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Abstract. The idea of ubiquitous computing and smart envi-
ronments is no longer a dream and has long become a serious
area of research and soon this technology will start entering our
every day lives. There are two major obstacles that prevent
this technology from spreading. First, different smart spaces
are equipped with very different kinds of devices (e.g. a pro-
jector vs. a computer monitor, vs. a TV set). Second, multiple
applications running in a space at the same time inevitably
contend for those devices and other scarce resources. The un-
derlying software in a smart space needs to provide tools for
self-adaptivity in that it shields the rest of the software from
the physical constraints of the space, and that it dynamically
adjusts the allocation of scarce resources as the number and
priorities of active tasks change.
We argue that a resource manager can provide the necessary
functionality. This paper presents a set of guiding principles
for building high-level resource management tools for smart
spaces. We present conclusions we arrived at after two years
of exploring the topic in the Intelligent Room Project at the
MIT AI Lab. The paper is based on a number of implemented
and tested tools.

1 Introduction

For several years, our research group in the MIT AI Lab has been
developing an “Intelligent Room” [8, 9, 5], a space that interacts with
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its users through sensory technologies such as machine vision, speech
recognition and natural language understanding. Our room also is equipped
with a rich array of multi-media technologies. These technologies are
intended to provide a natural, human-centered interface to its users.

The Intelligent Room is designed to be a utility that must always
be available and it must provide reasonable services to its users even
though their needs are not easily predicted. It must continue to pro-
vide these services even if there are equipment failures or if there is
contention for the use of resources among the users or applications.
It is also desirable that it be able to provide improved and additional
services if higher quality equipment is added.

Finally, and most crucially to be truly human-centered it must be
able to do all these things seemlessly while running, without interven-
tion by programmers and systems wizards. In other words, the Intel-
ligent Room must be a self-adaptive system in the spirit of [17, 16]. It
must monitor the environment as well as its own state, have a variety
of techniques for accomplishing its goals, and make intelligent choices
about which technique to use in the current context.

This paper describes our experience with building such a system.
The key insights are:

1. People should interact with the Intelligent Room not in terms of
resources, but rather in terms of abstract services (e.g. “show me
this information” rather than “print this on that printer”)

2. The Intelligent Room should be capable of mapping a service re-
quest to a variety of solutions (“project the information,” “display
it on a PDA,” “print it on a printer”)

3. The Intelligent Room should choose a solution based both on how
well the solution meets the users’ needs and how well it minimizes
the use of costly or rare resources and

4. It should make this decision at runtime so that it can respond to a
changing set of requests and a changing environment.

1.1 What is a resource manager for a smart space

What we mean by a resource manager is a system capable of performing
two fundamental tasks: resource mapping and arbitration .

By resource mapping (a.k.a. match-making) we mean the process of
finding out what actual resources can be taken into consideration given
a specific request.

By arbitration we mean a process of making sure that, at a min-
imum, resources are not being used beyond their capacities. At best,
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arbitration ensures–via appropriate allocation of resources to requests–
optimal, or nearly optimal, use of scarce resources.

This paper is concerned with management of higher-level resources.
While OS level management (memory, CPU time, etc.) is of course im-
portant, and load-balancing of computationally intensive agents over
multiple machines is also, we limit our focus to higher-level resources
such as physical devices and large software components (see [28] and
[22] for an example of a system that deals with resources in a smart
spaces at the OS level). Our concerns lie with, for example, projec-
tors, multiplexors, wires, displays, modems, user attention, software
programs, screen real estate, sound input and output devices, CD play-
ers, drapes, and lamps.

1.2 Some definitions

For clarity, we define here some potentially ambiguous terms.

Metaglue Metaglue [10, 21, 26] is the multi-agent system forming the
software base for all work at the Intelligent Room Project. Metaglue
manages agent-to-agent communication via Java’s RMI system.
Agents can start and obtain references to other agents via a reliesOn
method. All agents have unique IDs; part of an ID is the “occupa-
tion” which is the top-level interface the agent implements. Agents
are also collected in societies so multiple users and spaces can have
distinct name-spaces. Metaglue makes it easy to coordinate the
startup and running of agents on any number of machines with
differing operating systems.

Agent Agents are distinct object instances capable of providing ser-
vices and making requests of the resource manager. This means
agents themselves are considered to be a type of resource (see be-
low) because they provide services.

Device A physical or logical device is something akin to a projector,
screen, or user-attention; devices are often, but not necessarily rep-
resented by agents. Devices provide services and so are resources.

