublin Core
[9] element set to describe some of the properties of annotations. The
annotation properties are illustrated in the RDF model presented in
Figure 5 and the corresponding schema definitions for properties are
defined in Figure 6.

The RDF schema that defines the annotation properties consists of
the property name and the natural language explanation. The type is
one of the basic classes in Figure 4 or some other type of annotation
defined elsewhere. The annotates property stores the link to the anno-

Annotea: An Open RDF Infrastructure 697

Fig. 5. The RDF model of an annotation.

tated document, body is a link to the content of the annotation, and
dc:creator to the author making the annotation.

The context defines where exactly inside the document the anno-
tation is attached. We use XPointer [7] for defining positions within
XML documents. This works well for static (unchanging) documents,
but with documents that go through revision, such as working group
drafts, we may end up with orphan annotations or annotations pointing
to wrong places. To prevent unnecessary loss of pointers we can search
for the nearest ID to a parent of the object use it as the starting point
for the XPointer path. Fortunately, many documents usually have IDs
at least at their main levels. Pointing to finer details after the ID can
be done by other XPointer means, such as using text matching.

The additional annotation metadata includes date for the creation
and last modified time, and related for adding relationships to other
objects. Other metadata can be added to the annotation when the
working group needs that. For instance, the working group will prob-
ably add their own properties directly and not specialize the related
property.

Sample annotations utilizing this schema definition are presented in
Appendix A while discussing the protocols.

3 Annotations in Amaya

One of the goals of Annotea is to help us gain experience on building
an RDF infrastructure. Since the beginning of the project, we have
been implementing both a client and a server prototype. For the client,

698 José Kahan, Marja-Riitta Koivunen, et al.

rdf:type An indication of the creator’s intention when making an annota-
tion; the value should be of rdf:type Annotation or any of its subclasses.

annotates The relation between an annotation resource and the resource
to which the annotation applies.

body The content of the annotation.
context Context within the resource named in annotates to which the an-

notation most directly applies. Eventually this will be an XPointer. It
may include a location range too. First locations will points to XML IDs.

dc:creator The creator of the annotation.
created The date and time on which the annotation was created.
dc:date The date and time on which the annotation was last modified.
related A relation between an annotation and a (collection of) resource(s)

that augment the resource that is the body of the annotation. This may
point to related issues, discussion threads, etc.

Fig. 6. The basic annotation properties.

we have been using Amaya, W3C’s testbed editor browser. For the
server, we have been using Apache, a MYSQL database running on
top of it and some Perl scripts. The rest of this section describes the
implementation choices we have made in Amaya 4.0.

Amaya [1] is a full-featured web browser and editor developed by
W3C for experimenting and validating web specifications at an early
stage of their development. Amaya supports CSS, MathML, XHTML,
HTML, and also provides a basic implementation of XLink and XPointer.
Libwww [17] is linked to Amaya and provides HTTP/1.1 support and
an RDF parser. Amaya can also show different views of a document.
In particular, we have a Formatted view, which shows the interpreted
document, and a Links view, which gives a list of all the links in the
document.

Our prototype implementation is able to interpret the complete
Annotation RDF schema and supports all of the Annotea protocols
as described in Appendix A. It is also possible to specify additional
annotation types (subclasses) as an RDF schema that can be can be
downloaded at runtime. The namespaces for these additional types are
specified to Amaya in a local configuration file that is read at startup.
Amaya will use the namespace name to try to retrieve an RDF schema
from the Web or the schema content can be cached in a local file and
specified with the same startup configuration. The prototype is not yet
able to recognize the need to download schemas dynamically from the
information given in annotations metadata.

Annotea: An Open RDF Infrastructure 699

We will now describe the most important features of our imple-
mentation: creating an annotation, browsing annotations, and filtering
annotations.

3.1 Creating an annotation

The user has three choices for creating an annotation: annotate a whole
document, annotate the position where the caret is, annotate the cur-
rent selection. After making this choice, a popup annotation window
appears. The annotation window shows the metadata of the annotation,
as defined in Section 2.3, inside a box and the body of the annotation.
Figure 7 shows a screen capture of Amaya when creating an annotation
on a selection.

Fig. 7. Annotating a paragraph with Amaya.

