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Preface

MIT Project Oxygen is in its second full year of operation. A large
number of faculty from the Laboratory for Computer Science and the
Artificial Intelligence Laboratory have brought their work together to
realize the dream of pervasive human centered computing. With our
partners in the Oxygen Alliance we are inventing a new computational
environment that we hope will revolutionize the way in which humans
interact with computation.

The impetus for the Oxygen effort came from a number of different
perspectives:

– that we should be able to do more by doing less,
– that speech and vision interfaces are the key to ease of use,
– that the computer should be brought out into the human world

rather than vice-versa,
– and that computation and communication will continue its expo-

nential drop in price.

With these assumptions in mind we constructed a framework for
Oxygen around three sorts of artifacts (morphable hand-held units: the
Handy-21; environmental intelligent spaces: the Enviro-21; and new lay-
ers of network capabilities; the Network-21), around the hardware and
software infrastructures for these, and around four user technologies
(speech and vision, automation, collaboration, and individual knowl-
edge access). We did not expect to devote precisely equal resources
across all nine of these subdivisions, nor within each of the categories.
However, we have worked in all of these areas, and will continue to
work in them all. As we have proceeded, the boundaries between these
areas of work have become fuzzier and fuzzier as we are building bigger
and more integrated prototype systems.

This book captures the first stages of work across all the areas of
Oxygen. These are research papers recently published, or about to be
published by faculty and students at LCS and AI who are working on
Oxygen. The papers naturally fit into six rather than nine sections:

– Handy 21: technologies for the current generations of Handy’s
which are based on commercial off the shelf technologies with some
custom glue, and low-power high-performance computation tech-
nologies for the future custom built generations.
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– Network 21: new technologies for intentional naming, organiza-
tion of ad-hoc networks, location tracking, vertical handoff, and
network security.

– Systems: both hardware and software technologies to support the
Oxygen vision, with a good number of technologies that straddle
the hardware/software boundary.

– Perceptual interfaces: speech based systems, vision based track-
ers, microphone arrays, visual disambiguation of speech signals and
sketching interfaces.

– Knowledge access: natural language and semantic bases for ac-
cess to the vast amounts of knowledge that are available on the
network.

– Collaboration: tools for helping people to be more productive in
meetings or giving presentations.

While written papers give the technical details of the work, it is
often hard to convey in them the way in which the work changes the
way it feels to be in a human centric pervasive computing environment.
For that one needs to experience it. Some of our technologies are already
in our partners’ hands. Others can be seen in movies on the Oxygen
web site at http://oxygen.lcs.mit.edu/.

Onward, with the revolution!

Anant Agarwal
Rodney Brooks

Victor Zue
December 14, 2001

This work was funded by The Acer Group, Delta Electronics Inc., HP Corp.,
NTT Inc., Nokia Research Center, and Philips Research under the MIT
Project Oxygen partnership, and by DARPA through the Office of Naval
Research under contract number N66001- 99-2-891702. Some of the work
was partially or wholly funded under previous arrangements.

Nick Matsakis produced the Latex style files for this publication, and de-
bugged the most arcane Latex problems. Annika Pfluger did the lion’s share
of the work. She wrestled with many people’s Latex source files and got all
the papers into a uniform format. She deserves the major credit for putting
this book of papers together.
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Proceedings of Hotchips 13, August
2001.

The Raw Processor: A Composeable 32-Bit
Fabric for Embedded and General Purpose

Computing

Michael Taylor, Jason Kim, Jason Miller, Fae Ghodrat,
Ben Greenwald, Paul Johnson, Walter Lee, Albert Ma,

Nathan Shnidman, David Wentzlaff, Matt Frank,
Saman Amarasinghe and Anant Agarwal

MIT Laboratory for Computer Science
{mtaylor, jkim, jasonm, fghodrat, beng, prj, walt, ama, naters,

wentzlaff, mfrank, saman, agarwal}@lcs.mit.edu

The Raw project is attempting to create a scalable processor archi-
tecture that is suitable for both general purpose and embedded com-
putations. Current general purpose processors differ from embedded
devices in that they provide large amounts of hardware support to
discover and manipulate instruction-level parallelism and unstructured
memory accesses. Because the parallelism in embedded computations
is much more predictable, embedded devices such as DSPs do not of-
fer a rich set of mechanisms, rather they devote their area to compu-
tational resources such as pipelined floating point, thereby achieving
significantly better area and energy efficiency. However, their best per-
formance is achieved for regular data access patterns such as streams,
and they often require assembly code manipulation. Embedded FP-
GAs and ASICs go one step further, and can offer even better results
for many classes of computations, but require a hardware design step
in mapping their applications into silicon.

Raw will support many classes of computations that traditionally
have run on microprocessors, DSPs, FPGAs and ASICs. Raw imple-
ments a simple, highly parallel, tiled architecture, and exposes its inter-
connect, I/O, memory and computational elements to the compiler [5].
This exposure allows the software system to allocate resources and co-
ordinate data flow within the chip in an application-specific manner.
Furthermore, the tiled, replicated architecture of Raw allows it to scale
with increasing silicon densities.

As depicted in Figure 1, the Raw processor is a single chip contain-
ing 16 identical processor-sized tiles connected in a 4-by-4 mesh con-
figuration by four nearest neighbor point-to-point pipelined high-speed
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networks (two static, two dynamic). Implemented in the .15 micron
IBM SA-27E ASIC process, the design occupies an 18.2x18.2mm die,
has 1080 HSTL signal I/Os, consumes 45W1, and runs at a target fre-
quency of 250 MHz. Because tiles are only connected to their nearest
neighbors, the longest wire on the chip runs only the length of a single
tile.

Raw Processor

Stream I/O devices

Fig. 1. Raw processor composition. A typical Raw system might include a
Raw processor coupled with off-chip RDRAM and stream-IO devices.

Each tile contains a general-purpose processor, which is connected
to its neighbors by a static router and a dynamic router. The processor
is an eight stage single-issue MIPS-style pipeline. It has a four stage
pipelined FPU, a 32 KByte two-way associative SRAM data cache and
32 KBytes of instruction SRAM that is virtualized via a binary rewrit-
ing system. When the data access patterns are known at compile time,
the software implements software data caching for predictable memory
access by using a portion of the instruction SRAM memory.

The static router controls two independent 32-bit pipelined chan-
nels in each direction (North, East, South, West, and Processor). It

1 To reduce project risk, we have not focussed on low-power design in our
first experimental Raw prototype. However, its tiled, pipelined nature al-
lows application-specific orchestration of power, and we plan to undertake
a low-power design in a follow-on project.



The Raw Processor 5

sequences a 64-bit instruction that simultaneously specifies an opera-
tion (branch, no-op, or move) and 12 routes between these channels.
The static router’s local SRAM contains 8K of these instructions, and
is also virtualized in software. Like the instruction SRAM, the software
can also use a portion of the static router SRAM to store data with
predictable access patterns.

In order to route a value between two tiles on this network, one
inserts instructions on each intermediate node specifying the appro-
priate route. The static router allows single word messages to be sent
between tiles with a guaranteed relative ordering. The purpose of this
network is to connect the Raw tiles in a manner that can exploit both
ILP (instruction level parallelism) and streaming data parallelism. The
parallelizing Raw compiler, RAWCC [4, 3, 2, 1], uses these routers as
an operand network between the ALUs of the processors to parallelize
SpecFP 95 and multimedia applications.

The dynamic router uses a dimensioned-ordered wormhole routing
protocol to control two independent 32-bit pipelined channels in each
direction (North, East, South, West, and Processor). These channels
allow messages of up to 31 words (plus a header specifying the desti-
nation tile number, source tile number, message length, and type) to
be sent between tiles and outside of the chip. These messages take one
cycle per hop when going straight, and two cycles on turns. The proces-
sor dedicates one of these two dynamic channels to external communi-
cation: memory (i.e., cache misses), interrupts, and PCI transactions.
The other channel is utilized for user-level messaging between tiles. The
processor supports OS-level transparent deadlock recovery in the event
that the user over-commits the buffer resources of the network.

The pins of the chip are connected directly to the edges of the mesh
networks, and run at the speed of the chip. When a message is routed
off the side of the chip, it appears on the pins. Because the number of
network signals (38 signals x 4 networks x 16 tile-sides x 2 directions =
4864) exceeds the number of pins available, we transparently multiplex
the 2 static and 2 dynamic networks on each port down to one physical
channel. We also multiplex the middle two channels in the vertical
direction, which results in 14 channels, or 112 Gbits of bandwidth in
each of the output and input directions.

The Raw chip can be composed into power-of-two dimensioned
meshes, for systems of up to 64 chips. The system is virtualized in
such a way that this system will appear to the programmer to be ex-
actly like a single Raw chip of 64 times the size, except that certain
hops on the networks have an extra cycle (or two, for the shared middle
channel) of latency. This allows us a glimpse into the future: we can
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ascertain the scalability of our architecture as well as run applications
that are beyond the capabilities of modern day microprocessors.

Acknowledgments: The Raw project is funded by Darpa, NSF, and
the Oxygen Alliance. IBM is supporting the ASIC fabrication of Raw.
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Computer Architecture from 10,000 feet

foo(int x)
{ .. }

class of
computation

convenient
physical
phenomenon

… we use abstractions to make this easier
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The Abstraction Layers That Make This Easier

foo(int x) { .. }

Computation
Language / API
Compiler / OS
ISA
Micro Architecture
Layout
Design Style
Design Rules
Process
Materials Science
Physics

IBM 360 /RISC/ Transmeta/x
Fortran

Mead & Conway

Abstractions protect us from change
-- but must also change as the world changes

Language / API
Compiler / OS
ISA
Micro Architecture
Layout
Design Style
Design Rules
Process
Materials Science

Changes in physical
constraints

 More Resources:
Wire  Gates
Delay  Wires

 Pins
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Wire delay is crashing through
the abstraction layers

Language / API
Compiler / OS
ISA

Micro Architecture

Layout
Design Rules
Process
Materials Science

Partitioning(21264)
Pipelining  (P4)
Timing Driven Placement
Fatter wires
Deeper wires
Cu wires

The future of wire delay
handled in micro-
architecture

1 cycle wire

L1

L2

L3

DRAM
(L4)

spec.
control

FPUS

execution
core
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Raw handles this change
by exposing
the underlying
resources (e.g. wires)
with a scalable,
parallel ISA.

It orchestrates these
resources with
spatially-aware
compilers.

The bottom line

 More Resources :
Wire  Gates
Delay  Wires

 Pins

Language / API
Compiler / OS
ISA

Micro Architecture

Floorplan / Layout
Design Rules
Process
Materials Science

How does Raw expose the resources?

We started with a
blank sheet of
silicon.
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Expose the gates

Cut the silicon up
into an array of 16
identical, programmable
tiles.

What’s inside a tile?

8 stage
MIPS-like
processor
pipeline

Tile

FPU

32 KB DCACHE

32 KB IMem

Network
Interface

Network
wires and
crossbars
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How do we expose the wires?

Computation
Resources

Registered at input ��
   longest wire = length of tile

(462 Gb/s @ 225 Mhz)

A: Through
on-chip
networks

How do we expose the pins?

raw
chipset

Gives user
direct access
to pin bandwidth.

DRAM

DRAM

DRAM

DRAM

D
R

A
M

D
R

A
M

D
R

A
M

PCI x 2

PCI x 2

devices

etc

Routes off the edge
of the chip appear on
the pins.

14 7.2 Gb/s channels
(201 Gb/s @ 225 Mhz)
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1 cycle
.15u .07u

• longest wire
• Design complexity
• Verification complexity
… are all independent of transistor count.

# tiles, network bandwidth and I/O bandwidth scale

Raw is also backwards-compatible.

The Raw ISA scales

How well does Raw expose the
resources?

Raw Chip (ASIC @225 MHz)
16 OPS/FLOPS per cycle

462 Gb/s of on-chip “bisection bandwidth ”

201 Gb/s I/O bandwidth

57 GB/s of on-chip memory bandwidth

... but how are the resources going to be
coordinated?
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Raw: How we want to use the tiles

httpd

4-way threaded
JAVA
application

MPI
program

Custom
Datapath
Pipeline

mem

mem

mem

The Raw Tile network support

Computation Resources

Tile processor

64 KB SMem

5 stage
static
router
Pipeline

2 stage
dynamic
router
pipeline

4 32-bit mesh networks
2 static, 2 dynamic

How does the main
pipeline interface
to the networks?
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Memory mapped networks are not
first class citizens.

IF RFD
A TL

M1 M2

F P

E

U

TV

F4 WB

To other tiles, through
memory system that
happens to go over a
network.