Service Services are provided by agents and devices; a single agent or
device can provide more than one service and any kind of service
can be provided by a number of agents or devices. This is explained
in more detail in Section 4.1.

Resource A resource is a provider of a service. Both agents and phys-
ical devices are resources. For example, a physical LED sign is a
resource (providing the LED sign hardware service) obtained and



746 Krzysztof Gajos, Luke Weisman and Howard Shrobe

used by the LEDSignTextAgent which is in turn a resource (provid-
ing TextOuput service and LEDSign service) that can be obtained
and used by any other agent needing such a service.

2 Our work to date

This paper is based on our work on the Intelligent Room Project [8,
9, 5] at the MIT AI Lab, including otherwise unpublished research on
resource management. Below we summarize our results relevant to this
paper in order to give the reader a better idea of how we arrived at our
observations.

Over the past two years we have developed several resource man-
agement tools for the Intelligent Room. The tools differed in approach
and level of sophistication. At the two extremes we have Namer and
Rascal [15]. Namer only does context-based name resolution (i.e. some
service mapping but no arbitration). Rascal, on the other hand, is a
very complex system that uses a rule-based language (JESS, [13]) for
representing knowledge about agents’ services and needs, as well as for
service mapping, and uses a constraint satisfaction engine (JSolver, [7])
for arbitration. All of our resource managers implement a common in-
terface which allows us to interchange them without changing any of
the other code in the system. The reason for having several different
resource management schemes was motivated by more than just the
need to find the right solution: it is our assumption that different re-
source mangers will be used in people’s various mobile personal spaces
(with one or two devices and where computation is scarce) and large
and well-equipped static spaces.

As mentioned before, Rascal is our most complex resource manager,
conforming to most of the design principles laid out in this paper.
Currently Rascal does not deal with issues of privacy and access control
and we have only just began work on cooperation mechanisms.

Rascal relies on agents having external descriptions of themselves.
Such descriptions include a list of startup needs, a list of provided ser-
vices (each with a list of its own needs) and descriptions of all possible
requests for resources the agent may make in its life-cycle.

Knowing startup needs and needs for providing particular services
allows Rascal to ensure that before it assigns a particular agent to
provide a service in response to a request, all of the needs of that
new agent (and its underlings) can be satisfied. For example, if some
agent requests a TextOutput device and the possible candidates are
SpeechTextOutput and GuiTextOutput, Rascal will ensure that either
speech generation is available for SpeechTextOutput or a computer
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screen is available for GuiTextOutput, before assigning either candidate
to the requester. Additionally, knowing agent’s startup needs also allows
us to dynamically choose what particular machine an agent should be
started on.

So far our software has been installed in six spaces of four differ-
ent kinds: three small offices, one small living room, one large office
(also used for small meetings), and a twelve-seat conference room. The
instrumentation of these spaces varies widely; we have a single dilap-
idated projector and a couple of lights in one of the small offices on
one hand, and six projectors and a large number of A/V devices in the
conference room on the other. Our living room has two projectors, a
TV, several cameras, and A/V equipment.

3 On-demand agent startup - reasoning about
absent agents

An agent system in a smart space should have a way of autonomously
starting agents on-demand and consequently the resource manager
should be able to reason about agents that are not alive right now
but could be brought to life if needed.

Because on-demand agent startup is one of the basic features of
Metaglue, we have taken it for granted but many other agent systems
do not support it. Hence we will now briefly argue why on-demand agent
startup is a desirable feature of an agent system in charge of a smart
space and then discuss the consequences for resource management.

3.1 Why support on-demand agent startup in smart spaces

Most agent systems deal with very dynamic, spontaneously created and
often unstable collections of agents. Therefore, creators of such systems
have to refrain from making assumptions about what is available in
the system at any given time and usually have to resort to dynamic
discovery, direct negotiation or other such techniques when an agent
looks for a service or resource (e.g. [18, 23, 12]). This general attitude
has been assumed by creators of agent systems controlling smart spaces.
Standard Jini [2] implementation and Hive [20] are good examples of
such systems.

Smart spaces, by the virtue of being based on stable physical envi-
ronments, impose a special set of constraints on the underlying software
infrastructure. It is true that a lot of adaptivity is still needed – new
components can appear and disappear, people come and go, devices are
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brought in and removed–but at the same time we benefit from assuming
certain level of persistence.