Three of the metadata items are active. If the user clicks on the
Source document field, Amaya will scroll to the annotated text and
highlight it if it is a selection. Clicking on the Annotation type field
allows the user to change the type of annotation. Finally, each time
that the user saves the annotation Amaya updates the value of the
Last modified field. Note that we do not show the value of the XPointer
(context), but rather use it to select the source document highlighting.

700 José Kahan, Marja-Riitta Koivunen, et al.

The body of the annotation can be edited as any other XHTML
document. Users can cut and paste fragments from other documents,
add links to other documents, and so on.

Amaya support both local (private) and remote (shared) annota-
tions. When a user creates an annotation, it is considered a local one
and will be stored in the user’s Amaya directory. When the user decides
to post it to an annotation server, the local annotation will be deleted
and subsequent saves will be sent to the server. Both local and remote
annotations are represented with the same schema format. The only dif-
ference is that for local ones, we emulate the annotation server’s query
response by using an index file that associates URIs with annotation
metadata.

3.2 Browsing annotations

By means of a setup menu, the user can specify the URIs of the annota-
tion servers he wants to query, as well as the local annotation repository.
The user can also say if he wants annotations to download automati-
cally or only on-demand. In order to avoid hampering performance, we
separated the downloading process in two steps. Once a document is
downloaded, the annotations metadata is downloaded asynchronously,
just like images, and merged into the document. The body of an an-
notation is only downloaded when the user opens an annotation. The
motivation for this choice is that metadata may be relatively smaller
than the body of an annotation. Moreover, if the user does not open
all the annotations, we save time by not downloading the body.

For showing annotations, we defined an active XML element, that
we will call A-element, that has an XLink pointing to the body of the
annotation and a special icon (currently, a pencil). This is similar to
the X element that was used in the Annotated XML specification [3],
with the difference that in Amaya, it is an active element. When the
user clicks once on the A-element, Amaya highlights the target of the
annotation. Clicking on it twice will open the annotation window and
show both the metadata and the body of the annotation. The A-element
is visible in both the Formatted Document and Links views and it is
ignored when saving or printing an annotated document. Clicking on
the A-element on any view has the same effect.

In the Formatted view, we position the A-element to the location to
which the XPointer of the annotation resolves. We made an exception
for MathML documents, as it would be disturbing to add it anywhere
in the expression. Instead, we place it as the the beginning of the Math

Annotea: An Open RDF Infrastructure 701

expression. Clicking on the A-element will highlight the target of the
annotation, even if this target is not close to the A-Element.

Fig. 8. The Links View showing an orphan annotation and a normal one.

If an annotated document is edited, some of its annotations may
become orphan. That is, the XPointer will not resolve anymore to a
point in the document. In this case, Amaya will warn the user and make
the orphan annotation visible from the Links view. Figure 8 shows this
view in a document that has an orphan and a valid annotation. The
user may then open the orphan annotation and reposition its XPointer
or delete it.

3.3 Filtering annotations

For a heavily annotated document, seeing the A-element icon can make
reading the document bothersome. To avoid this problem, we defined
a local filter that allows the user to hide the annotations according
to one of three criterion: by author name, by annotation type, and
by annotation server. It is also possible to hide all the annotations
in the Formatted view. Using this menu, the user can hide all but the
annotations that interest him. This filter menu does not have any effect
on the Links view.

As an alternative to hiding annotations, the user can also temporar-
ily disable some annotation servers using the configuration menu. We
also have an experimental customized query feature, where the user can
describe his own query, using a language we have named “Algae”. The
Algae language is derived from Algernon [4]. This customized query in-
terface makes it possible to start filtering the annotations on the server
side, for example, by only requesting those done in the past week by a

702 José Kahan, Marja-Riitta Koivunen, et al.

given author and belonging to a given annotation type. Appendix B1

gives a brief description of Algae.

4 Related work

This section discusses some previous annotation ap-
proaches. We concentrate on document-centered approaches where users
are browsing documents and examining annotations related to them.
There are also discussion-centered approaches to annotations, such as
HyperNews [12], where users browse discussion messages and threads
and follow a link to a document that these messages annotate.

Web annotations first appeared in version 1.2 of Mosaic [18, 19],
almost ten years ago, and many other web annotation aware tools or
servers have seen the light since then, such as CritLink [24] and Third-
Voice [23]. [10, 11] list other existing annotation technologies. Due to
the lack of existing annotation standards, most of these proposals are
proprietary or closed.