Instead, Raw’s networks are tightly
coupled into the bypass paths

IF RFD
A TL

M1 M2

F P

E

U

TV

F4 WB

r26

r27

r25

r24

Network
Input
FIFOs

r26

r27

r25

r24

Network
Output
FIFOs

Ex: lb r25, 0x341(r26)
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How the static router works.

fmul r24, r3, r4

software
controlled
crossbar

software
controlled
crossbar

fadd r5, r3, r24

route P->E route W->P

Goal: flow controlled,
      in order delivery of operands

RawCC Operation:
Parallelizes C code
onto static network

tmp0 = (seed*3+2)/2
tmp1 = seed*v1+2
tmp2 = seed*v2 + 2
tmp3 = (seed*6+2)/3
v2 = (tmp1 - tmp3)*5
v1 = (tmp1 + tmp2)*3
v0 = tmp0 - v1
v3 = tmp3 - v2

pval5=seed.0*6.0

pval4=pval5+2.0

tmp3.6=pval4/3.0

tmp3=tmp3.6

v3.10=tmp3.6-v2.7

v3=v3.10

v2.4=v2

pval3=seed.o*v2.4

tmp2.5=pval3+2.0

tmp2=tmp2.5

pval6=tmp1.3-tmp2.5

v2.7=pval6*5.0

v2=v2.7

seed.0=seed

pval1=seed.0*3.0

pval0=pval1+2.0

tmp0.1=pval0/2.0

tmp0=tmp0.1

v1.2=v1

pval2=seed.0*v1.2

tmp1.3=pval2+2.0

tmp1=tmp1.3

pval7=tmp1.3+tmp2.5

v1.8=pval7*3.0

v1=v1.8

v0.9=tmp0.1-v1.8

v0=v0.9

pval5=seed.0*6.0

pval4=pval5+2.0

tmp3.6=pval4/3.0

tmp3=tmp3.6

v3.10=tmp3.6-v2.7

v3=v3.10

v2.4=v2

pval3=seed.o*v2.4

tmp2.5=pval3+2.0

tmp2=tmp2.5

pval6=tmp1.3-tmp2.5

v2.7=pval6*5.0

v2=v2.7

seed.0=seed

pval1=seed.0*3.0

pval0=pval1+2.0

tmp0.1=pval0/2.0

tmp0=tmp0.1

v1.2=v1

pval2=seed.0*v1.2

tmp1.3=pval2+2.0

tmp1=tmp1.3

pval7=tmp1.3+tmp2.5

v1.8=pval7*3.0

v1=v1.8

v0.9=tmp0.1-v1.8

v0=v0.9

Low Network latency
important.

Black arrows =
Static Network
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Applications Parallelized with RawCC
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Speedup, 32 tiles

18.2mm x 18.2mm die.

.122 Billion Transistors

16 Tiles

2048 KB SRAM Onchip

1657 Pin CCGA Package
(1080 HSTL signal IO)

~225 MHz

~25 Watts

Raw Stats
IBM SA-27E .15u 6L Cu

For architectural details, see:
http://cag.lcs.mit.edu/pub/raw/documents/RawSpec99.pdf
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Raw Board with IKOS logic
emulation

Currently in

timing closure

and verification.

Tape out: Q4 2001

Enabler: The Raw Networks

The Raw ISA treats the networks as first
class citizens, just like registers:

software managed,
bypassed,
encoding space in every instruction

Static Network :
   1. routes compiled into static router SMEM
   2. Messages arrive in known order

Latency:    2 + # hops
Throughput: 1 word/cycle per dir. per network

19



Summary

Raw exposes wire delay at
the ISA level. This allows
the compiler to explicitly
manage gates in a scalable
fashion.

Raw provides a direct,
parallel interface to all of
the chip resources: gates,
wires, and pins.

Raw enables the use of these gates by
providing tightly coupled  network
communication mechanisms in the ISA.
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34th International Symposium on
Microarchitecture (MICRO-34), Austin,
TX, December 2001.

Direct Addressed Caches for Reduced
Power Consumption

Emmett Witchel, Sam Larsen, C. Scott Ananian and Krste Asanović

MIT Laboratory for Computer Science
{witchel, slarsen, cananian, krste}@lcs.mit.edu

Abstract. A direct addressed cache is a hardware-software de-
sign for an energy-efficient microprocessor data cache. Direct
addressing allows software to access cache data without a hard-
ware cache tag check. These tag-unchecked loads and stores
save the energy of a tag check when the compiler can guar-
antee an access will be to the same line as an earlier access.
We have added support for tag-unchecked loads and stores to
C and Java compilers. For Mediabench C programs, the com-
piler eliminates 16–76% of data cache tag accesses, with half of
the benchmarks avoiding over 40% of the data tag checks. For
SPECjvm98 Java programs, the compiler eliminates 18–63%
of data cache tag checks. These tag check reductions translate
into data cache energy savings of 9–40%, and overall processor
and cache energy savings of 2–8%.

1 Introduction

Reducing energy consumption is an important goal for processors that
will be used in battery-powered devices. Caches consume a large portion
of total energy in processors targeted at low-power applications. For ex-
ample, 16% of the total processor and cache power for the StrongARM
microprocessor is dissipated in the data cache [6].

Commercial low-power processors usually employ associative caches
[2, 6, 10, 13, 18]. For associative caches, a significant portion of the total
access energy is spent checking multiple tags to find where data resides
in the cache. For example, the highly-associative low-power cache de-
signs used by the StrongARM and Xscale processors expend over 50%
of the total cache access energy in the tag check [20].

In this paper, we propose a new hardware-software interface to re-
duce the energy cost of accessing cache data. Direct addressing allows
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software to access cache data without the hardware performing a cache
tag check. These tag-unchecked loads and stores save the energy of per-
forming a tag check when the compiler can guarantee an access will
be to the same line as an earlier access. If the compiler cannot deter-
mine this information, or if cache lines are evicted due to interrupts
or cache invalidations, direct addressing gracefully degrades back to
conventional tag-checked accesses.

We have implemented compiler support for direct addressing in the
SUIF C compiler [8], and in FLEX, a Java bytecode-to-native com-
piler [7]. We evaluate our compiler algorithms using C programs from
Mediabench, and Java programs from SPECjvm98. Our results show we
can eliminate 16–76% of all data cache tag accesses in C, and 18–63%
of data cache tags checks in Java. We have developed a detailed energy
model of a power-optimized microprocessor and caches. The reduction
in cache tag checks results in data cache energy savings of 9–40% in
C and 9–31% in Java. The total processor plus cache energy savings is
2–8%.

The paper is structured as follows. First we review current cache
design in Section 2. Section 3 describes the changes needed to imple-
ment direct addressing. General compiler algorithms to support direct
addressing are discussed in Section 4. The algorithms and results spe-
cific to C are described in Section 5, and the algorithms and results for
Java in Section 6. Section 7 compares direct addressing to hardware
schemes that remove tag checks. Finally, we discuss related work and
conclude.

2 Low-power cache designs

Figure 1 shows the structure of a conventional virtually-indexed, virtually-
tagged set-associative RAM-tagged cache (for brevity, only virtual caches
are considered here, but direct addressing can be applied to other types
of caches). An index taken from the virtual address is used to select a
set consisting of several ways, and the tag field of the virtual address
is compared against the tags in all ways to determine the location of
the data. An n-way associative cache performs n tag checks and n data
reads in parallel, discarding all but one of the data values depending
on the tag compares.

An alternative approach, used in many low-power microprocessors
[2, 6, 10, 13, 18], is to store the tags in content-addressable memory
(CAM). The tag is broadcast across the cache lines and only the line
whose tag matches has its data read out. The energy consumption of
a 32-way CAM-tag search is approximately the same as a 2-way set
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Fig. 1. A set-associative RAM-tag cache.
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Fig. 2. A highly-associative CAM-tag cache subbank.

associative RAM-tag search [20, 2] but has lower miss rates. Caches
are often subbanked to save energy and reduce delay, and a CAM-tag
cache subbank is shown in Figure 2. Although CAM-tag caches reduce
miss rates and hence total absolute memory access energy, they expend
relatively greater energy in tag checks. Detailed HSpice simulations of
a 16KB CAM-tagged data cache divided into 1KB subbanks, shows
that the tag check consumes 54% of cache energy for loads and 43% for
stores.

For both RAM and CAM tag caches, searching tags is expensive.
If we could shortcut the process, by letting software tell the hardware
in which way the line is located, we could save significant energy. The
problem is how to let software directly access cache lines without com-
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promising inter-process protection and while preserving correct opera-
tion in the face of cache replacements or other cache coherence actions.

3 Direct addressing

16 (Sign extended)

Instruction lwlda offset

32

r1

Register
File

r2

Data

32

Offset
Calculation

3 bank 18 tag

Hit?

CAM
Tag Stat

5 o
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Direct Address
Registers (DARs)

ffset

da2

Fig. 3. A CAM-tagged data cache with direct addressing. The lwlda instruc-
tion causes da2 to memoize the location of the data. A subsequent lwda that
used da2 would not power up the CAM bank on the left, but use the shaded
DAR to pick this line.

Our approach to eliminating tag checks is to let software tell the
hardware to remember the location of a cache line, so when software
accesses the line again, hardware can access the data directly without
searching tags. We augment the processor state with some number of
direct address registers (DARs). These registers are set and used by
software, and contain enough information to specify the exact location
of a cache line in the cache data RAM as well as a valid bit. The
exact width and data layout of the DARs is hidden from software to
avoid exposing the implementation-dependent structure of the cache.
In particular, software is only made aware of the length of a cache line,
but not the total cache capacity or associativity.

Table 1 shows the instruction extensions for using DARs. Software
places values in the DARs as an optional side-effect of performing a
load or store. A tag-unchecked load or store specifies a full effective
virtual address in addition to a DAR number. If the DAR is valid,
its contents are used to avoid a tag search; if it is invalid, hardware
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Instruction Explanation

(l|s)wlda rt, off(rs), da

Load or store word, load direct ad-
dress. Perform regular load or store,
and also set the direct address reg-
ister da to the location of the refer-
enced line.

(l|s)wda rt, off(rs), da

Load or store word, using direct
address. Data from the cache line
pointed to by da is transferred to
register rt (or the contents of rt is
stored into the line specified by da).
The line offset bits of rs + off are
used to pick the proper word in the
line. If da is invalid, the instruction
acts like (l|s)wlda, accessing mem-
ory and setting the da register.

jr.dainv rs, da mask

Jump register and invalidate direct
address registers. It acts like a jump
register instruction, and also clears
the valid bit on the DARs specified
in the bitmask. It is used on function
return to invalidate the DARs used
by the function.

Table 1. A table of instruction set extensions for manipulating direct address
registers. MIPS is the base ISA and a machine with 8 DARs is described.
Only word accesses are shown, but half-word and byte accesses are handled
analogously.

falls back to a full tag search using the entire virtual address. The
implementation described here uses a separate DAR specifier in each
instruction, which takes 3 bits from the 16-bit immediate offset. An
alternative encoding is to implicitly associate a DAR with some set of
base registers, which reduces ISA changes at the cost of complicating
compiler register allocation. We do not consider this option further in
this paper.

Direct addressing is only used for data caches. Instruction caches
have very regular access patterns and are only accessed via the pro-
gram counter, and hence are amenable to software-invisible micro-
architectural techniques to remove tag checks [16, 18, 19].

As an example, consider the function entry code in Figure 4, and a
transformation of that code using direct addressing. The swlda instruc-
tion sets up the da0 DAR, which is then used by the following swda
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instructions to eliminate cache tag checks. Note that no additional in-
structions were added and that performance is identical.

Old Code New Code

sub $sp,64 sub $sp,64

sw $ra,60($sp) swlda $ra,60($sp),$da0

sw $fp,56($sp) swda $fp,56($sp),$da0

sw $s0,52($sp) swda $s0,52($sp),$da0

Fig. 4. Example function entry code transformed to use DARs.

3.1 DAR implementation

At minimum, a DAR need only record the matching way within the
cache set. In this case, the effective address is used to obtain the sub-
bank number, the set index, and the offset within the cache line. In
some implementations, however, it will be advantageous to also record
subbank and set index information in the DARs and to physically dis-
tribute the DARs among the cache subbanks. This avoids recalculat-
ing and retransmitting these portions of the virtual address for tag-
unchecked accesses.

The DARs incur additional area, energy, and delay overheads. The
primary energy penalty is the parasitic load of the DARs on the signal
lines driving the cache, but this should be a negligible fraction of overall
cache access energy. The delay penalty is a single mux to select either
one of the DARs or the normal cache access signal.

For a RAM-tag cache, the DARs can record way hit/miss informa-
tion locally in each way (each way is a subbank). For a tag-unchecked
access, the DAR specifier is broadcast to the ways, which replay the
hit/miss information recorded in the local DAR latches without per-
forming a tag check. The area and energy overhead of the DAR bits
is small compared to the cache itself. The delay penalty is only a frac-
tion of a gate delay as the DAR hit/miss signal can be folded into the
existing precharged tag comparator.

For a CAM-tag cache, a DAR would be implemented as a unary
bit vector with a single bit set on the matching row. Each cache row
would locally store one bit per DAR. The DARs would be written
with the local hit/miss signals generated by the CAM tag in each row.
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For regular accesses, the parasitic energy overhead of the DARs is small
because at most only one row’s hit signal transitions high and one row’s
hit signal transitions low on any search. There is an additional energy
cost to writing a DAR, where the DAR clock line has to transition high
and low, but this overhead is small compared to the saving from not
driving multiple bits of address across the tag array when the DAR is
next used. As with the RAM-tag cache, the delay penalty is small if the
DAR hit/miss signal is folded into the precharged match comparator.

3.2 DAR coherence

The DARs must be kept coherent with the state of the cache. If a line
pointed to by a DAR is evicted, the DAR contents are no longer valid
and cannot be used in a tag-unchecked access. Lines may be evicted
either as a result of cache line replacement, or by external invalidate
requests to maintain cache coherence with other processors or DMA
I/O traffic.

To maintain coherence, each DAR can be tagged with the address
of the cache line to which it points. On any eviction, the DAR tags are
searched associatively and matching DARs are invalidated. The next
use of an invalid DAR will cause a regular tag-checked access (which
will usually miss). The DAR address tags need hold only a portion of
the entire address allowing only a partial compare against the victim
address, trading off some additional spurious invalidations for reduced
complexity. In the extreme case, the DAR tags can be omitted with all
DARs invalidated on any eviction.

The validity of the DARs can be checked right after the instruction
decode of a tag-unchecked access. If the register is not valid, the access
is converted into a regular tag-checked access early in the instruction
pipeline, well before reaching the memory access stage. This avoids any
additional memory access latency for checking valid bits.