It is a feature of a physical space that most of its components are
static in the sense that they are usually there. If one day a space con-
tains lights, A/V equipment, projectors, and telephones, it is reason-
able to expect that those devices would be present the next day as
well. They will be there whether we are using them or not. This level of
predictability can (and should) be reflected by the underlying software
infrastructure. This is not to say, of course, that the software should
not be capable of dynamically accepting new components.

On-demand agent startup is highly useful in any flexible space in a
variety of ways. For example, it allows us to make multiple instances
of an agent when we want to perform several versions of the same
task. Furthermore, it allows us to have very complex interrelationships
between agents and very large numbers of agents. Without on-demand
startup one needs to craft elaborate startup scripts or hand-start all the
agents in the system; both of these are infeasible when talking about
collections of forty agents or more, especially when considering that the
particular agents change depending on who is starting the system, the
various tasks the system is to accomplish, and the room the system is
being started in.

With on-demand startup, starting a single high level agent is suffi-
cient to obtain a service provided by that agent. This agent will then
request and, cause to be started, all other agents it needs in order to
do its job well.

Even with the convenience argument set aside, the following exam-
ple illustrates some additional benefits of being able to start agents
dynamically.

Example 1. Let us assume that the phone service is provided by the
phone agent. The agent needs a computer with a voice modem hooked
up to a phone line in order to provide its services. Imagine a system
consisting of several machines with voice modems hooked up to a single
phone line (e.g. in a shared graduate student office). If we did not allow
for on-demand agent startup, we would have to do one of the following:

1. Start the phone agent on a prespecified machine, running a risk
that if that machine goes down the service is no longer available.

2. Start an instance of the phone agent on every machine with a voice
modem and a connection – a rather misleading solution because
each of the agents would be advertising phone service but only one
of them would be able to provide it at a time because all of the
machines share a single phone line.
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Another immediate use for automatic agent startup has to do with
robustness and recovery: if an agent providing a computational ser-
vice goes down because of computer failure, it can be automatically
restarted at a new location.

We understand that this point has much potential for debate, and
so we will not dwell it as other aspects for and against it lie outside the
realm of resource management.

3.2 Impact on resource management

If we assume that on-demand agent startup is supported by the under-
lying software architecture, then it stands to reason that the resource
manager for such a system has to be able to reason about absent agents.

To the best of our knowledge, it is uncommon in agent architectures,
even those in charge of smart spaces, to have non-alive agents be taken
into account during any coordination efforts. It is our belief that taking
potentially available agents into account allows a resource management
system to make intelligent decisions about resource allocation as in
Example 1 in the previous section. (See also Example 2 in Section 4.3.)

An important consequence of embracing on-demand agent startup
is that we cannot rely on agents themselves to provide descriptions of
their needs and services as they might not be running. The resource
manager has to have access to such descriptions without having to in-
stantiate any of the agents. Rascal requires agent programmers to cre-
ate separate description files but other solutions could easily be created
(e.g. descriptions could be cached by the resource manager).

Implicit in Example 1 in the previous section is the assumption
that the system, and in particular the resource manager, has a way
of starting agents on a specific computer or virtual machine. Metaglue
provides such capability as one of its two main primitives. It is unclear
to us at the moment to what extent other systems support it.

4 Representation

In this section we concentrate on what knowledge should be contained
in the resource manager but not on how that knowledge should be
encoded. In particular we argue that when building a resource manager
for a smart space, the following key points should be observed:

– Represent resources in terms of the services they provide (e.g. text
output) as well as their type (e.g. scrolling LED sign).
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– Ensure that representations are rich enough to allow the requesters
to get the best tools for the job. In particular we caution those using
Java against using only interface names for describing resources.

– Ensure that the representation is capable of describing resources
that are not represented within the agent systems by agents or
other special proxy objects. Examples of such resources would be
hardware that is not directly controlled by the agent system but yet
is crucial for system’s performance (e.g. wires, low level computer
components such as modems, third party software modules, etc.)

4.1 Services not devices

To be truly useful, smart spaces have to be affordable, which implies
that it should be possible to build them out of mass produced, intercon-
nected components. This includes both the hardware and the software.
Hence we can imagine that in the future we will be getting packaged
software for our rooms and offices just as today we get it for our desktop
computers. Creating such programs, however, may prove very difficult.