The two main categories to Web annotation systems are proxy-based
approaches and browser-based approaches. In a proxy-based approach,
annotations are stored and merged with a Web document by a proxy
server. The browser user agent only sees the result of the merge, typi-
cally with some semantic content removed. In a browser-based approach
the browser is enhanced (either by an external application or by a plu-
gin) to merge the document and the annotation data just prior to pre-
senting the content to the user. The annotation data is stored in the
proxy or a separate annotation server. It is also possible to store an-
notations locally or provide site specific annotations, but these are less
interesting to us because of their limitations.

The CritLink [24] annotation tool uses the proxy approach where
a Web page and its annotations are served through a different URI
address than the original page. This approach works with any existing
browser. However, the user must use different addresses for the doc-
ument depending on which annotation proxy server is used. This is a
limitation when a user wants to use more than one annotation server.
The proxy approach also inherently restricts the types of content that
can be annotated and the presentation styles that can be used for the
annotations. Typically, presentation of the annotations is limited to the
presentation styles available through HTML. Finally, as the browser
does not have any knowledge about annotations, it makes it harder to

1 Available only in the HTML version of this paper.

Annotea: An Open RDF Infrastructure 703

filter the annotations locally, without having to send a new request to
the proxy server.

ThirdVoice [23] uses plugins to enhance web browsers so that they
understand annotations. The users can annotate the page or some text
on the page with discussions on selected topics. The discussions can be
closed to a group of participants or open to anybody. Unfortunately,
users cannot host their own servers.

IMarkup [13] is an Internet Explorer annotation tool that has an
interesting user interface. Users have a wide variety of palettes for anno-
tation markers and can even circle parts of the text with something akin
to a real marker. Annotations can be placed anywhere on the browser’s
document window, without taking into account the markup of the doc-
ument itself. All the annotations are local. A menu entry allows to mail
annotations to other users and to import them. The format used for
describing annotations is proprietary and too related to the browser’s
API, making their use with other tools practically impossible.

An interesting possibility for presenting the annotations on a Web
page is to use internal DOM [14] events without actually changing
the mark-up of the page. Yawas [6] is an annotation tool that uses
this approach. It codes the annotations into an extended URI format
and uses local files similar to bookmark files to store and retrieve the
annotations. A modified browser can transform the URI format into
DOM events. The local annotation files can be sent to other users only
by mail or copied by other means. There is no provision for having
active links or filtering options. This kind of approach is limited by the
API provided by the browser.

XLink [8], an XML linking technology currently under development
in W3C, has some built in features in the mark-up for creating anno-
tations. For instance, it is possible to store XLink arcs in an external
document that can be loaded with another document. The content de-
fined by the end locator of an XLink arc may be embedded to the
location in a document defined by a starting locator of the arc. Using
XLink provides the means to easily present the annotations in prede-
fined ways in any browser implementing XLink. However, the metadata
properties that can be expressed with XLink are limited.

5 Conclusions and future plans

Being able to associate metadata with Web resources is an important
milestone for building a Semantic Web. Annotea provides a simple in-
frastructure for associating annotations with Web documents, without

704 José Kahan, Marja-Riitta Koivunen, et al.

having to modify these documents. The principal contributions of An-
notea are as follows:

– Annotations are metadata. Annotea is not designed as a specific
annotation system, but rather as a general application of a generic
RDF infrastructure. This allows a variety of applications to reuse
the information that is stored in an Annotea system with other
RDF tools that are not necessarily specific to annotations.

– Open infrastructure. Annotea is built on top of W3C specifications.
We use an RDF schema for describing the properties of annotations,
XPointer for associating annotations to documents, and HTTP for
the client/server interactions.

– Use of RDF databases. By storing annotations inside RDF databas-
es, it is possible to make customized queries and limit the amount
of data returned by the servers.

– Extensible RDF schema. Our annotation RDF schema defines gen-
eral properties about annotations. Users can extend it by defining
their own annotation types or by adding other annotation proper-
ties.

– Client-less. Annotea defines an infrastructure for associating meta-
data with documents and for storing and retrieving this metadata.
In principle, it is possible to build an Annotea client on top of any
browser that handles DOM, XPointer, XLink and RDF.