4 Compiler algorithms for using DARs

Direct addressing has been implemented in two compiler systems, a
SUIF-based C compiler and the FLEX Java native compiler. This sec-
tion describes compiler algorithms common to both systems.

Both compilers use the same two step approach to eliminate tag
checks with direct addressing. First, find two references, one of which
dominates the other, so all paths that cause the subordinate access to
be executed cause the dominant reference to be executed first. Second,
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prove that the two references always point to the same cache line. The
second reference can then skip the tag check, by having the dominant
reference write a DAR that the subordinate reference reads. Any other
code between the two references, including assignments, control flow,
or even function calls, can not affect correctness because hardware will
invalidate DARs that point to lines that get evicted between the defi-
nition and the use of a DAR (as discussed in Section 3.2 above).

Both compilers control the stack pointer, ensuring it remains aligned
to a cache boundary to simplify the determination of when two stack
variables are on the same cache line. This allows easy transformation of
function entry/exit code (as in Figure 4), spill code, parameter passing
code, and access to automatic variables. The C and Java compilers
use different methods to determine if two references to non-stack data
(heap and static data) are to the same cache line. These are discussed
in Sections 5.1 and 6.1 respectively.

4.1 DAR allocation

Each dominant reference with at least one subordinate reference to
the same cache line is marked as a candidate for a DAR. The DAR
allocation problem is an instance of the standard register allocation
problem — DAR candidates that are live at the the same program
point interfere and need to be allocated to different hardware DARs.
DAR allocation is simpler than processor register allocation because
DARs can not be spilled. Instead of spilling, a DAR is simply not
allocated to a problematic DAR candidate.

The metric of utility we use for allocation is the number of tag
checks eliminated by a certain DAR candidate minus the number of
tag checks eliminated by the DAR candidates with which it interferes.
This causes small, non-interfering ranges to get good coverage, and the
most important variables in regions of heavy DAR use are prioritized.

4.2 DARs and calling conventions

The compilers analyze one function at a time, and the DARs are caller
invalidated—at function exit, the compiler invalidates the DARs used in
the function. If a function has a DAR live (say da3), and it makes a func-
tion call, the called function might invalidate da3, forcing a tag check on
the use of that register. To reduce the impact of inter-procedural DAR
invalidates, we randomly permute the DAR numbers used by the allo-
cator. So one function might use registers in the order 7,2,3,6,0,5,1,4,
another in the order 5,1,0,7,2,6,4,3.
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Random permutation is much simpler than inter-procedural analy-
sis, and makes collisions between register numbers much less likely than
if every function used the same order. Interference is very low, and is
quantified for C programs in Table 2 and for Java programs in Table 3.

5 C compiler implementation

We employ alignment and distance analysis for C to determine if two
references are to the same cache line. This section first describes align-
ment and distance analysis in our C compiler, and then discusses the
results of our experiments.

5.1 Alignment analysis in C programs

Alignment analysis attempts to determine the address alignment of
each static memory reference relative to a cache line boundary. A value
of 24 would indicate that the associated memory reference always ac-
cesses an address that is 24 bytes offset from the start of the cache line.
A load or store instruction is considered aligned when its cache align-
ment is the same for each dynamic execution of the instruction. For
instance, a global scalar resides in a static memory location and there-
fore always occupies a set alignment within the cache. For the majority
of memory operations however, this will not be the case. Consider the
loop in Figure 5(a). Here, the store instruction will access sequential
cache locations in each loop iteration and is therefore unaligned.

In order to increase the percentage of aligned memory operations,
our compiler performs a series of alignment-increasing transformations.
One of the most important is loop unrolling. The code in Figure 5(b)
shows the original loop with unrolling. After unrolling the loop by a
factor consistent with the size of the cache line, we can guarantee that
each memory operation in the loop only accesses the cache with a cer-
tain alignment. This is the case in our example assuming that A is an
array of 64-bit data, and the cache line size is 32 bytes.

Since inner loops comprise the majority of dynamically executed
instructions, it is very important that we uncover as much alignment
information as possible from the body of an inner loop. Loop unrolling is
effective for array references when the array is a local or global variable.
However, if the array in Figure 5 is passed as an argument to the
enclosing function, then loop unrolling does not enable the analysis to
guarantee alignment for the memory references within the loop since
the base of the array is unknown. Even worse is the case when the base
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for (i=0; i<N; i++) { for (i=0; i<N; i++) {
A[i] = 0; if (&A[i]

} % line_size == 0)

break;

(a) A[i] = 0;

}
for(i=0; i<N; for (; i<N; i += 4) {

i += 4) { A[i + 0] = 0;

A[i + 0] = 0; A[i + 1] = 0;

A[i + 1] = 0; A[i + 2] = 0;

A[i + 2] = 0; A[i + 3] = 0;

A[i + 3] = 0; }
}
(b) (c)

Fig. 5. (a) A simple loop with a single memory reference. (b) After loop
unrolling. (c) A pre-loop inserted to guarantee alignment in the unrolled
loop body.

of the array is actually aligned differently for different invocations of
the function.

To overcome this limitation, our compiler inserts a pre-loop that
runs for a small number of iterations until the references within the loop
reach a known alignment. The code then jumps to an unrolled version of
the loop where the alignment of references within the unrolled body are
guaranteed (Figure 5(c)). Using this technique, the alignment analysis
can determine the alignment for the majority of dynamically executed
memory accesses. In order to limit the number of pre-loop iterations
that are executed, our compiler also uses profile-driven feedback to
determine the best conditions to begin execution of the unrolled loop.

One disadvantage of using loop unrolling to obtain alignment infor-
mation is that too much unrolling can increase I-cache pressure [11].
We did not measure the impact of this effect.

5.2 Distance analysis

Distance analysis attempts to determine the byte distance between the
addresses of two static memory references. The algorithm is imple-
mented as a dataflow analysis that operates on low-level address cal-
culations. If the difference between address calculations is a constant,
then we know the distance between the references.
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In the initial compiler passes, when array accesses are represented
at a high level, we tag them with their source array to aid in distance
analysis. We use this tag once the array access has been decomposed
into pointer manipulation. For accesses of the form A[i] and A[i + c],
our tagging allows us to compute the distance as c. This pattern occurs
very frequently in unrolled loops.

We deal with aliasing using local information. To be conservative,
we assume a pointer variable can point to any globally visible address.
So a DAR definition and use will not span a pointer store to a base
with a globally visible address.

Once we know the distance, we can use the alignment to determine
if two references are to the same cache line. We find the alignment of the
dominant reference relative to the cache line boundary and then find
the distance between the subordinate access and the dominant access.
Simple arithmetic indicates if the references are on the same cache line.
An important special case is when the distance is 0, in which case we
do not need to consult the alignment information.

5.3 C evaluation

We used the SUIF compiler [8] to output instrumented C code. It acts
like a C compiler with C as its target architecture. A disadvantage of
this approach is that the instrumented C code does not capture stack
references for function entry/exit, spill code and parameter passing.
This will tend to underestimate the benefit of direct addressing as stack
references provide many direct addressing opportunities, as quantified
below in the Java evaluation.

The instrumented code has loops unrolled and is augmented with
statistics gathering code. Every load and store in the program is an-
alyzed and converted into a function call to our model. We verify at
runtime that our static analysis was accurate.

5.4 C results

Figure 6 shows how many tag checks were eliminated for loads and
stores for the Mediabench programs. From the number of tag checks
eliminated, we computed the D-cache energy savings based on our ex-
tracted layout for the cache [15]. This model has tag search consuming
54% of a load and 43% of a store, broken down further into 10%/8%
(load/store) for address bus, 25%/40% for data access, and 11%/9%
for data bus.
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Fig. 6. Tag check elimination for Mediabench programs compiled by SUIF,
using 8 DARs. The lowest part of the bar is tag unchecked loads, then
unchecked stores. Over that are tag checked loads and stores. The num-
ber on top of each bar (unchk) is the percentage of tag checks eliminated.
The number under that (D$e sav) is the percentage of dcache energy saved
by eliminating the checks.

The results vary widely, with over 76% of checks eliminated for
g721 decode (39.7% savings in data cache energy), down to 16.5% for
epic. Direct addressing saves some energy on every application and even
the small 8.7% energy savings on epic is likely to be larger than any
overhead direct addressing introduces.

One reason for the spread is that some codes are more difficult to
analyze, mostly due to pointer manipulation. One example is mpeg2 de-
code, for which the compiler was unsuccessful on the code as distributed
with Mediabench. The code had one key loop which was manually un-
rolled, with a key matrix traversed in column-major order. By making
four small edits to the source code to express the loop in a natural way,
and to traverse the matrix in row-major order (which is also better for
cache performance), the percentage of tag checks eliminated went from
6.2% to 37%.

Table 2 shows the data cache energy saved, and also the energy sav-
ing for the whole processor core including instruction and data caches.
The energy consumption of the data cache relative to the entire core is
highly dependent on the implementation. Our core design is highly opti-
mized for low-power, consuming 100–250pJ per instruction at 300MHz
in a 0.25µm technology (<100mW). For our design, we measured av-
erage data cache tag energy at 10% of the total core energy for Medi-
abench [15].
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Benchmark D$e− P+I 0off 8DAR f() r/w # inst # ld # st input
+De− lim

g721 de 39.7% 7.9% 11.6% 0.0% 0.0% 5.0 568719607 27155521 4567915 clinton.pcm
g721 en 39.6% 7.9% 12.0% 0.0% 0.0% 4.8 602714433 28470293 4557182 clinton.g721
untoast 37.1% 7.4% 2.7% 0.0% 0.0% 7.1 164673415 5211304 2741109 clinton.pcm
osdemo 33.1% 6.6% 6.0% 0.1% 0.2% 6.0 17768196 1005300 375520 out.ppm
mipmap 28.5% 5.7% 4.1% 0.0% 1.1% 5.6 50705063 3728696 1677708 out.ppm
toast 27.6% 5.5% 21.2% 28.0% 0.0% 11.6 325450576 33490458 4344146 clinton.gsm
unepic 22.3% 4.5% 40.8% 0.0% 0.0% 2.1 16471762 816031 676550 test image.E
peg en 22.2% 4.4% 61.4% 5.9% 0.0% 3.3 84217188 6191963 1415461 pgptest.plain
cjpeg 21.2% 4.2% 10.0% 1.9% 0.9% 5.9 35620933 2949426 758928 testimg.ppm
texgen 19.7% 3.9% 19.9% 2.1% 0.4% 2.2 146657184 9933559 3960265 out.ppm
peg de 19.2% 3.8% 72.3% 0.2% 0.4% 2.9 46589722 3508783 818128 pegwit.enc
mpeg2 de 19.2% 3.8% 3.5% 0.0% 0.0% 2.7 270350477 19967230 3440148 mei16v2.m2v
rasta 17.2% 3.4% 35.5% 2.7% 0.0% 2.6 30132991 2866589 802709 map weights.dat
pgp de 14.8% 3.0% 70.6% 2.9% 0.1% 1.8 16299047 905321 287437 pgptext.pgp
c audio 13.0% 2.6% 0.1% 0.0% 0.0% 13.7 18686936 443006 74056 clinton.pcm
d audio 12.5% 2.5% 0.1% 0.0% 0.0% 13.7 17259137 369246 147816 clinton.adpcm
djpeg 12.0% 2.4% 14.4% 0.6% 0.3% 3.0 8882489 755752 305428 testimage.jpg
pgp en 12.0% 2.4% 68.2% 2.0% 0.1% 1.8 28908438 1423749 428303 pgptest.plain
mpeg2 en 9.0% 1.8% 2.7% 0.0% 0.0% 5.6 3587002898 235379785 5349441 options.par
epic 8.7% 1.7% 24.7% 0.0% 0.0% 3.3 118204938 5971476 542458 test image.pgm
average 21.4% 4.3% 24.1%

Table 2. D$e− is the data cache energy saved from eliminating tag checks.
P+I+De− is the energy saved for the processor plus instruction and data
caches. 0off shows the percentage of tag unchecked accesses where the domi-
nant and subordinate accesses were to the same address. f() shows how many
tag checks happened as a result of function calls invalidating DARs. r/w gives
the ratio of DAR reads to DAR writes. # inst gives the number of SUIF in-
structions executed by the benchmarks, and ld/st give the number of loads
and stores.

The Table clearly shows the importance of offset information. While
the results vary across benchmarks, most of the benefit of the DARs is
not just from the program reusing the same location (0off column).

Our initial experiments indicated that 8 DARs captured most direct
addressing opportunities across a range of benchmarks. The 8DARlim
column shows how many more tag checks could be eliminated with an
unlimited number of DARs versus the 8 used for the rest of the results.
We compute this number by emitting liveness information for DAR
candidates and doing post-hoc optimal register allocation. Only toast
is able to soak up many more tag checks with more registers (it can
profitably use 44). Every benchmark could make use of at least two
DARs. Random permutation of register numbers makes the interfer-
ence of function calls very small, as seen in the f() column. Finally, we
see that each DAR value written is usually reused several times (r/w
column), sometimes over 13 times, but averaging around 2–3 times.
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6 Java implementation

Java bytecodes are normally interpreted directly or fed to a just-in-
time compiler, but instead we used the FLEX compiler to compile Java
bytecodes to MIPS assembly code. Java-to-native compilation is a good
alternative for low-power environments if Java’s dynamic loading ca-
pabilities are not usually needed, as the code can be highly optimized
for low energy consumption.

The FLEX implementation used the same dominance analysis and
DAR allocation algorithms as the SUIF implementation. The following
sections first describe how heap memory references are mapped onto
cache lines for Java programs, and then discuss the results of our ex-
periments.

6.1 Object identity in Java programs

Our approach to finding references to the same cache line is different in
Java than it was in C. Java’s type-safety and object-orientation means
there is additional pointer information available to the compiler.