It is already difficult to keep desktop computers similar enough to
make it possible for the same software to run on all of them. It will
certainly be even more difficult when it comes to smart spaces. People
take great pride in how they arrange their work and living environments
and so creators of software for smart spaces cannot impose how those
spaces should be arranged or equipped. While software creators for
desktop computers can require that a computer should be equipped
with a display, a CD-ROM and a sound card, they certainly cannot
require the same level of uniformity among smart spaces. Thus we have
to make it possible for applications to run in a variety of spaces with
diverse devices and configurations.

The differences among desktop computers have been minimized by
the use of software drivers for various devices installed in those comput-
ers. Hence, it does not matter what kind of a video card or a monitor
one has - the drivers are going to make all cards and monitors “speak
the same language” and provide the same services to all applications.

In intelligent spaces the situation will be even more difficult: not
only will spaces have different kinds of displays, ranging from little
TVs to large plasma displays, but some spaces may not have displays
at all. Thus we have to express the abilities of various devices in smart
environments in more abstract terms. As well as providing uniform
interfaces to devices, as is done on desktop computers, we propose
providing uniform interfaces to the services provided by those devices.
This distinction is more profound than it may at first appear. It comes
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from the fact that each service can, in principle, be provided by a
number of conceptually different devices and each device can provide
a number of distinct services. For example, on one hand, the “short-
text-output” service may be rendered by a computer display device, a
speech output device or by a one line scrolling-LED display. On the
other hand, the LED sign, as well as providing short text display, can
provide simple graphics and animation.

We are not unique in suggesting that devices represented by de-
vice drivers are insufficient for a smart space; a somewhat different
approach was suggested by Winograd [27]. Schubiger-Banz et al. [25]
argue for “addressing by concept” in all ubiquitous computing envi-
ronments (both spaces and/or collections of mobile devices). INS [1]
uses “intentional names” for all networked resources. EasyLiving [6]
also seems to represent resources in terms of services they provide.

4.2 Rich representation - rich requests

We now examine how the services should be represented by the resource
manager. The details are, of course, dependent on the particular im-
plementation.

Open Agent Architecture OAA [19], which relies on a facilitator
agent for all inter-agent communication and task brokerage, uses a
PROLOG-based ICL (Interagent Communication Language) for de-
scribing agents’ needs and capabilities. The language allows service
providers to describe the agents in terms of tasks they can perform and
not really in terms of resources they represent.

Decker [11] uses KQML for communicating needs and abilities of
agents.

A common tendency among Java-based systems (e.g. Jini [2], Hive
[20], Rascal [15, 14]), is to use the name of the interface (or interfaces)
that the resource implements, and a list of attribute-value pairs for
describing agents’ capabilities.

In this last case, an agent’s interface provides information on how
the agent’s capabilities should be invoked. It also often provides most of
the information on what the agent does. One of the advantages of using
interface names for describing agents is that interface “ontologies”, i.e.
APIs, are easily understood by programmers and some of them get
adopted by large communities. But it has to be stressed again, that the
interfaces should provide access to agent’s services. Thus an agent can
advertise a number of interfaces, one for each services it provides.

We agree with designers of Hive and Jini in that the types of in-
terfaces implemented by an agent provide a lot of valuable information
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about agent’s capabilities and expected behavior. We also agree with
them in that the interface names are not sufficient for describing any
agent fully.

Just having interfaces and nothing else be an agent’s description is
not enough. Often a number of parameters, some of them continuous,
contribute to a service’s full description. Display services need to be
described in terms of resolution, size, color depth, brightness, etc. Hav-
ing detailed descriptions of services allows for more precise requests: an
agent that needs to show a map with a lot of detail, will request a high-
resolution color display, not just a display. At the same time, a mail
alert agent could deal with a very low resolution display as long as it is
visible and so would ask for the display without additional parameters.

4.3 Abstract resources

One important feature that distinguishes multi agent systems in charge
of smart spaces from other multi agent systems is that they reside
on the frontier between the physical and computational worlds. To
function well, those systems have to not only accept but also embrace
the physical world around them (we refer to this point again in Section
8).

As a consequence of this, it becomes necessary for the system to
explicitly describe not only the services provided by its agents but also
those provided by physical hardware and non-agent software present
on available computers.