In November 2000, we made the first public release of the Annotea
prototypes. The client is included as a built-in feature of the Amaya
4.0 release. We have also set up a public annotation server [2]. All the
source code is freely available too. The public server is not intended to
be a permanent service, but rather one that will be purged periodically.
Its goal is to let people experiment with annotations and motivate them
to set up their own servers.

Our wish list for future work on Annotea includes:

– Shared bookmarks. Shared bookmarks are quite similar to anno-
tations. The annotation schema provides a set of fixed annotation
types. The user is expected to classify his annotation by selecting
one of these types. With shared bookmarks, the user should be able
to define his own types on-the-fly, for example, by highlighting key-
words on the annotated document. These types can then be used
to automatically classify the bookmarks.

– User interface. Currently, a user can see annotations either as pen-
cil icons next to the fragment that was annotated or in a special

Annotea: An Open RDF Infrastructure 705

Links view. We would like to experiment with other ways for dis-
playing annotations. For example, by embedding the body of the
annotations in the annotated document.

– Author metadata. The Annotation schema defines the author as a
string. We plan to expand the schema so that the author is defined
by another RDF schema and use this property in the Annotation
schema. It will then be easy to search for the metadata of the author
and, for example, substitute the pencil icon with the photo of the
author.

– Robust XPointers. Currently, we are able to detect orphan anno-
tations. However, our XPointer expressions are very simple. If a
user edits an annotated document, in some cases, the XPointer of
an annotation may point to the wrong place and thus become a
misleading annotation. We have made some provisions for this case
(use of the ID attribute), but this is not enough. A better XPointer
expression would be one that is more tolerant of document changes,
but robust enough to prevent misleading annotations.

– Discussion threads. When a user wants to reply to an annotation,
s/he can either modify the body of the annotation or make a new
annotation. This can become cumbersome as we would need to
browse each annotation in order to follow the discussion. We can
improve this situation by adding new RDF properties for distin-
guishing such discussions and by showing all the replies to a given
annotation in a specialized view.

6 Acknowledgements

The authors would like to thank Art Barstow, Tim Berners-Lee, Dan
Brickley, Daniel LaLiberte, and Charles McCathie-Nevile for their use-
ful feedback and suggestions concerning Annotea. Irène Vatton and
Vincent Quint from the Amaya team have given irreplaceable help to
us. Eric Miller gave us very enthusiastic encouragement to pursue this
application as a testbed for RDF infrastructure.

References

1. Amaya Home Page. http://www.w3.org/Amaya/.

2. Annotest (Annotea Test Server) Home Page. http://annotest.w3.org/.

3. T. Bray. Using XML to Build the Annotated XML Specification, Sep.
1998. http://www,xml.com/xml/pub/98/09/exexegesis-0.html.

706 José Kahan, Marja-Riitta Koivunen, et al.

4. J. Crawford. Access-Limited Logic: A Language for Knowledge Represen-
tation. UT Artificial Intelligence TR AI90-141, Department of Computer
Sciences, University of Texas at Austin, Austin, Texas., Oct. 1990.

5. D. Brickley and R.V. Guha (eds.). Resource Description Framework
(RDF) Schema Specification 1.0. CR, W3C, Mar. 2000. http://www.

w3.org/TR/2000/CR-rdf-schema-20000327.
6. L. Denoue and L. Vignollet. An annotation tool for Web browsers and its

applications to information retrieval. In Proceedings of RIAO200, Apr.
2000. http://www.univ-savoie.fr/labos/syscom/Laurent.Denoue/

riao2000.doc.
7. S. DeRose, R. Daniel Jr., and E. Maler (eds.). XML Pointer Lan-

guage (XPointer). WD, W3C, Dec. 1999. http://www.w3.org/TR/1999/
WD-xptr-19991206.

8. S. DeRose, E. Maler, D. Orchard, and B. Trafford (eds.). XML Link-
ing Language (XLink). WD, W3C, Feb. 2000. http://www.w3.org/TR/

2000/WD-xlink-20000221.
9. Dublin Core Metadata Element Set, Version 1.1: Reference Description.