All memory for Java objects comes from the system allocator. We
modify the memory allocator to ensure that small objects are never
split across cache lines and that larger objects are always aligned to the
start of a cache line. The compiler can then simply determine cache-line
equivalence based on object type and member field offset. This deter-
mination is performed on a very low-level representation just prior to
instruction selection, so even access to object header words (like the
class descriptor and hashcode) are visible to this “cache-line equiva-
lence” analysis. This modified allocation policy potentially introduces
fragmentation, which the allocator could deal with, e.g., by tracking
“holes” and filling them in with small objects.

This type-based analysis is very simple, but accounts for a large
number of eliminated tag checks in strongly object-oriented bench-
marks like jess or jack. For more traditionally coded benchmarks, such
as compress, there is need for further cache-line equivalence analysis of
indexed array operations.

As with the C implementation, loops are unrolled in Java to ex-
pose more direct addressing opportunities. The unrolling strategy in
Java is simpler: each loop which mentions an array is unrolled C/E
times, where C is the cache line length, and E is the element size of
the array with the smallest elements in the loop. This may over-unroll
some loops, but guarantees that almost all the direct addressing op-
portunities are exposed. If the first element accessed in the loop is not
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cache-line aligned, extra checks are placed within the unrolled loop to
catch cache-line boundary crossings.

To further expose direct addressing opportunities and improve per-
formance, the FLEX compiler inlines small final methods.

6.2 Java evaluation

FLEX outputs the MIPS instruction extensions for direct addressing
(Table 1). Due to the limited number of offset bits in the instruction
encoding, some loads (that use the global pointer) take one instruction
while some loads (to data that is further than 32KB from any register)
take two instructions. The GNU assembler was modified to accept these
instructions, and our extended MIPS ISA simulator models the state
of the DARs (with dynamic correctness checks of DAR use). The Java
runtime is written in C, and was compiled with gcc 2.7.2 with a MIPS
target. The runtime is linked with the assembled Java code to give a
MIPS binary that is run on the simulator.

The Java garbage collector was disabled for all runs. The collector,
like the runtime, is written in C. The collector moves large amounts
of data in memory with exact knowledge of object size and alignment,
and so we expect that it could make heavy use of direct addressing.
Modifying the collector was beyond the scope of these experiments,
but including the modified collector should only improve the relative
benefits of direct addressing.

Instead of modifying the system memory allocator to ensure cache
alignment of heap data, we instead used conventional malloc and mod-
ified our checking code to ensure that all references are to the same
32-byte block of memory regardless of alignment.

6.3 Java results

Table 3 shows the percentage of tag checks eliminated for Java
SPECjvm98 programs. Unlike our C evaluation, we ran each Java bi-
nary on the detailed energy simulator [15] to get exact energy dissipa-
tion numbers (except for mpegaudio which ran for too long and was
estimated at 10%, as with the C benchmarks). Data cache tag check
energy consumption was computed to be almost exactly 10% for ev-
ery benchmark except raytrace, which has many memory accesses, and
dissipates 13% of its energy in data cache tag checks.

The nSP column shows how many of our eliminated tag checks are
to non-stack memory accesses. Most of the stack accesses are function
entry/exit, and these are easy for the compiler to transform. The data
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Benchmark ntag D$e− Te− nSP 0off f()

jess 62.8% 31.0% 6.2% 12.6% 2.0% 1.3%

jack 58.2% 28.0% 6.1% 43.3% 15.9% 0.4%

raytrace 56.7% 27.6% 7.6% 4.7% 0.6% 0.1%

compress 53.4% 26.3% 5.5% 26.4% 4.8% 1.2%

db 51.8% 25.7% 5.5% 5.2% 2.1% 1.6%

mpegaudio 18.0% 9.3% 1.8% 50.3% 25.2% 1.2%
Table 3. All benchmarks were run with -s10, which is the middle sized spec
input. ntag is the number of data cache tag accesses eliminated. D$e− is the
data cache energy saved from these eliminated tag checks. Te− is the energy
saved for the processor plus instruction and data cache. nSP is the percentage
of memory references that were tag unchecked, but did not reference the
stack. 0off is the percentage of tag checks eliminated whose dominant and
subordinate reference were to the exact same address. f() is the percentage
of tag checks caused by having a function call invalidate a live DAR.
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Fig. 7. Tag check elimination for SPECjvm98 programs compiled by FLEX
using eight DARs.

for Java shows that stack references are about half (46–79%) of all
memory references for SPECjvm98, and our analysis eliminates 67–
82% of tag checks for these references. This gives an indication of the
expected improvement if stack accesses were included in the SUIF C
evaluation.
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Table 3, like Table 2, shows the necessity of offset information. The
number of zero offset references (where the dominant and subordinate
access are to the same location) is lower in Java than in C because much
of the tag check elimination comes from stack accesses on function entry
and exit. These accesses load or store registers to sequential locations
on the stack.

The f() column is the percentage of accesses that have to be tag
checked because a function call between a DAR definition and use in-
validated the DAR. As with our C benchmarks, random permutation
of DAR numbers keeps this interference low.

Finally in Table 4, the mSP column shows that by ignoring spill
code and parameter accesses, we are not missing a major opportunity.
The generally low numbers indicate that the register allocator is not
doing excessive spilling.

Mpegaudio sticks out because there is excessive spilling in this
benchmark. Transforming the spill code to use direct addressing would
get us a large part of the 52.0% of stack references which are not being
analyzed. This would bring mpegaudio into the 50–60% tag elimination
range of the other applications.

In order to transform spill code, we would generalize our direct
register analysis and allocation to work on the post-register allocated
version of the program (all the needed information is still available in
FLEX).

Benchmark Jinst Jrefs JavaSP RunSP mSP # inst # ld # st
jess 44.6% 45.9% 66.2% 59.1% 0.5% 386362871 74217394 38927873
jack 60.0% 51.6% 45.2% 55.1% 4.4% 742795569 97902751 83399493
raytrace 19.1% 12.8% 79.7% 26.2% 6.9% 711506624 121545307 87011062
compress 99.7% 99.5% 49.3% 11.4% 1.8% 1995067192 318765365 182481314
db 63.7% 49.2% 53.9% 55.2% 0.2% 229082873 36830775 17634446
mpegaudio 7.9% 4.6% 62.9% 24.4% 52.0% 3798725510 860533959 164886641

Table 4. All benchmarks were run with -s10, which is the middle sized spec
input. Jinst is the percentage of instructions executed in Java code. The
remainder executed in the runtime. Jrefs is the percentage of memory ref-
erences issued in Java. JavaSP is the percentage of Java memory references
that are to the stack. RunSP is the percentage of memory references made
to the stack by the Java runtime. mSP is the maximum possible contribu-
tion to the tag unchecked references if we converted every remaining stack
access–namely spill code and parameter access. # inst/ld/st are the num-
bers of instructions, loads and stores from the Java code, not including the
runtime.
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7 Comparison with hardware tag-check
elimination schemes

In this section, we compare our direct addressing scheme for eliminating
tag checks at compile time with dynamic hardware alternatives that are
invisible to software. One approach is for the hardware to remember
the tag of the last cache line that was accessed and to compare this
against the tag of the next memory access before enabling the tag
search [2]. The main disadvantage of this scheme is that it adds a wide
tag compare into the critical path of every cache access, adding several
gate delays to this latency-sensitive path. A variant of this scheme is to
remember the last line accessed within each cache subbank, and only
power up cache tags if a different line is accessed within each subbank.

Table 5 compares results for the C and Java benchmarks using these
two schemes. Using 8 DARs usually removes more tag checks than a
hardware single last line buffer without the additional access latency,
although with pgp the hardware scheme is significantly better. The
hardware and software techniques can be combined, with the last line
buffer used in cases where the DARs were not specified or unsuccessful.
In this case, accesses will incur the additional cache access latency of the
hardware scheme. The results in the fourth column of Table 5 show that
combining the techniques usually does better than using each alone,
indicating that they are capturing different types of cache line reuse.

The fifth column in Table 5 shows the results for the per-subbank
last line buffer (16 subbanks). This removes many more tag checks than
the previous schemes, but requires an extra tag comparator in each
subbank and incurs the additional memory access latency. Finally, the
sixth column shows the effect of adding 8 DARs to the per-subbank last
line buffers. Here, there is little additional benefit (except for mipmap)
as the hardware scheme has captured most of the available cache line
reference locality.

The results for the Java benchmarks are similar, with the hardware
last line scheme eliminating roughly the same number of tag checks
as the 8 DAR scheme, but with the additional memory access latency.
There is a smaller benefit to combining the hardware and software
schemes for the Java programs, because the DARs only give benefit to
the hardware schemes where the analysis was successful, as in jess and
jack. Again, the per-subbank last line scheme performs well, removing
80–90% of all tag checks.
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Program 8 DAR last ln last ln ll-sub ll-sub
+ 8 DAR + 8 DAR

C Benchmarks

g721 de 76.5% 73.5% 82.1 +08.6% 98.4% 98.4 +00.0%

g721 en 76.3% 73.2% 81.7 +08.5% 98.4% 98.4 +00.0%

untoast 75.0% 39.6% 82.3 +42.7% 97.3% 97.5 +00.2%

osdemo 65.7% 47.8% 75.6 +27.8% 86.4% 88.4 +02.0%

mipmap 57.2% 22.5% 64.6 +42.1% 60.1% 85.7 +25.6%

toast 52.9% 15.0% 87.7 +72.7% 91.4% 98.5 +07.1%

unepic 46.2% 57.0% 71.2 +14.2% 81.0% 83.9 +02.9%

peg en 43.2% 27.6% 46.6 +19.0% 65.5% 67.6 +02.1%

cjpeg 41.5% 17.5% 50.0 +32.5% 74.5% 79.6 +05.1%

texgen 39.3% 36.4% 56.2 +19.8% 78.4% 83.7 +05.3%

peg de 37.5% 19.4% 41.2 +21.8% 59.0% 62.0 +03.0%

mpeg2de 37.1% 7.7% 40.4 +32.7% 84.9% 86.1 +01.2%

rasta 33.7% 19.1% 43.9 +24.8% 81.0% 85.8 +04.8%

pgp de 29.2% 46.1% 57.2 +11.1% 89.8% 91.4 +01.6%

c audio 25.1% 0.1% 25.1 +25.0% 65.1% 68.8 +03.7%

d audio 25.1% 0.1% 25.1 +25.0% 58.1% 61.7 +03.6%

djpeg 24.0% 17.2% 30.5 +13.3% 64.5% 67.5 +03.0%

pgp en 23.6% 54.5% 67.6 +13.1% 95.4% 96.8 +01.4%

mpeg2en 16.8% 7.9% 22.1 +14.2% 88.7% 89.6 +00.9%

epic 16.5% 8.9% 19.1 +10.2% 70.7% 72.4 +01.7%

Java Benchmarks

jack 58.2% 54.6% 66.0 +11.4% 88.9% 90.7 +01.8%

raytrace 56.7% 66.9% 68.2 +01.3% 90.3% 90.7 +00.4%

compress 53.4% 54.8% 61.6 +06.8% 80.9% 82.3 +01.4%

jess 62.8% 58.2% 73.6 +15.4% 84.2% 87.7 +03.5%

db 51.8% 50.0% 62.5 +12.5% 81.2% 83.9 +02.7%

mpgaudio 18.0% 27.8% 36.5 +08.7% 81.4% 83.5 +02.1%

Table 5. Tag checks eliminated by 8 direct address registers (DARs), by
a last line hardware tag compare (last ln), by adding 8 DARs to a single
line buffer, by per-subbank last line buffers (ll-sub) with 16 subbanks, and
by adding 8 DARs to the subbank last line buffers. The hardware last line
schemes add the latency of an additional tag compare to all memory opera-
tions.
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8 Related work

The ARM instruction set includes load/store multiple instructions that
can be used to avoid tag checks for sequential accesses to the same
cache line [18]. These instructions are typically only used for procedure
call/return, whereas our model allows significantly greater flexibility.
For example, the results we presented for the C Mediabench code were
for non-stack accesses which are much less amenable to load/store mul-
tiple.

Some researchers [2, 14] have described hardware L0 caches designed
for low power access. These schemes have performance impacts, whereas
the direct addressing scheme does not affect performance. Direct ad-
dressing can also be combined with some of these hardware schemes to
save further power.

Other researchers [4, 9, 17] have developed software caching schemes
that use compile-time information to reduce software tag checks. Flex-
Cache [17] adds HotPage registers, which are similar to DARs except
they also hold a tag along with the direct address. They are used as
a small compiler-managed hardware tag array for a software associa-
tive cache. The HotPage-likely compiler analysis implements static soft-
ware way-prediction to index the likely HotPage register holding the
translation for a given memory access. The speculation is checked by
a hardware compare of the virtual address with the HotPage tag. The
authors mention that an additional optimization, HotPage-predictable
analysis [4], could avoid this tag check but do not include compiler al-
gorithms or results. In contrast, our work removes tag checks from a
hardware associative cache scheme with no performance penalty, and
our compiler analysis avoids tag checks by statically guaranteeing two
accesses are to the same line.

Fisher [12] and Ellis [3] were the first to use loop unrolling to im-
prove the alignment of memory references in a loop body. Their work
was done in the context of a clustered VLIW in which main memory
was divided among separate banks. Their architecture supported a fast
path to memory when data were located on a cluster’s local memory
bank. Alignment of memory operations was therefore an important fac-
tor in machine performance.

Barua et al. expanded on these ideas and introduced Modulo Un-
rolling [1]. This work introduced precise equations for determining the
unroll factors for loop nests. In Modulo Unrolling, outer loops may be
unrolled to create aligned references outside the inner loop. This work
was done in the conext of the RAW machine [5] in which processor
memory is distributed across processing tiles. As is the case with the
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clustered VLIW, access to a local bank is faster than access to a remote
bank.