A common approach to this problem is to add agents to represent
all needed physical and computational capabilities of the host environ-
ment. Hive, for example, uses “shadows” to represent physical devices
accessible on or from particular computers. Metaglue has agents that
represent individual devices. But how do we know where to start those
shadows or agents? An unsatisfactory way is when startup has to be
done by a human or by a script leaving the system with no way of
reasoning about it or taking action on its own. In case of Metaglue, the
device-controlling agents upon startup retrieve the name of a computer
they should tie themselves to. In our view, the agents that directly inter-
act with hardware or other software should be able to start dynamically
(see Section 3) and dynamically find the computers with all necessary
equipment and software.

Example 2. Currently in our system, the main way of providing the
speech-input service is with personal wireless microphones connected
to computers running third party speech recognition software. In our
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conference room we have several computers with the right software,
several microphones, and an audio mixer that allows us to route mi-
crophone signal to any of the computers.

When any of our agents requests speech-input service, Rascal, our
resource manager, checks the description of our speech input agent for
all of the services that it will need to provide the service. Those will
include a computer with a speech recognition engine, a microphone, and
a connection between the two. Neither the speech recognition engine
nor the microphones have software proxies in our agent systems yet
the resource manager is able to reason about them. Rascal ensures
that the speech-input agent starts on a computer with the right speech
recognition engine and will award a microphone that is not being used
for other tasks (e.g. teleconferencing) to the agent, and will ensure that
there exists a connection between the two (see Section 8 for discussion
of connections).

5 Arbitration

At the heart of resource management is arbitration. By our definition of
a resource manager, when two or more agents vie for the same limited
resource, the resource manager has to evaluate which gets what.

In this section we argue that arbitration is essential in any larger
system embedded in a smart space because it allows individual agents
and applications to be written without having to take other agents’
and applications’ needs into considerations. It also provides for the
most basic (but not the simplest) apparently smart behavior of a space.
Some arbitration schemes applicable in open agent systems, such as
marked-based resource allocation, will prove less effective. Cost-benefit
based on self-reported needs and preferences has proven a good solution
especially when combined with access control (which limits requests by
untrusted and potentially malicious or non-conforming agents).

In addition, in cases where a resource needs to be taken away from
a requester to satisfy a new, more urgent, request, every effort should
be made to find a replacement for the withdrawn resource.

5.1 Why arbitrate

Arbitration allows for easier implementation of individual agents: the
agent writer can view the world more selfishly than if there was no ar-
bitration mechanism. With arbitration in place, the agent programmer
can be sure that if any other agent needs resources more, the system
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will take care of necessary re-allocations (just like in properly multi-
tasking operating systems programmers do not need to worry about
yielding to other processes).

Another (obvious) benefit of arbitration is achieving apparent “in-
telligent” behavior of a space. Just like animals are expected to use
their body parts intentionally and in a coordinated fashion, we also
expect computer-steered spaces to be “aware” of the interface devices.

5.2 How to arbitrate

The simplest way of resolving ties among requests is to award a re-
source to the most recent request. For many reasons this may prove
to be insufficient. For example it would not be desirable for a new
email notification to take over a screen during a video conference with
one’s boss. Hence there exists need for some analysis before allocating
resources. Rascal, for example, uses a simple cost-benefit analysis (de-
tails in [15, 14]) to decide who should be awarded a particular service.
This scheme relies on agents accurately and honestly reporting how ur-
gently they need a resource. This approach is potentially problematic
in that it allows for malicious or inaccuarate representation of one’s
needs.

A more natural and simple approach to arbitration in potentially
open systems in smart spaces seems to be one in which some access con-
trol mechanism is used in conjunction with some priority-based scheme.
In such a situation the access control mechanism would weed out re-
quests from untrusted and unauthorized agents and then a priority
mechanism would decide which of the trusted and authorized requesters
should get what resources. In a model where agents can act on behalf
of spaces or people, the role-based access control model [24] seems a
viable option. We discuss the need for access control further in Section
10.1.

Other approaches had been developed with open systems in mind,
notably some based on market mechanisms [3, 4]. Those approaches
require existence of a central “bank” and some sort of currency. Such
approaches, in their natural form, are not well suited for smart environ-
ments. It should not be possible, for example, for someone thousands of
miles away to buy control of the room with their extra virtual currency.

Because resource managers can take resources away from requesters,
it is reasonable for a requester to keep a resource even after finishing
a task if it expects it may need the resource again in near future. For
example, a email notification agent may want to keep its output channel
as it is desirable for the sake of consistency in space’s behavior for those
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notifications to come through the same channel unless there is a good
reason to change.