Technical report, Dublin Core Metadata Initiative, Jul. 1999. http:

//purl.org/DC/documents/rec-dces-19990702.htm.
10. J. Garfunkel. Web Annotation Technologies, 1999. http://ps.

pageseeder.com/ps/ps/papers/annot/jongar/jongar.pshtml.
11. R. M. Heck, S. M. Luebke, and C. H. Obermark. A Survey of Web Anno-

tation Systems, 1999. http://www.math.grin.edu/\~luebke/Research/
Summer1999/survey_paper.htm%l.

12. HyperNews Home Page. http://www.hypernews.org/.
13. IMarkup Home Page. http://www.imarkup.com.
14. L. Wood et al. (eds.). Document Object Model (DOM) Level 2 Speci-

fication Ver. 1.0. CR, W3C, Mar. 2000. http://www.w3.org/TR/2000/

CR-DOM-Level-2-20000307.
15. Y. Lafon and B. Bos. Describing and Retrieving Photos Using RDF and

HTTP. Note, W3C, Sep. 2000. http://www.w3.org/TR/photo-rdf/.
16. D. LaLiberte and A. Braverman. A Protocol for Scalable Group and

Public Annotations, 1996. http://www.hypernews.org/\~liberte/www/
scalable-annotations.html.

17. libwww Home Page. http://www.w3.org/Library/.
18. NCSA Mosaic Documentation: Group Annotations in NCSA Mo-

saic, 1993. http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/

group-annotations.htm%l.
19. Mosaic Users’s Guide:Annotations, 1998. http://www.ncsa.uiuc.edu/

SDG/Software/Mosaic/Docs/help-on-annotate-win.%html.
20. O. Lassila and R. R. Swick (eds.). Resource Description Framework

(RDF) Model and Syntax Specification. Recommendation, W3C, Feb.
1999. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

21. R. Fielding et al. (eds.). Hypertext Transfer Protocol – HTTP/1.1. RFC
RFC2616, IETF, Jun. 1999. http://www.ietf.org/rfc/rfc2616.txt.

22. Semantic Web Development. http://www.w3.org/2000/01/sw/.

Annotea: An Open RDF Infrastructure 707

23. ThirdVoice Home Page. http://www.thirdvoice.com/.
24. K.-P. Yee. CritLink: Better Hyperlinks for the WWW. Submitted to

Hypertext ’98, Apr. 1998. http://crit.org/http://crit.org/\~ping/
ht98.html.

25. R. Zohar. Web Annotation - an Overview, Feb. 1999. http://www-ee.

technion.ac.il/\~ronz/annotation/.

A Annotea protocols

We distinguish five types of client-server interactions in Annotea:

– Posting a new annotation: the client publishes a new annotation
– Querying the annotation server: the client sends a query to the

server and gets backs the annotation
– Downloading the body of an annotation
– Updating an annotation: the client modifies an annotation and

publishes these modifications
– Deleting an annotation: the client deletes an annotation from the

server

For all of these cases, we use the standard HTTP protocol methods.
We use HTTP POST for uploading a new annotation to a server, HTTP
PUT to update an annotation, HTTP GET to query and download an
annotation, and HTTP DELETE to delete an annotation. We will now
describe each of these operations in detail.

We use the standard HTTP POST protocol for storing a new anno-
tation to the annotation server and HTTP GET protocol for fetching
the annotations and returning the result to the client. POST provides
the necessary interface for the server to construct a URI for the new
annotation and return that URI to the client. When the client has
the URI for a previously created annotation, it can (with the proper
permissions) use HTTP PUT to modify the annotation. In all the ex-
amples, we use the Apache shorthand CGI convention, using the string
annotations to refer to the actual CGI script. This makes it easier to
refer to an existing annotation.

A.1 Posting a new annotation

To create a new annotation, the client posts some RDF describing the
annotation to a selected annotation server. Both the annotation and
its body are specified as anonymous RDF resources in the POST mes-
sage. The server is responsible for allocating the URIs for them. If the
body already exists, as will happen if the annotation body is another

708 José Kahan, Marja-Riitta Koivunen, et al.

document that the user wants to use as an annotation, the URI of that
existing document can be specified in the RDF when the annotation is
posted.

In Figure 9 we illustrate a request to create a simple annotation
using an existing document as the body of the annotation. Note that
the resource http://www.example.com/mycomment.html is presumed
to exist independently of this annotation.