9 Conclusions

Direct addressed caches provide a new hardware-software interface to
use energy of cache accesses. Direct addressing uses compile-time infor-
mation plus a minimal amount of hardware to remove data cache tag
checks, thus saving energy. Our implementations of direct addressing
in a C and Java compiler resulted in data cache energy savings from
9–40% for C and 9–31% for Java. In contrast to other cache energy
saving techniques, direct addressing does not change the performance
of the processor, it just reduces the amount of microarchitectural work
the processor performs.
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Abstract. GLS is a new distributed location service which
tracks mobile node locations. GLS combined with geographic
forwarding allows the construction of ad hoc mobile networks
that scale to a larger number of nodes than possible with pre-
vious work. GLS is decentralized and runs on the mobile nodes
themselves, requiring no fixed infrastructure. Each mobile node
periodically updates a small set of other nodes (its location
servers) with its current location. A node sends its position
updates to its location servers without knowing their actual
identities, assisted by a predefined ordering of node identifiers
and a predefined geographic hierarchy. Queries for a mobile
node’s location also use the predefined identifier ordering and
spatial hierarchy to find a location server for that node.

Experiments using the ns simulator for up to 600 mobile nodes
show that the storage and bandwidth requirements of GLS
grow slowly with the size of the network. Furthermore, GLS
tolerates node failures well: each failure has only a limited effect
and query performance degrades gracefully as nodes fail and
restart. The query performance of GLS is also relatively insen-
sitive to node speeds. Simple geographic forwarding combined
with GLS compares favorably with Dynamic Source Routing
(DSR): in larger networks (over 200 nodes) our approach de-
livers more packets, but consumes fewer network resources.
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1 Introduction

This paper considers the problem of routing in large ad hoc networks of
mobile hosts. Such networks are of interest because they do not require
any prior investment in fixed infrastructure. Instead, the network nodes
agree to relay each other’s packets toward their ultimate destinations,
and the nodes automatically form their own cooperative infrastructure.
We describe a system, Grid, that combines a cooperative infrastructure
with location information to implement routing in a large ad hoc net-
work. We analyze Grid’s location service (GLS), show that it is correct
and efficient, and present simulation results supporting our analysis.

It is possible to construct large networks of fixed nodes today.
Prominent examples include the telephone system and the Internet.
The cellular telephone network shows how these wired networks can be
extended to include large numbers of mobile nodes. However, these net-
works require a large up-front investment in fixed infrastructure before
they are useful—central offices, trunks, and local loops in the case of the
telephone system, radio towers for the cellular network. Furthermore,
upgrading these networks to meet increasing bandwidth requirements
has proven expensive and slow.

The fact that large fixed communication infrastructures already ex-
ist might seem to limit the usefulness of any competing approach. There
are, however, a number of situations in which ad hoc networks are de-
sirable. Users may be so sparse or dense that the appropriate level of
fixed infrastructure is not an economical investment. Sometimes fixed
infrastructure exists but cannot be relied upon, such as during disaster
recovery. Finally, existing services may not provide adequate service,
or may be too expensive.

Though ad hoc networks are attractive, they are more difficult to
implement than fixed networks. Fixed networks take advantage of their
static nature in two ways. First, they proactively distribute network
topology information among the nodes, and each node pre-computes
routes through that topology using relatively inexpensive algorithms.
Second, fixed networks embed routing hints in node addresses because
the complete topology of a large network is too unwieldy to process or
distribute globally. Neither of these techniques works well for networks
with mobile nodes because movement invalidates topology information
and permanent node addresses cannot include dynamic location infor-
mation. However, there is a topological assumption that works well for
radio-based ad hoc networks: nodes that are physically close are likely
to be close in the network topology; that is, they will be connected by
a small number of radio hops.



A Scalable Location Service for Geographic Ad Hoc Routing 47

Grid uses geographical forwarding to take advantage of the similar-
ity between physical and network proximity. A source must know the
geographical positions of any destination to which it wishes to send,
and must label packets for that destination with its position. An inter-
mediate node only needs to know its own position and the positions of
nearby nodes; that is enough information to relay each packet through
the neighbor that is geographically closest to the ultimate destination.
Although Grid forwards packets based purely upon local geographic
information, it is highly likely that packets are also approaching their
destination as measured by the number of remaining hops to the des-
tination. Because nodes only need local information, regardless of the
total network size, geographic forwarding is attractive for large-scale
networks.

However, to be useful in a larger context, a system based on geo-
graphic forwarding must also provide a mechanism for sources to learn
the positions of destinations. To preserve scalability, this location ser-
vice must allow queries and updates to be performed using only a hand-
ful of messages. Of course, the location service itself must operate using
only geographic forwarding. It should also be scalable in the following
senses:

1. No node should be a bottleneck—the work of maintaining the lo-
cation service should be spread evenly over the nodes.

2. The failure of a node should not affect the reachability of many
other nodes.

3. Queries for the locations of nearby hosts should be satisfied with
correspondingly local communication. This would also allow oper-
ation in the face of network partitions.

4. The per-node storage and communication cost of the location ser-
vice should grow as a small function of the total number of nodes.

The Grid location service (GLS) presented in this paper satisfies all
of these requirements.

The rest of the paper describes the design and simulated perfor-
mance of Grid. Section 2 reviews existing work in scalable ad hoc net-
working. Section 3 describes the characteristics of geographic forward-
ing. Section 4 describes Grid’s distributed location service algorithm.
Section 5 describes our implementation of geographic forwarding and
the GLS in detail. Section 6 analyzes Grid’s routing performance and
scalability using simulations. Section 7 suggests areas for future im-
provements. Section 8 summarizes the paper’s contributions.
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2 Related work

Most existing ad hoc routing systems distribute either topology infor-
mation or queries to all nodes in the network. Some, such as DSDV
[17], are proactive; they continuously maintain route entries for all des-
tinations. Other techniques are reactive, and construct routes to desti-
nations as they are required. This includes systems such as DSR [11],
AODV [16], and TORA[15]. Broch et al. [5] and Johansson et al. [10]
each provide overviews of these ad hoc routing techniques, along with
comparative measurements using small (30–50 node) simulations. Grid’s
main contribution compared to these works is increased scalability.

More closely related to Grid are protocols that use geographic po-
sitions. Finn’s Cartesian routing [8] addresses each node with a geo-
graphic location as well as a unique identifier. Packets are routed by
sending them to the neighbor closest to the packet’s ultimate destina-
tion. Dead ends are handled by scoped flooding. However, Finn gives no
detailed explanation of how node locations are found or how mobility
is handled.

More recent work on geographic approaches to routing includes the
DREAM [3] and LAR [14] systems. Both systems route packets ge-
ographically, in a manner similar to Finn’s Cartesian system. They
differ in how a node acquires the geographic position of a destination.
DREAM nodes proactively flood position updates over the whole net-
work, allowing other nodes to build complete position databases. LAR
nodes reactively flood position queries over the entire network when
they wish to find the position of a destination. Because they both in-
volve global flooding, neither system seems suited to large networks.

The Landmark system [18, 19] actively maintains a hierarchy to
provide routing in a changing network. Nodes in a Landmark network
have unique permanent IDs that are not directly useful for routing.
Each node also has a changeable Landmark address, which consists of
a list of IDs of nodes along the path from a well-known root to the
node’s current location. A Landmark address can be used directly for
routing, since it is similar to a source route. The Landmark system
provides a location service that maps IDs to current addresses. Each
node X sends updates containing its current Landmark address to a
node that acts as its address server, chosen by hashing X’s ID to pro-
duce a Landmark address A. If a node Y exists with that address, Y
acts as X’s location server. Otherwise the node with Landmark address
closest to A is used. Anyone looking for X can use the same algorithm
to find X’s location server, which can be queried to find X’s current
Landmark address. This combination of location servers and addresses
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that encode routing information is similar to the architecture described
in this paper. Grid, however, avoids building hierarchies, as they are
vulnerable to the movement of nodes near the top of the hierarchy.

3 Geographic forwarding

We use a simple scheme for geographic forwarding that is similar to
Cartesian routing [8]. Each node determines its own geographic posi-
tion using a mechanism such as GPS [2]; positions consist of latitude
and longitude. A node announces its presence, position, and velocity to
its neighbors (other nodes within radio range) by broadcasting periodic
HELLO packets. Each node maintains a table of its current neighbors’
identities and geographic positions. The header of a packet destined for
a particular node contains the destination’s identity as well as its geo-
graphic position. When node needs to forward a packet toward location
P, the node consults its neighbor table and chooses the neighbor closest
to P. It then forwards the packet to that neighbor, which itself applies
the same forwarding algorithm. The packet stops when it reaches the
destination.

A packet may also reach a node that does not know about any nodes
closer than itself to the ultimate destination. This dead-end indicates
that there is a “hole” in the geographic distribution of nodes. In that
case, the implementation described in this paper gives up and sends an
error message to the packet’s source node.

Recovering from dead-ends is possible using the same neighbor po-
sition table used in geographic forwarding. Karp and Kung propose
GPSR [13], a geographic routing system that uses a planar subgraph
of the wireless network’s graph to route around holes. They simulate
GPSR on mobile networks with 50–200 nodes, and show that it deliv-
ers more packets successfully with lower routing protocol overhead than
DSR on networks with more than 50 nodes. Bose et al. independently
demonstrate a loop-free method for routing packets around holes using
only information local to each node. The method works only for unit
graphs, in which two nodes can communicate directly in exactly the
cases in which they are within some fixed distance of each other.

3.1 Effect of density

Geographic forwarding works best when nodes are dense enough that
dead ends are not common. We present a simple evaluation of the ef-
fects of node density using the ns [7] network simulator. The simulated
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nodes have 2 Megabit per second IEEE 802.11 radios [6] with ranges
of about 250 meters; each node transmits HELLO messages at 2 sec-
ond intervals, and routing table entries expire after 4 seconds. Nodes
move continuously at 10 m/s; each node moves by selecting a random
destination, moving toward it, and selecting a new destination when
it reaches the old one. Each node sends packets to three destination
nodes selected at random; each conversation starts at a time selected
randomly over the 300 second life of the simulation. A conversation in-
volves sending 6 packets of 128 bytes each at quarter second intervals.
Senders know the correct geographic positions of destinations.

Figure 1 is the result of simulations over a range of node densities.
In each simulation, the nodes are placed at random in a 1 km2 square.
The graph reports the fraction of packets that were not delivered for
each node density. In this scenario, geographic forwarding works well for
more than 50 nodes per square kilometer. If 50 nodes are evenly placed
in a 1 km2 square, the inter-node spacing is 141 = 1000/

√
50 meters,

which is within radio range. More generally, the simulation results agree
with a mathematical analysis of random nodes distributed throughout
the unit square: one can prove that if the communication radius is r
and the number of points exceeds (6/r2) ln(6/r2) per km2, then dead
ends are extremely unlikely to occur.
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Fig. 1. Fraction of data packets unable to be delivered using geographic
forwarding with a perfect location service, as a function of node density. The
simulation area is 1 km2.
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4 The grid location service

Combining geographic forwarding with a mechanism for determining
the location of a node implements the traditional network layer: any
node can send packets to any other node. A trivial location service
might consist of a statically positioned location server. Nodes would
periodically update this server (using geographic forwarding to the
server’s well-known coordinates) with their current location. For a node
A to contact node B, A queries the location server for B’s current lo-
cation before using geographic forwarding to contact B.

Using a single location server has a number of problems. The cen-
tralized server is a single point of failure; it is unlikely to scale to a large
number of mobile nodes; it can not allow multiple network partitions to
each function normally in their own partition; and nodes near to each
other gain no advantages—they must contact a potentially distant lo-
cation server in order to communicate locally.

We introduce a distributed location service (GLS) that is designed
to address these problems. GLS is fault-tolerant; there is no dependence
on specially designated nodes. GLS scales to large numbers of nodes;
our goal is to provide a service that scales to at least the size of a large
metropolitan area. Finally, GLS operates effectively even for isolated
pockets of nodes. A node should be able to determine the location
of any node that it can reach with geographic forwarding. That is, a
location lookup should not involve nodes that are too far “out of the
way” of a straight line trip from the node performing the lookup to the
node being looked up.

GLS is based on the idea that a node maintains its current location
in a number of location servers distributed throughout the network.
These location servers are not specially designated; each node acts as a
location server on behalf of some other nodes. The location servers for
a node are relatively dense near the node but sparse farther from node;
this ensures that anyone near a destination can use a nearby location
server to find the destination, while also limiting the number of location
servers for each node. On the other hand long distance queries are
not disproportionally penalized: query path lengths are proportional to
data path lengths.

In order to spread uniformly the work of acting as location servers,
GLS avoids techniques such as leader election or hierarchy to determine
location server responsibility. These schemes place undue stress on the
nodes unlucky enough to be elected as a leader or placed at higher levels
in the hierarchy. Instead GLS allows a node X to select a set of location
servers that, probabilistically, is unlike the set of servers selected by
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other nodes and does not change drastically as nodes enter or leave the
network. Nodes searching for X are able to find X’s location servers
using no prior knowledge beyond node X’s ID. This is accomplished by
carrying out much the same protocol that X used to select its servers
in the first place.

Our approach draws its intuition from Consistent Hashing, a tech-
nique developed to support hierarchical caching of web pages [12]. To
avoid making a single node into the bottleneck of the hierarchical cache,
that paper used a hash function to build a distinct hierarchy for each
page, much as we use a distinct location service hierarchy for each tar-
get. Also like our paper, that paper used nested query radii to ensure
that queries for a given page did not go to caches much farther away
than the page itself.