5.3 Arbitration should allow for clever re-allocations

Consider the following scenario: a space is equipped with a TV set, LCD
projector, VCR, video mux, and some computers. The VCR (that also
acts as a TV receiver) can be connected to either the projector or to
the TV set through the video mux. The computer, however, can only
be connected to the projector.

The user is watching the news on the projector, this being the best
resource to satisfy a request for a large display. Then the user hears
some really important news and decides to share it with a friend while
watching the rest of the newscast and so she requests her email agent.
With our simpler resource management schemes in place, the projector
would be taken away from the news and allocated to the email agent.
The more desirable behavior, in this situation, would be for the news-
cast to be moved over to the TV set and the email to be then displayed
on the projector.

The point here is that in many cases the only way to accommodate
a new request is to take a resource away from one of the currently active
requests. The disturbance can often be minimized, however, by reallo-
cating the old request to a different service. The insight here is that the
sets of services that can satisfy various requests overlap only partially
and the relationships are often more complex than just proper inclusion
(see Figure 1). The reason for it is two-fold: first, different kinds of de-
vices can provide different sets of services; second, physical connections
for different kinds of signals are routed differently (so, for example, in
one of our spaces the video signal goes through a multiplexer and thus
can be connected to either of the projectors or to a TV set, while VGA
connections are hard wired).

Allowing for re-allocations makes arbitration among requests much
more complex: whenever a resource manager receives a request for a
resource, it has to look for a solution that satisfies not only the new
request but all of the old ones as well (as far as possible). In other
words, a simple task of selecting the best resource for a request turns
into a global constraint satisfaction problem.

One point to keep in mind, of course, is that re-allocations are costly.
If we move the newscast from a projector to a TV,the user is bound
to find it distracting. In some cases disturbance will be minimal, for
example a mail notification agent will not mind a re-allocation if it



756 Krzysztof Gajos, Luke Weisman and Howard Shrobe

TV Set
Projector

LED Sign

Speech Output

Text OutputVideo and TV

Video conferencing

Fig. 1. Different kinds of tasks can be performed with different but overlap-
ping possible sets of devices: both the TV set and the projector can be used
for watching videos or tv while only the projector can be used for teleconfer-
encing. At the same time, the projector, the LED sign or the speech output
can be used for text output.

happens between notifications—the next time it will simply use a dif-
ferent output device. It’s more serious in case of agents that may have
to rebuild a lot of their state after re-allocation. Some examples of this
would be a camera which was carefully focused on a face or area of the
room, or an Internet browser with all of its browser history.

Reasoning about the cost of a re-allocation has to be a part of the
overall arbitration process. In Rascal, requesters can specify how costly
a re-allocation would be to them and the cost can vary between zero
and the cost of taking the service away altogether. The cost of a re-
allocation in Rascal has two components: the fixed cost specified by the
requester and the difference in utility between the new request and the
old request (with the stipulation that it cannot be smaller than zero).

6 Ownership of resources over time (resources vs.
tasks)

In this section we argue that many of the services provided by agents
in a smart space (e.g. display service provided by a projector) are not
tasks and therefore they should be managed differently from tasks.
In particular requesters should be given ownership of resources over
periods of time. Agents need to own their resources as they are often
engaged in long-term jobs that can be changed or modified. We discuss
all of this by comparing what we mean by resource management with
task management performed by the faciliator agent in the Open Agent
Architecture (OAA) [19].
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Open Agent Architecture (OAA) is a good example of an agent
system that could control a smart space and that also has a complex
inter-agent facilitation scheme. What needs stressing, however, is that
the OAA “facilitator agent” actually performs task management and
not resource management. That is, the facilitator agent will break down
a task into simpler sub tasks and allocate those to individual agents
who can fulfill them best. It will not, however, ensure that all of the re-
sources needed for the tasks are available and not in use by other agents.
Hence OAA is well suited for a task like sending the current Boston
weather report to all of requester’s friends. The task will be broken
into components, appropriate information obtained and message sent.
OAA is not well suited for tasks that cannot be thought of as point-like
in time. Implicit in the OAA model is the assumption that agents can
never conflict over the use of scarce resources. Task management is, of
course, very important but in a system that controls a physical space
with a large number of scarce resources task management should work
hand in hand with a resource manager.

It is more natural to think of many agents as having a life cycle,
and going independently about their own long-term jobs. For example,
an agent listening to and recording conversations in the room in order
to be able to bring back audio snippets via keyword searching, needs
resources over an extended period of time to complete its job. Showing
a movie can be thought of as a task but it can be interrupted, modified,
or abandoned in the middle. It can also prevent other agents from using
a display for their jobs. In that sense, showing a movie is different from
the OAA view of a task.