POST /annotations HTTP/1.1

Host: www.example.org

Content-Type: application/xml

Content-Length: 636

<r:RDF xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:a="http://www.w3.org/2000/10/annotation-ns#"

xmlns:d="http://purl.org/dc/elements/1.1/">

<r:Description>

<r:type resource="http://www.w3.org/2000/10/

annotation-ns#Annotation"/>

<r:type resource="http://www.w3.org/2000/10/

annotationType#Comment"/>

<a:annotates r:resource="http://example.com/some/page.html"/>

<a:context>#xpointer(id("Main")/p[2])</a:context>

<d:creator>Ralph Swick</d:creator>

<a:created>1999-10-14T12:10Z</a:created>

<d:date>1999-10-14T12:10Z</d:date>

<a:body r:resource="http://www.example.com/mycomment.html"/>

</r:Description>

</r:RDF>

Fig. 9. Creating an annotation with POST, using an existing document as
the body.

A design issue we encountered is that we wanted to be able to use
XML for describing the body of an annotation, and at the same time we
wanted to be able to publish the complete annotation in a single HTTP
transaction. In order to use XML in the body, the correct architectural
approach is to store the body as a separate resource with its own content
type. We therefore designed a simple packaging protocol that permits
both the client and server to specify embedded HTTP message bodies.
To do this, we declare an RDF namespace for describing certain HTTP
headers and we specify those HTTP headers as normal RDF properties,
as shown in Figure 10.

Annotea: An Open RDF Infrastructure 709

In Figure 10, we show the metadata that specifies an annotation
of the page whose URI is http://example.com/some/page.html. The
creator of this annotation is identified as Ralph Swick. The text of the
annotation body is This is an important concept.

As specified by the RDF model, the data we pass to the server in
the POST is a set of statements describing properties of the new (and
unnamed) annotation resource that we would like the server to create.
In response to the POST (Fig. 11), a new annotation is created and
the server assigns URIs. Now the server has created the URIs for the
anonymous resources and they can be used by the browser. The value
of the a:body property is a URI of the content of the annotation; in
this case the server implementation chose to store the text in a separate
location and give it its own URI.

With this little bit of ad hoc packaging we can have a POST method
that explicitly creates two resources at the same message and a GET
method that returns these same resources in one message. This pack-
aging protocol has the additional advantage that it makes POST and
GET of multiple resources an atomic operation; there is no window in
which another client might modify the annotation body after the anno-
tation properties have been returned but before the body is returned.

A.2 Querying an annotation server

An annotation server is queried for the URIs of annotations it may
hold using the GET method. Since the client will most commonly wish
to query for annotations that have an annotates property naming a
specific page that the user may currently be viewing, a particular query
parameter is designated to pass the URI of that page, as shown in
Figure 12.

The query parameter w3c annotates may be best thought of as an
abbreviation for the longer property name http://www.w3.org/2000/
10/annotation-ns#annotates; that is,
this GET is a short-hand for a query that says “return the names of
resources that are the subjects of RDF statements in which the predi-
cate is http://www.w3.org/2000/10/
annotation-ns#annotates and the object is http://example.com/
some/page.html”. The server responds to this GET request by return-
ing RDF/XML describing the properties of each annotation that has
an annotates relationship to the given URI. In the first release of our
server implementation, we return all the properties of each annotation
including the URI of the body resource. Figure 13 illustrates a typi-

710 José Kahan, Marja-Riitta Koivunen, et al.

cal response; in this case there is only one annotation for the specified
page.

A.3 Downloading an annotation

An annotation is downloaded from an annotation server using the GET
method and specifying the annotation URI, as returned in a query
response (Fig. 14).

The response to this GET will be as in Figure 13.

A.4 Updating an annotation

An existing annotation is updated using the PUT method, specifying
the URI of the annotation we wish to update. For example, to update
the annotation created in the messages illustrated in Figures 10 and 11
above, we might specify the message in Figure 15.

A.5 Deleting an annotation

An annotation is deleted using the DELETE method, specifying the
URI of the annotation we wish to remove. For example, to delete the
annotation created in the messages illustrated in Figures 10 and 11
above, we might specify the message in Figure 16.