GLS balances the location server work evenly across all the nodes
if there is a random distribution of node IDs across the network. GLS
ensures that nodes are allocated unique, random IDs by using a strong
hash function to obtain an ID from a node’s unique name. The name
could be any uniquely allocated name, such as Internet host names, IP
addresses, or MAC addresses. For purposes of discussing the GLS, a
node’s ID is more interesting than its original name, therefore when we
refer to a node A, we are referring to the node whose name hashes to
A.

4.1 Selecting and querying location servers

GLS provides for distributed location lookups by replicating the knowl-
edge of a node’s current location at a small subset of the network’s
nodes. This set of nodes is referred to as the node’s location servers. A
node A hoping to contact node B can query one of a number of other
nodes that know B’s location. Of course, A must be able to contact
the nodes that know B’s location. This means that A’s search for B’s
location servers and B’s original recruitment of location servers ought
to lead to the same servers. When B recruits location servers it uses
the same information that A will have when searching for B’s loca-
tion servers: B’s name and certain information that all nodes have at
startup.

At startup, all nodes know the same global partitioning of the world
into a hierarchy of grids with squares of increasing size, as shown in
Figure 2. The smallest square is referred to as an order-1 square. Four
order-1 squares make up an order-2 square, and so on. It is important
that not every square made up of four order-n squares is also an order-
(n + 1) square. Rather, to avoid overlap, a particular order-n square
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Fig. 2. A piece of the global partitioning of the world. A few example squares
of various orders are shown with dark shading. The lightly shaded square is
shown as an example of a 2x2 square which is not an order-2 square because
of its location. An order-n square’s lower left corner’s coordinates must be
of the form (a2n−1, b2n−1) for integers a,b.
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is part of only one order-(n + 1) square, not four. This maintains an
important invariant: a node is located in exactly one square of each
size. This system of increasing square sizes provides a context in which
a node selects fewer and fewer location servers at greater distances.
Our choice of a grid-based partition is somewhat arbitrary; any other
balanced hierarchical partition of the space can be used instead.

Consider how B determines which nodes to update with its changing
location, using its ID and the predetermined grid hierarchy. B knows
that other nodes will want to locate it, but that they will have little
knowledge beyond B’s ID. B’s strategy is to recruit nodes with IDs
“close” to its own ID to serve as its location servers. We define the
node closest to B in ID space to be the node with the least ID greater
than B. The ID space is considered to be circular, 2 is closer to 17 than
7 is to 17.

37

6

28

50

41

32

7

41

44

83

87

26

91 62

1

90

70

5

35

51

45

39

11

19

72

10

20

84
76

21

1243

55
98

81

6323

B: 172

61

14

31

38

Fig. 3. The inset squares are regions in which B will seek a location server.
The nodes that become B’s location servers are circled and shown in bold.

If we consider the tree corresponding to the grid decomposition, a
node selects location servers in each sibling of a square that contains
the node. The exact details of the selection are best understood with
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an example (see Figure 3). A node chooses three location servers for
each level of the grid hierarchy. For example, in the figure, B recruits
three servers in order-1 squares, three servers in order-2 squares, and
three servers in order-3 squares. In each of the three order-1 squares
that, along with B’s own order-1 square, make up an order-2 square,
B chooses the node closest to itself in ID space as a server. The same
location server selection process occurs in higher order squares. In the
three order-2 squares that combine with B’s order-2 square to make an
order-3 square, B selects 26, 31, and 43 as location servers.

Figure 4 shows the state of a Grid network once all nodes have
provided their coordinates to the nodes that will act as their location
servers. With the complete network state as reference, we can return
to the problem of how A finds the location of B.

To perform a location query, A sends a request (using geographic
forwarding) to the least node greater than or equal to B for which A
has location information. That node forwards the query in the same
way, and so on. Eventually, the query will reach a location server of
B which will foward the query to B itself. Since the query contains
A’s location, B can respond directly using geographic forwarding. The
location query is forwarded all the way to B so that B can respond
with its latest location.

For illustrative purposes we have ignored an important bootstrap-
ping issue. We have assumed that nodes select their location servers
appropriately and send their coordinates to them. This appears to as-
sume that a node can scan an entire square (of arbitrary size) and
choose the appropriate node to act as its server. In fact, nodes route
update packets to their location servers without knowing their identi-
ties. Assume that a node B wishes to recruit a location server in some
order-n square. B sends a packet, using geographic forwarding, to that
square. The first node L in the square that receives the packet begins a
location update process that closely resembles a query for B’s location;
but this update will actually carry the current location of B along with
it. As we will demonstrate below, the update will arrive at the least
node greater than B before leaving the order-n square containing L.
This is exactly the appropriate destination for the location update to
go to; the final destination node simply records B’s current location
and becomes a location server for B.

The only requirement for B to distribute its location to the appro-
priate server in an order-n square is that the nodes contained in the
square have already distributed their locations throughout that square.
If we imagine an entire Grid system being turned on at the same time,
order-1 squares would exchange information using the local routing
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protocol, then nodes could recruit their order-2 location servers, then
order-3, etc. Once the order-n location servers are operating, there is
sufficient routing capability to set up the order-(n +1) location servers.

4.2 Efficiency analysis
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Fig. 4. An entire network’s location server organization. Each node is shown
with the list of nodes for which it has up to date location information; B’s
location servers are shown in bold. Two possible queries by A for B’s location
are shown.

When nodes are not moving, the number of steps taken by a location
query from A to B is no more than the order of the smallest square in
which A and B are colocated. A location query step is distinct from
a single hop in the geographic forwarding layer; indeed, each location
query step is likely to require several geographic forwarding hops. In
Figure 4, the entire diagram is an order-4 square. Therefore all queries
can be performed in no more than four location query steps.

At each step, a query makes its way to the best (closest in ID
space to the destination) node at successively higher levels in the grid
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hierarchy. At the start, the query is forwarded to the best node in the
local order-1 square using the local routing protocol. From this point on,
each step moves the query to the best node in the next larger containing
square; when that next larger square contains the destination node, the
best node (closest to the destination ID) must be the destination itself.
Thus the query’s next step is to the destination. This behavior not only
limits the number of steps needed to satisfy a query, it also bounds the
geographic region in which the query will propagate. Because the query
proceeds into larger and larger squares that still contain the source, the
query will stay inside the smallest square containing the source and the
destination.

To understand why each step brings the query to the best node in
a larger square, we will first consider the query from node A (76) for
the address of B (17), shown starting in the lower right of Figure 4.
Our abbreviated topology has no more than one node per square, so
the query trivially begins at the best node, itself, in its order-1 square.
The query moves to the best node (21) in A’s order-2 square, because
76 happens to know the positions for all the nodes in its order-2 square.
This is an artifact of our sparse layout, so the next step tells the im-
portant story: why 21 knows the location of the best node in the next
higher order square.

Recall that 21 is the best node in its order-2 square. This guarantees
that no nodes in that square have IDs between 17 and 21. Now, consider
a node X somewhere in node 21’s order-3 square, but not in 21’s order-
2 square. Recall that X had to choose a location server in node 21’s
order-2 square. If X’s ID is between 17 and 21 then X must have
chosen node 21 as a location server since there are no better nodes in
node 21’s order-2 square. Thus, node 21 knows about all nodes in its
order-3 square that lie between 17 and itself, including the minimum
such node. In this case, that node is 20. At the next step, node 20 must
know about all nodes in the order-4 square between 17 and itself. Since
nodes 20 and 17 share the same order-4 square (the entire figure), node
20 knows about node 17, and the query is finished.

The above example demonstrates why node 21 knew node 20’s lo-
cation and was therefore able to move the query from the best node
in its order-2 square to the best node in its order-3 square. One may
wonder, however, why node 21 does not know about some other node
whose ID is between 17 and 20, and which lies at a distant location.
This would be undesirable as node 21 would then forward the packet
far away simply because, for example, it might know the location of
node 19. But this cannot happen because node 20 acts as a shield for
node 21 during location server selection. That is, for any node outside
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of the lower right quadrant of figure 4, node 21 is guaranteed not to be
the best choice for location server; node 20 will always be preferable.
In addition, because every location query is labelled with its source,
intermediate query steps know what level of the hierarchy the query is
currently in, and can refrain from sending queries too far away.

Having built an intuition, we now give an inductive proof that a
query needs no more than n location query steps to reach its des-
tination when the source and destination are colocated in an order-
n square. Furthermore, the query never leaves the order-n square in
which it starts. We assume, without loss of generality, that the destina-
tion node’s ID is 0. We then proceed inductively to prove the following
equivalent claim: in n or fewer location query steps, a query reaches the
node with the lowest ID (i.e closest to 0) in the order-n square contain-
ing the source. Since the destination is node 0, when the query reaches
the order-n square that contains both the source and the destination
nodes, it must reach the destination.

Base case (order-1 square): The query begins at a node X. Node X
may or may not be the node with the lowest ID in its order-1 square.
If so, the query trivially reaches the lowest node in the order-1 square
after zero location query steps. If X is not the node with the lowest ID,
then X will know the location of the node with the lowest ID in the
order-1 square, Y, through the local routing protocol. Node X will not
know of any other nodes with IDs lower than Y. Any such node would
not have selected X as a location server as Y would always have been
the better choice. Therefore the lowest node that X is aware of is Y
and the query will be forwarded there in one location query step.

Inductive step (order-(n +1) square): We claim that if a query is at
the node X with the lowest ID in its order-n square, then X will route
the query to the node Y with the lowest ID in its order-(n + 1) square
with one or zero location query steps. If X has the lowest node ID in the
order-(n+1) square, then our claim is trivially true. If not, X will know
the coordinates of Y and will not know the coordinates of any node
lower than Y outside the order-(n + 1) square. Node X will know the
coordinates of Y because Y will have selected X as a location server.
Node Y must have selected a location server in X’s order-n square
because Y’s order-n square is a part of the same order-(n + 1) square
as X’s. Node Y must have selected X because X is the lowest node in
its square that is greater than Y. Node X will not know the location of
any node lower than Y outside of its order-(n+1) square because when
any such node sought a location server in X’s order-(n+1) square, Node
Y was the better choice. Therefore the lowest node that X is aware of
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is Y and the query will be forwarded there in one location query step.
�

It is important to remember however, that this proof applies only
to a static network. Additional techniques, described in Section 5, help
Grid to deal with the problems cereated by mobility. These sections de-
scribe Grid’s approach to keeping location servers up to date in the face
of node motion and Grid’s recovery techniques when, despite updates,
location information is found to be out of date.

5 Implementation

This section describes the details of the geographic forwarding and GLS
protocols.

5.1 Geographic forwarding

The geographic forwarding layer uses a two hop distance vector pro-
tocol. This helps alleviate holes in the topology and ensures that each
node knows the location of all nodes in its order-1 square. Each node
maintains a table of immediate neighbors as well as each neighbor’s
neighbors. Each entry in the table includes the node’s ID, location,
speed, and a timestamp. Each node periodically broadcasts a list of
all neighbors it can reach in one hop, using a HELLO message. When
a node receives a HELLO message, it updates its local routing table
with the HELLO message information. Using this protocol nodes may
learn about two hop neighbors—nodes that cannot be reached directly,
but can be reached in two hops via the neighbor that sent the HELLO
message. The routing table is also updated every time a node receives
a packet, using the packet’s last hop information.

Each entry in the neighbor table expires after a fixed timeout. How-
ever, when an entry expires, the node estimates the neighbor’s current
position using its recorded speed. If it would likely still be in range,
the entry may still be used for forwarding, but it is not reported as a
neighbor in further HELLO messages. This special treatment is justi-
fied by two properties of the 802.11 MAC layer. First, broadcast packets
are more likely to be lost in the face of congestion than unicast pack-
ets. Thus it is not unusual to miss HELLO messages from a node that
is still nearby. Second, unicast transmissions are acknowledged. If the
neighbor has actually moved away, the transmitting node will be no-
tified when it attempts to forward packets through the missing node.
The invalid neighbor entry is then removed immediately and a new
forwarding path is chosen.
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HELLO

Source ID

Source location

Source speed

Neighbor list: IDs and locations

Forwarding pointers

Fig. 5. HELLO packet fields.

To select a next hop, nodes first choose a set of nodes from all nodes
in their neighbor table. This set consists of the best nodes to move the
packet to, as defined by the shortest distance to the destination from
the candidate nodes. All nodes whose distances to the destination are
nearly equal are considered in this set. Call this set B . If B contains any
single-hop neighbors, remove double-hop neighbors from B . A node,
X, is then chosen at random from B . If X is a single-hop neighbor,
the packet is forwarded to X, otherwise, since X may be reachable
from any number of single hop neighbors, the best such neighbor is
chosen and the packet is forwarded to that node. If the transmission
fails, the chosen node is removed from consideration and the packet is
reprocessed, starting with the original B (with X removed if it was a
single-hop neighbor).

5.2 Updating location information

GLS maintains two tables in each node. The location table holds the
node’s portion of the distributed location database; each entry consists
of a node ID and that node’s geographic location. The location cache
holds location information that the node learns by looking at update
packets it forwards. A node only uses the cache when originating data
packets. Because each node uses the neighbor table maintained by the
geographic forwarding layer to learn about other nodes in its order-1
square, the node does not need to send normal GLS updates within its
order-1 square.

As a node moves, it must update its location servers. Nodes avoid
generating excessive amounts of update traffic by linking their location
update rates to their distance traveled. A node updates its order-2
location servers every time it moves a particular threshold distance d
since sending the last update; the node updates its order-3 servers after
each movement of 2d . In general, a node updates its order-i servers after
each movement of 2i−2d . This means that a node sends out updates at
a rate proportional to its speed and that updates are sent to distant
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servers less often than to local servers. In addition, nodes send location
updates at a low rate even when stationary.