7 Third party resource request annotation

Once the core resource management system is in place, it should be easy
to write modules that do specific types of reasoning and then use that
reasoning to annotate requests to limit or reassess possible matches.
Often knowledge of the world has direct impact on the appropriate na-
ture of a specific resource to a specific request–this knowledge being
outside either the resource manager’s realm of expertise or the request-
ing agent’s knowledge–and it is imparative that it be easy to have a
third party entity contribute such knowledge.

For example, say a user is in a particular room and desires to play
a song via his SongPlayer agent. The user would start his agent that
would then ask for and locate the bits of the given file, and then attempt
to gain access to another agent which would play the actual file. This,
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of course, would be a resource request for an agent with the ability to
play sound.

However, there is also another criterion to the desired agent: loca-
tion. If the user has been wandering from room to room, it is important
that the sound playing agent used be in the room the user is in. This
is knowledge that needs to be appended to the request, but neither the
resource manager nor the song requesting agent would appropriately
have this knowledge.

It would be a violation of normal notions of modularity if the Song-
Player agent had to check the user’s location and annotate its resource
request. It also seems unwieldy for the resource manager to be responsi-
ble for finding and maintaining this knowledge; certainly if this knowl-
edge were in the resource manager’s domain, then much other knowl-
edge would be as well. Furthermore, the nature of a flexible agent sys-
tem is knowledge itself is unlikely to be codified in a universal standard,
and so the resource manager would be responsible for translating the
output of various other agents into proper resource request annotations.
Solving this problem is definitely an active area of research, but in this
case it make for a massively large and unwieldy project in the writing
of the resource manager.

The best solution we found is to have third party agents that ex-
tend the functionality of the resource manager. Authors write agents or
functions which pattern match on resource requests and add then addi-
tional criterion to those requests as appropriate. In the example above,
a distinct other agent which tracks the user eavesdrops on all resource
requests and annotates any relevant ones to only consider physically
local possibilities.

Request annotations should be able to happen in two ways. The first
is modifying the request before a list of possible matches is generated.
The second method is filtering the possible matches at the tail-end
of the process, after the list of possible resources has been generated.
Regardless of method, third party annotators allow for a real compono-
tization of the agents; without them either one or the other agent on
any given transaction needs to know too much about the significance
of the job at hand. The idea is to have dumb objects wired together
smartly to get thinking results, not to have heavyweight objects that
are hard to write or maintain.

A further advantage of third party annotators is being able to pro-
vide the room with a way of dynamically adapting to equipment failures
by writing modules that extended reasoning about certain particular
resource allocation problems. For example, if we had an agent that
could tell if a projector was broken by looking at the screen with a
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stearable camera, we could easily have an agent update the resource
manager so all resource requests for projectors automatically remove
that projector from consideration.

Furthermore, having the ability to have third party annotators should,
we hope, serve nicely in the future when contemplating adding large
features to the system such as access control (see Section 10.1). Once
the model of requesting resources and receiving them is established,
pretty much anything can be thought of as modifying or changing the
appropriateness of a given resource to a given request–namely annotat-
ing a preexisting request.

8 Connections

One style of resource that deserves special attention are connections.
Connections are a vital piece of the background of a smart space, and
a system with a resource manager that fails to manage them is bound
to end up in serious trouble.

The way our room is wired, we have several muxes and switches
allowing for information to flow from source devices (cameras, VCRs,
microphones) to output devices (projectors, TV sets, modems). Com-
puters are also integrated into this web as either sources or sinks. We
also have some trunk wires connecting muxes to muxes, for example,
which can only carry one signal at a time. This, of course, is a limited
resource. We are a long way from the time when the optimal carrier of
all information signals (audio, video, etc.) is the same Ethernet, and
until then we need to take into account the specialized wires in an intel-
ligent space. This often means we do not have a fully connected graph
of signal sources and sinks, and so the physical connections themselves
are a limited resource that needs management.

Due to this, we enter all our connections into the manager as “con-
nection resources”. When an agent requests, say, a VCR and projector
combination, they also request the collection of resources consisting of
the path of connections leading from the VCR to the projector.