Annotea: An Open RDF Infrastructure 711

POST /annotations HTTP/1.1

Host: www.example.org

Content-Type: application/xml

Content-Length: 1082

<r:RDF xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:a="http://www.w3.org/2000/10/annotation-ns#"

xmlns:d="http://purl.org/dc/elements/1.1/"

xmlns:h="http://www.w3.org/1999/xx/http#">

<r:Description>

<r:type resource="http://www.w3.org/2000/10/

annotation-ns#Annotation"/>

<r:type resource="http://www.w3.org/2000/10/

annotationType#Comment"/>

<a:annotates r:resource="http://example.com/some/page.html"/>

<a:context>#xpointer(id("Main")/p[2])</a:context>

<d:creator>Ralph Swick</d:creator>

<a:created>1999-10-14T12:10Z</a:created>

<d:date>1999-10-14T12:10Z</d:date>

<a:body>

<r:Description>

<h:ContentType>text/html</http:ContentType>

<h:ContentLength>250</http:ContentLength>

<h:Body r:parseType="Literal">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Ralph’s Annotation</title>

</head>

<body>

<p>This is an important concept; see

<a href="http://example.com/other/page.

html">other page.</p>

</body>

</html>

</h:Body>

</r:Description>

</a:body>

</r:Description>

</r:RDF>

Fig. 10. Creating an annotation with POST.

712 José Kahan, Marja-Riitta Koivunen, et al.

HTTP/1.1 201 Created

Location: http://www.example.org/Annotation/3ACF6D754

Content-Type: application/xml

Content-Length: 404

<r:RDF xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:a="http://www.w3.org/2000/10/annotation-ns#"

xmlns:d="http://purl.org/dc/elements/1.1/">

<r:Description about="http://www.example.org/Annotation/

3ACF6D754">

<a:annotates r:resource="http://example.com/some/page.html"/>

<a:body resource="http://www.example.org/Annotation/

3ACF6D754text"/>

</r:Description>

</r:RDF>

Fig. 11. Sample response when creating a new annotation.

GET /annotations?w3c annotates=http://example.com/some/page.

html HTTP/1.1

Host: www.example.org

Accept: application/xml

Fig. 12. A query for annotations related to
http://example.com/some/page.html.

Annotea: An Open RDF Infrastructure 713

HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: 689

<r:RDF xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:a="http://www.w3.org/2000/10/annotation-ns#"

xmlns:d="http://purl.org/dc/elements/1.1/">

<r:Description about="http://www.example.org/Annotation/

3ACF6D754">

<r:type resource="http://www.w3.org/2000/10/

annotation-ns#Annotation"/>

<r:type resource="http://www.w3.org/2000/10/

annotationType#Comment"/>

<a:annotates r:resource="http://example.com/some/page.html"/>

<a:context>#xpointer(id("Main")/p[2])</a:context>

<d:creator>Ralph Swick</d:creator>

<a:created>1999-10-14T12:10Z</a:created>

<d:date>1999-10-14T12:10Z</d:date>

<a:body r:resource="http://www.example.com/mycomment.html"/>

</r:Description>

</r:RDF>

Fig. 13. A typical response to the query in Figure 12.

GET /annotations/3ACF6D754 HTTP/1.1

Host: www.example.org

Accept: application/xml

Fig. 14. Downloading a specific annotation.

714 José Kahan, Marja-Riitta Koivunen, et al.

PUT /annotations/3ACF6D754 HTTP/1.1

Host: www.example.org

Content-Type: application/xml

Content-Length: 657

<r:RDF xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:a="http://www.w3.org/2000/10/annotation-ns#"

xmlns:d="http://purl.org/dc/elements/1.1/">

<r:Description about="http://www.example.org/Annotation/

3ACF6D754">

<r:type resource="http://www.w3.org/2000/10/

annotation-ns#Annotation"/>

<r:type resource="http://www.w3.org/2000/10/

annotationType#Example"/>

<a:annotates r:resource="http://example.com/some/page.html"/>

<a:context>#xpointer(id("Main")/p[2])</a:context>

<d:creator>Ralph Swick</d:creator>

<a:created>1999-10-14T12:10Z</a:created>

<d:date>1999-10-14T13:14Z</d:date>

<a:body>

...

</a:body>

</r:Description>

</r:RDF>

Fig. 15. Updating an annotation using PUT.

DELETE /annotations/3ACF6D754 HTTP/1.1

Host: www.example.org

HTTP/1.1 200 OK

Fig. 16. Deleting an annotation using DELETE.