Location update packets (see Figure 6) include a timeout value that
corresponds to the periodic update interval, allowing the servers to in-
validate entries shortly after a new entry is expected. The time at which
the location update packet is generated is also included in the update
packet so that the freshness of location information obtained from dif-
ferent nodes for the same destination can be compared. GPS receivers
can provide every node in the network with closely synchronized time.

LOCATION UPDATE

Source ID

Source location

Source timestamp

Update destination square

Update timeout

Next location server’s ID

Next location server’s location

Fig. 6. GLS update packet fields.

When forwarding an update, a node adds the update’s contents to
its location cache. The node associates a relatively short timeout value
with the cached entries regardless of the recommended timeout value
carried in the update packet.

Nodes piggyback their location information on data packets, so that
two nodes who are communicating always know how to reach each
other. In the case of one-way communication, nodes also periodically
send their position information directly to nodes who are sending them
data.

5.3 Performing queries

When a node S originates a data packet for destination D, it first
checks its location cache and location table to find D’s location. If it
finds an entry for D, it sends the packet to D’s recorded location using
geographic forwarding. Otherwise, S initiates a location query for D
using the GLS. GLS will eventually deliver the query packet (Figure 7)
to D, which will geographically route a response to S that includes D’s
current location.

If S had to initiate a GLS query, it stores the data packet in a
send buffer while it waits for the reply from D. Node S reinitiates the
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query periodically if it gets no reply, using binary exponential backoff
to increase the timeout intervals.

LOCATION QUERY

Source ID

Source location

Ultimate target ID

Next location server’s ID

Next location server’s location

Timestamp from previous server’s database

Fig. 7. GLS query packet fields.

5.4 Location query failures

A location query may fail for two reasons. First, a node may receive
a query packet for D, and not know the location of any node with an
ID closer to D than itself. This type of failure is relatively uncommon.
It occurs when a location server has not recently received a location
update for a node it should know about. Because the server has timed
out the node’s previous update, it has no way to forward the query
packet. There are ways to alleviate these failures, such as using stale
location data in a last ditch effort to forward a query packet if the query
would otherwise fail. The second type of query failure occurs when a
location server forwards a packet to the next closest node’s square, but
the node is no longer in that square (that is, the location information at
the previous location server is out of date). Because this failure mode is
more common, Grid contains a specialized mechanism to alleviate the
problem.

Consider a node D that has recently moved from the order-1 square
s1 to the order-1 square s2. Node D’s location servers, particularly those
that are far away, will think that D is in s1 until D’s next updates reach
them. To cope with this, D leaves a “forwarding pointer” in s1 indicat-
ing that it has moved to s2. When a packet arrives in s1 for D, it can
be correctly sent on by following the forwarding pointer. D broadcasts
its forwarding pointer to all nodes in s1 when leaving. Conceptually,
we can think of the forwarding pointers as being located in the square
s1 rather than at any particular node. Therefore, all nodes that move
into s1 should pick up the forwarding pointers associated with s1, and
when nodes leave s1, they should forget the corresponding forwarding
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pointers. To propagate forwarding pointers to all nodes in the order-1
square and keep all newcomers to the square updated, a randomly cho-
sen subset of the forwarding pointers stored at a node (up to five in
our simulation implementation) is piggybacked on the node’s periodic
HELLO messages. Upon hearing a HELLO message, a node adds each
forwarding pointer in that message to its own collection of forward-
ing pointers, but only if the pointer’s original broadcaster was in the
same square as the node. In this way, forwarding pointer information
is effectively and efficiently spread to every node in the square. With
this propagation mechanism, even if all the nodes that originally re-
ceived D’s forwarding pointer were to leave the square themselves, the
information would still be available in the square.

6 Performance analysis

This section presents simulation results for GLS that show how well it
scales. Good scaling means that the amount of work each node performs
does not rise quickly as a function of the total number of nodes. We
use two metrics for work: the number of location database entries each
node must store, and the number of protocol packets each node must
originate or forward in order to route a given workload. The simulations
show that these costs scale well with the number of nodes.

Mobility increases the work required in two ways. First, a node that
moves must update its location servers. Second, if a node has moved
recently, some nodes may retain out-of-date location information for
it; this will cause queries for the moved node to travel farther than
necessary, or to fail and need to be resent. Handling mobility requires
a tradeoff between the bandwidth used by location updates and the
bandwidth available for data. If a moving node sends updates aggres-
sively, other nodes are more likely to be able to find it. However, the
updates consume bandwidth in competition with data. Worse, a very
aggressive update policy may cause enough congestion that updates
themselves are dropped. At the other extreme, a node could send up-
dates infrequently even when moving quickly, increasing the amount of
bandwidth available to data. However, that bandwidth is not useful if
the success rate of location query becomes low because of inaccurate
location information. The simulations show that Grid can achieve a
reasonable tradeoff for the choice of update rate.
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6.1 Simulation scenario

The simulations use CMU’s wireless extensions [9] for the ns [7] simu-
lator. The nodes use the IEEE 802.11 radio and MAC model provided
by the CMU extensions; each radio’s range is approximately a disc with
a 250 meter radius. The simulations without data traffic use 1 Megabit
per second radios; the simulations with data traffic use 2 Megabits per
second radios. Each simulation runs for 300 simulated seconds. Each
data point presented is an average of five simulation runs.

The nodes are placed at uniformly random locations in a square
universe. The size of each simulation’s universe is chosen to maintain
an average node density of around 100 nodes per square kilometer.
One reason for this choice is that we intend the system to be used
over relatively large areas such as a campus or city, rather than in
concentrated locations such as a conference hall. Another reason is
that we expect any deployed system to use radios that allow the power
level to be decreased in areas with high node density. The GLS order-1
square is 250 meters on a side. For a network of 600 nodes, which is the
biggest simulation we have done, the grid hierarchy goes up to order-5
in a square universe 2900m on a side.

Each node moves using a “random waypoint” model [5]. The node
chooses a random destination and moves toward it with a constant
speed chosen uniformly between zero and a maximum speed (10 m/s
unless noted otherwise). When the node reaches the destination, it
chooses a new destination and begins moving toward it immediately.
These simulations do not involve a pause time.

6.2 GLS results

The results in this section involve only GLS (and geographic forward-
ing), without any data traffic. The default simulation parameters for
this section are an 802.11 radio bandwidth of 1 Megabit per second,
and a communication model in which each node initiates an average of
15 location queries to random destinations over the course of the 300
second simulation, starting at 30 seconds. The location update thresh-
old distance is an important parameter that may need to be tuned. For
this reason we present results for three values of the threshold: 100,
150, and 200 meters.

Figure 8 shows the success rate for GLS location queries, as a func-
tion of the total number of nodes. Queries are not retransmitted, so
a success means a success on the first try. As mentioned earlier, most
failures are due to either location information invalidated by node mo-
tion or nodes not being correctly updated because of delayed or lost
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Fig. 8. GLS query success rate as a function of the total number of nodes.
The nodes move at speeds up to 10 m/s (about 22 miles per hour). Each line
corresponds to a different movement update threshold.

location updates. The success rate for data sent after a successful query
would be much higher than indicated here because the endpoints of a
connection directly inform each other of their movements.

Figure 9 shows the average number of Grid protocol packets for-
warded and originated per second per node as a function of the to-
tal number of nodes. Grid generates three types of protocol packets:
HELLO packets that are generated every two seconds but not for-
warded, location update packets that are also periodic but require for-
warding, and location query and reply packets that also require for-
warding. As location updates are generated by nodes as they move,
the results depend on node speeds; the simulated nodes move at speeds
uniformly distributed between 0 and 10 m/s. Figure 9 is generated from
the same simulations that produced Figure 8. The graph shows that
Grid imposes a modest protocol traffic load as the network size grows.

Figure 10 shows how the distance that query packets travel com-
pares with the actual distance in hops between the source and the
destination. We record the total number of geographical forwarding
hops (for all query steps) that each query takes, as well as how many
hops the reply takes. Since query replies are sent directly to the query
source using geographic forwarding, the reply return path indicates the
geographical forwarding hop distance between the source and destina-
tion. We averaged the query hop lengths for all queries with a given
response hop length. The graph shows that on average, query pack-
ets only travel about 6 hops more than the geographical forwarding
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Fig. 9. Average number of Grid protocol packets forwarded and originated
per second by each node as a function of the total number of nodes. Nodes
move at speeds up to 10 m/s.
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Fig. 11. Average and maximum per-node location database size (number of
entries) as a function of the total number of nodes. The nodes move at speeds
up to 10 m/s.

route between nodes. Also, the distance traveled by a query between
two nodes is proportional to the actual distance between those nodes.
Our simulation agrees with a theoretical analysis that proves that with
a sufficiently dense uniform distribution, the number of hops traveled
by the query is proportional to the distance to the destination. The
simulation involves 300 nodes moving at speeds up to 10 m/s, with a
location update threshold of 200 meters.

Figure 11 shows the effect of the total number of nodes on the size
of each node’s GLS location table. The plots include both the average
and maximum location table size over all nodes. The spikes at 150
and 400 nodes occur because the simulated area does not exactly fill
a hierarchy, causing the database load to be distributed unevenly. At
these points, the maximum database size is larger because the squares
that extend across the edge of the simulated area contain relatively few
nodes; these nodes must store more than their fair share of location
database entries. On the other hand, the average table size grows very
slowly with the network size.

This highlights a problem that may arise in practice when nodes
are not uniformly distributed. A small number of nodes in a high-level
square may end up responsible for tracking the locations of a large
number of nodes in sibling squares. This would require large amounts
of space in these few nodes.

Figure 12 shows the effect of node movement speed on the GLS
query success rate, for 100 nodes. As nodes move faster, their location



68 Jinyang Li, John Jannotti, et al.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Q
ue

ry
 s

uc
ce

ss
 r

at
e

Maximum speed (m/s)

100
150
200

Fig. 12. GLS query success rate as a function of maximum node speed in a
network of 100 nodes. 50 m/s is about 110 mph.

servers are more likely to be out of date. On the other hand, the nodes
also generate updates faster. The net effect is that the query success
rate is relatively insensitive to node speed, however, the update traffic
grows as nodes move faster.

Figure 13 shows the effect of nodes turning on and off. Some nodes
are always on, while the rest alternate being on and off for intervals
uniformly distributed from 0 to 120 and 0 to 60 seconds, respectively.
As we are simulating node crashes, nodes do not do anything special
before turning off; they simply lose all their location table data. In
practice, if a node was manually turned off, it would be appropriate
to first redistribute its location table to get better performance. Each
point in the graph represents a simulation in which a different fraction
of nodes are always on. The simulations involve 100 nodes, each moving
with a maximum speed of 10 m/s. The statistics are limited to queries
addressed to nodes that are turned on; no queries are generated to
nodes that are off as these queries will always fail. When a node turns
off, a part of the distributed location database is lost; when a node
turns on, it will not be able to participate correctly in the update and
query protocol for a while. The graph shows that even a great deal of
instability does not have a disastrous effect, and that the query success
rate degrades gracefully as nodes turn on and off.
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Fig. 13. The effect of turning off nodes on the query success rate. The X
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Fig. 14. The fraction of data packets that are successfully delivered in sim-
ulations for increasing numbers of nodes. The nodes move with a maximum
speed of 10 m/s.

6.3 Data traffic

The simulations in this section measure Grid’s behavior when forward-
ing data traffic. The 802.11 radio bandwidth is 2 Megabits per second,
and the location update threshold distance is 200 meters. The data
traffic is generated by a number of constant bit rate connections equal
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to half the number of nodes. No node is a source in more than one con-
nection and no node is a destination in more than three connections.
For each connection four 128-byte data packets are sent per second for
20 seconds. Connections are initiated at random times between 30 and
280 seconds into the simulation. For purposes of comparison we include
results for the DSR [11] protocol. This may not be a fair comparison
since DSR is optimized for relatively small networks [4].

Figure 14 shows the fraction of data packets successfully delivered.
Most of the data packets that Grid fails to deliver are due to GLS
query failures; these packets never leave the source. Once Grid finds
the location of a destination, data losses are unlikely, since geographic
forwarding adapts well to the motion of intermediate nodes. Below 400
nodes, most of the DSR losses are due to broken source routes; at 400
nodes and above, losses are mainly due to flooding-induced congestion.
Grid does a better job than DSR over the whole range of numbers of
nodes, especially for large networks.

Figure 15 shows the message overhead of the Grid and DSR pro-
tocols. Only protocol packets are included. In the case of Grid, these
are HELLO, GLS update, and GLS query and reply packets. In the
case of DSR, these are route request, reply, cached reply packets etc.
DSR produces less protocol overhead for small networks, while Grid
produces less overhead for large networks. At 400 nodes and above,
DSR suffers from network congestion. Almost half of the route reply
and cache reply messages are dropped due to congestion which causes
DSR to inject even more route requests into the network. Also, as the
network grows larger and congestion builds up, the source route is more
vulnerable to failure which will also induce DSR source nodes to send
more route request packets. DSR’s overhead drops at 600 nodes because
it could not send much more packets in the presence of congestion. We
present overhead in terms of packets rather than bytes because medium
acquisition overhead dominates actual packet transmission in 802.11,
particularly for the small packets used by Grid.

7 Future work

One area of the GLS protocol that could be improved is the handling
of node mobility. Accurate movement models may allow us to integrate
movement prediction into the GLS protocol. Our current system makes
little effort to predict the movement of nodes over long time periods
because our movement model is randomized, but in the real world a
node may not need to update a location server as often if its velocity
is constant or predictable.
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Fig. 15. The number of all protocol packets forwarded per node per second
as a function of the total number of nodes. No data packets are included.
The nodes move with a maximum speed of 10 m/s.