We keep the connection aspects of the system very much behind
the scenes as an extension to the resource manager. Just because they
are a crucial piece does not mean that they need to be in the forefront
of a high-level agent programmer’s attention. Agents can just ask for
resources with the caveat that they are connected, and do not look at
the resources involved in the connecting itself at all. The connection
extension to the resource manager forges the actual path.
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9 Special requests

We have discovered a need for a few “special requests” for resources that
seem to lie a bit outside the parameters discussed above. Happily, these
are extensions of above, and can be added layers on top of the existing
system. We will briefly discuss them in the following sub-sections.

9.1 “Screen saver”

Many agents may want to use resources for a low-level background effect
if the resources are not being used for something else. For example, the
news ticker or weather forecast agent may want to use the LED sign if
there is no better use for it.

The “Screen Saver” type of request gets automatically re-filled af-
ter the resource is taken away, used, and then released by some other
agent. It is a way of the agent saying, in effect, “I want these resources
whenever they are free. If you take them away, then give them back
when they become free again.”

The advantage of this approach is that it prevents a busy wait on
the agent’s side. Without “Screen Saver” requests, an agent would have
to poll the resource manager from when it has lost its resource until it
obtains it again.

An alternative solution would be to have blocking requests, which
would also work. We have not closely examined this option, however.

9.2 Auto upgrade

When a resource being used by an application is released, it is worth
checking to see if other agents would be better served by getting that
resource now that it is available. Agents can specially request that they
do not mind being switched to a better resource at any time.

9.3 High-urgency short-term loans

Some requests are for more task-oriented reasons. In these cases, a re-
source may be needed only for a brief moment. For example, an alert
agent might briefly need the speakers of the room to inform a room
occupant that there is a call waiting. If the occupant was watching
a movie, it would be much more smooth if the alert agent could just
borrow the audio for a moment and then give it back. Without bor-
rowing, the original agent would have to re-request the lost resources,
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and again we would have the polling situation described in the previous
sub-section 9.1.

Loans, of course, make cost analysis in the resource manager even
more difficult and we have found no easy answers as of yet.

10 Future

In this section we talk about two issues in resource management in
smart spaces that we have identified as important but have not yet
researched in depth.

10.1 Access control

The real world is full of access control mechanisms. In particular, there
are many ways in which access to spaces and enclosed equipment is
restricted to certain people. The same is true of information. It stands
to reason that agents acting on behalf of people should be subject to
similar constraints their owners. If Alice does not have a key to Bob’s
office, then she is probably not supposed to be able to use his VCR
either. We can take this parallel a step further and introduce some
more interesting problems.

All members of our lab have a right to enter our conference room.
They also have the right to control all of the a/v equipment, the lights,
etc. To what extent should this right be extended to their electronic
proxies? Should people be granted access to the devices when they
are not physically present in a space, e.g. while on a trip to a faraway
country? Should the access to the devices only be granted to authorized
people on the condition that they are physically present in the space?

If we assume that physical presence is required of most people, let
us take another scenario into consideration. Our research group has a
meeting and one of the members is in a different city and needs to
teleconference with us. During the meeting she needs to show us some
of her results. Should she then be allowed to control our projectors and
our slide show software? Should telepresence be treated equally with
physical presence? Should perhaps one of the people physically present
at the meeting grant her the permission? If so, who should have the
rights to grant permissions to others?

As we said before, we are not clear yet how access control should be
performed in a smart space but we are quite certain that the resource
manager would have to be a part of the process. After all, it is the re-
source manager that grants agents access to particular resources. Thus
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the resource manager needs to be able to find out what resources the
requester has rights to.

10.2 Cooperation

As research on smart spaces progresses, it becomes more and more
likely that several spaces will be controlled by the same software. A
number of people will be moving from one smart space to another and
will expect to be able to make various requests in those spaces. They
will also expect some of their agents to “follow” them. Building a single
resource manager that would manage resources of all the spaces and
all the people is clearly impractical. hence, there will have to be a
number of resource managers, each representing a particular collection
of resources and requesters. Given that spaces may border with each
other or be enclosed by one another, and also given that agents acting
on behalf of people will need to use resources provided by spaces, it is
necessary for resource managers to communicate with one another to
perform optimal resource allocation.

11 Contributions

We have outlined a number of issues that we found to be important in
the design of high-level resource management systems for smart spaces.
Smart spaces are a relatively new research area and few projects have
reached a point where resource management would become critical. We
believe, however, that all projects will eventually face these problems
once their basic infrastructure is in place and multiple, independently
developed, applications are being ran in a space at the same time.
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