Currently the GLS protocol makes little effort to proactively correct
out-of-date information when, for instance, a node crosses a grid bound-
ary line. Proactive updates may reduce the incidence of query failures.
However, the tradeoff is obvious—care must be taken not to consume
too much bandwidth with the updates. An alternate strategy to ad-
dress the same problem is to place less trust in locations obtained from
distant location servers. Rather than trust a distant location server to
pinpoint the order-1 square in which a node is located, a query could
be moved to, for instance, the surrounding order-3 square. There the
query can be restarted with the fresher information available in that
square

Another potential area of improvement is adapting to node den-
sity. If an order-1 square becomes too crowded, each node will get less
bandwidth from the shared radio spectrum, and each node will have to
work harder to keep its neighbor table up to date. Radios with variable
power levels would help alleviate this problem by changing the effec-
tive density of nodes within radio range. In addition, each square in the
GLS may make a local decision about how finely to sub-divide itself;
distant areas need not agree on the size of the order-1 square.

Finally, as we noted earlier, the choice of a grid based system is
somewhat arbitrary. In fact, certain partitioning schemes offer the pos-
sibility of better scaling. The number of location servers that a node
must recruit is equal to the number of neighbors per level in the geo-
graphic hierarchy multiplied by the number of levels in the hierarchy.
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For a grid based system, this means that a node must maintain 3 log4 n
servers in a network that is n times the size of the coverage area of a
single radio. It is possible, however, to split the world in half at each
level, rather than in fourths, by using rectangles with an aspect ratio of
1/

√
2. At successive levels, each such rectangle may be divided into two

such rectangles. This leads to a network in which nodes must recruit
only log2 n location servers, or 2/3 the number of servers needed in a
grid based approach.

8 Conclusions

Wireless technology has the potential to dramatically simplify the de-
ployment of data networks. For the most part this potential has not
been fulfilled: most wireless networks use costly wired infrastructure
for all but the final hop. Ad hoc networks can fulfill this potential
because they are easy to deploy: they require no infrastructure and
configure themselves automatically. But previous ad hoc techniques do
not usually scale well to large networks.

We have presented a mobile ad hoc networking protocol with sig-
nificantly better scaling properties than previous protocols. Although
somewhat complicated to understand, our protocol is very simple to
implement. In many ways the two facets of our system, geographic
forwarding and the GLS, operate in fundamentally similar ways. Geo-
graphic forwarding moves packets along paths that bring them closer
to the destination in physical space, only reasoning about nodes with
nearby locations at each step along the path. GLS moves packets along
paths that bring them closer to the destination in ID space, using only
information about nodes with nearby IDs at each step along the path.
Both mechanisms are scalable because they only need local information
in their respective spaces.
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Abstract. This paper presents a formal design for a novel
group multicast service that provides virtually synchronous
semantics in asynchronous fault-prone environments. The de-
sign employs a client-server architecture in which group mem-
bership is maintained not by every process but only by dedi-
cated membership servers, while virtually synchronous group
multicast is implemented by service end-points running at the
clients. Specifically, the paper defines service semantics for the
client-server interface, that is, for the group membership ser-
vice. The paper then specifies virtually synchronous semantics
for the new group multicast service, as a collection of commonly
used safety and liveness properties. Finally, the paper presents
new algorithms that use the defined group membership service
to implement the specified properties. The algorithm that pro-
vides the complete virtually synchronous semantics executes
in a single message round in parallel with the membership ser-
vice’s agreement on views, and is therefore more efficient than
previously suggested algorithms providing such semantics.

1 Introduction

Group communication systems are powerful building blocks that facil-
itate the development of fault-tolerant distributed applications (see [1,
20, 5] for discussion of the utility of group communication systems).
Group communication provides the notion of group abstraction, which
allows processes to be easily organized in multicast groups. Group com-
munication systems typically integrate two types of services: group
membership and reliable group multicast. The membership service main-
tains a listing of the currently active and connected group members and
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delivers this information to its clients whenever it changes. The output
of the membership service is called a view. Reliable multicast services
that deliver messages to the current view members complement the
membership service. In this paper, we present a novel group multicast
service.

Group communication systems usually run in asynchronous fault-
prone environments. In such environments, group communication sys-
tems generally provide some variant of virtual synchrony semantics
which synchronize membership notifications with regular messages and
thus simulate a “benign” world in which message delivery is reliable
within the set of connected processes. Such semantics are especially
useful for constructing fault-tolerant applications that maintain con-
sistent replicated state of some sort (e.g., [7, 15]). The key aspect of
virtual synchrony is the semantics of interleaving of message send and
delivery events with view delivery events. In order to reason about this
interleaving, we associate message send and delivery events with views:
we say that an event e occurs at a process p in view v if v was the last
view delivered to p before e, or a default initial view vp if no such view
was delivered.

Many variants of virtual synchrony semantics have been suggested
(e.g., [17, 8, 20, 18, 7]). A key property specified by nearly all of these
(e.g., [17, 8, 20, 18]) is that processes moving together from a view
v to another view v′ deliver the same messages in v. This property
allows applications to avoid costly re-synchronization following certain
view changes. Our service specification includes this property, as well
as several additional safety and liveness properties. We present our
specifications in Section 4.

During the period in which the group communication service is
attempting to reach agreement on a view, processes may attempt to
join/re-join. In such cases, previously suggested virtual synchrony al-
gorithms, e.g., [8, 18], can have the current invocation of the mem-
bership and virtual synchrony proceed to termination without adding
the joining processes, and then immediately start an attempt to add
them. This strategy results in overhead (e.g., increased network load)
because applications react to such outdated views just as they do to any
other view, e.g., by re-synchronizing with the new members. Moreover,
this strategy precludes situations when applications may rely on vir-
tual synchrony to avoid the costly re-synchronizations all together. For
example, consider a transient failure when a process p is unsuspected
right after an attempt to remove p from the membership has started.
Existing algorithms typically deliver a view excluding p and then re-
invoke the algorithm to allow p to re-join. Since p does not move into
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the resulting view from the same view as the rest of the processes, these
processes cannot rely on the key property of virtual synchrony to avoid
re-synchronizing with p. In contrast, our algorithm never delivers views
that reflect a membership that is already known to be out of date.

Traditionally, virtual synchrony semantics were implemented by al-
gorithms that were integrated with group membership algorithms (e.g.,
in [8, 9, 2]). In contrast, our group multicast service is designed for a
client-server architecture in which a small set of dedicated membership
servers maintains client membership information (i.e., which clients are
members of which group). This architecture was designed to provide
scalable membership services in wide area networks (cf. [3]). Our vir-
tual synchrony algorithm acts as the client of an external membership
service.

Introducing the client-server design poses a major challenge: One
has to define an interface by which a membership server interacts with
its clients, in a way that would allow for simple and efficient implemen-
tations of both group membership (by the membership servers), and
virtual synchrony (by service end-points at the clients). Such an inter-
face has to provide sufficient level of synchronization to allow the virtual
synchrony algorithm to reach agreement upon the set of messages deliv-
ered in the old view in parallel with the servers’ agreement on views. At
the same time, the virtual synchrony algorithm should avoid imposing
limitations on the membership’s choice of views (as explained above).
In addition, one has to try to minimize the communication overhead
induced by the client-server interaction.

We have designed an interface that addresses the challenges above.
Our interface consists of two types of messages sent from membership
servers to their clients: When a server engages in a view change, it
sends its clients a start change message. Each start change message
contains a locally unique identifier. This identifier is not globally agreed
upon: start change messages sent to different processes can contain
different identifiers. Once the server agrees upon the new view with the
other servers, it sends a view message to its clients. The view contains
information that maps clients to the last start change identifiers they
received before receiving this view. A similar view structure is suggested
in [18], for the purpose of not having concurrent views intersect. The
servers do not need to hear from their clients in order to complete the
algorithm.

Our interface allows for straightforward and efficient implementa-
tions of both membership and virtual synchrony. The algorithm we
present in Section 5 exploits this interface to achieve virtual synchrony
in a single round. We have implemented this algorithm (in C++) us-
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ing the scalable one-round membership algorithm of [11]. The virtual
synchrony round and the membership round are conducted in parallel:
once the end-points receive the start change notifications, they send
each other special synchronization messages which allow them to agree
upon the set of messages to be delivered before moving to the new
view. We are not aware of any other algorithm that implements virtual
synchrony in one communication round without pre-agreement upon
a globally unique identifier while also not imposing restrictions on the
membership’s choice of the next view.

Throughout this paper we use the I/O automaton formalism (cf. [16],
Ch. 8) to provide rigorous specifications and algorithm descriptions.
Previously suggested I/O automaton-style specifications of group com-
munication systems (e.g., [7, 10]) used a single abstract automaton to
represent multiple properties of the same system component and pre-
sented a single algorithm automaton that implements all of these prop-
erties. Thus, no means were provided for reasoning about a subset of
the properties, and it was often difficult to follow which part of the
algorithm implements which part of the specification. We address this
shortcoming by specifying separate properties as separate abstract au-
tomata, and by incrementally constructing the algorithm that imple-
ments them – in each step adding support for an additional property
– using a novel inheritance-based construct, recently introduced to the
I/O automaton model [14, 13]. This paper informally argues the algo-
rithm’s correctness; a formal correctness proof by simulation is included
in the full paper [12].

2 Formal model and notation

In the I/O automaton model (cf. [16], Ch. 8), a system component
is described as a state-machine, called an I/O automaton. The transi-
tions of this state-machine are associated with named actions, which
are classified as either input, output, or internal. Input and output ac-
tions model the component’s interaction with other components, while
internal actions are externally-unobservable.

Formally, an I/O automaton is defined as the following five-tuple: a
signature (input, output and internal actions), a set of states, a set of
start states, a state-transition relation (a cross-product between states,
actions, and states), and a partition of output and internal actions into
tasks. Tasks are used for defining fairness conditions.

An action π is said to be enabled in a state s if the automaton has
a transition of the form (s, π, s′); input actions are enabled in every
state. An execution of an automaton is an alternating sequence of states
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and actions that begins with its start state and in which every action
is enabled in the preceding state. An infinite execution is fair if, for
each task, it either contains infinitely many actions from this task or
infinitely many occurrences of states in which no action from this task
is enabled; a finite execution is fair if no action is enabled in its final
state. A trace is a subsequence of an execution consisting solely of the
automaton’s external actions. A fair trace is a trace of a fair execution.

When reasoning about an automaton, we are only interested in its
externally-observable behavior as reflected in its traces. There are two
types of trace properties: safety and liveness. Safety properties usually
specify that some particular bad thing never happens. In this paper we
specify safety properties using centralized (global) I/O automata that
generate the legal sets of traces; for such automata we do not specify
task partitions. Each external action in such a centralized automaton
is tagged with a subscript which denotes the process at which this
action occurs. An algorithm automaton satisfies a specification if all
of its traces are also traces of the specification automaton. Liveness
properties usually specify that some good thing eventually happens. An
implementation automaton satisfies a liveness property if the property
holds in all of its fair traces.

The composition operation defines how automata interact via their
input and output actions: It matches output and input actions with
the same name in different component automata; when a component
automaton performs a step involving an output action, so do all com-
ponents that have this action as an input one. When reasoning about
a certain system component, we compose it with abstract specification
automata that specify the behavior of its environment.

I/O automata are conveniently presented using the precondition-
effect style: In this style, typed state variables with initial values specify
the set of states and the start states. A variable type is a set (if S is a set,
the notation S⊥ refers to the set S ∪ {⊥}). Transitions are grouped by
action name, and are specified as a list of triples consisting of an action
name (possibly with parameters), a pre : block with preconditions on
the states in which the action is enabled, and an eff : block which
specifies how the pre-state is modified atomically to yield the post-
state.

We use a novel inheritance-based formal concept, recently intro-
duced into the I/O automaton model [14, 13]. A child automaton is
specified as a modification of the parent automaton’s code. When pre-
senting a child we first specify a signature extension which consists
of new actions (labeled new) and modified actions (a modified action
is labeled with the name of the action which it modifies as follows:
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Connection-Oriented Reliable FIFO Multicast Service

Group Membership Service

GCS End-pointGCS End-point

Application Application

Fig. 1. The client-server architecture.

modifies parent.action(parameters)). We next specify the state ex-
tension consisting of new state variables added by the child. Finally,
we describe the transition restriction which consists of new precondi-
tions and effects added by the child to both new and modified actions.
For modified actions, the preconditions and effects of the parent are
appended to those added by the child. New effects added by the child
are performed before the effects of the parent, all of them in a single
atomic step. The child’s effects are not allowed to modify state vari-
ables of the parent, to ensure that the set of traces of the child, when
projected onto the parent’s signature, is a subset of the parent’s set of
traces.

3 Environment specification

Our service is implemented in an asynchronous message-passing envi-
ronment. Processes can crash, communication links may fail and may
later recover, possibly causing network partitions and merges. In [12],
we also model process recovery.

The service is implemented by group communication service (GCS)
end-points running as clients of an external membership service whose
specification appears in Section 3.1. The end-points communicate with
each other using a reliable fifo multicast service which we describe in
Section 3.2, as depicted in Figure 1. We use the words “process” and
“end-point” interchangeably.

3.1 The membership service

In Figure 2 we specify an external membership service whose interface
consists of two output events:
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start changep(cid, set) notifies process p that the membership ser-
vice is attempting to form a new view with the members of set;
cid is a local identifier.

viewp(v) notifies process p of the new view v. A view v is a triple con-
sisting of an identifier v.id, a set of members v.set, and a function
v.startId that maps members of v to start change identifiers. Two
views are the same if they consist of identical triples.

The membership specification captures two basic membership prop-
erties, which are fulfilled by virtually all group membership services
(e.g., [2, 8, 4, 11, 18]): Self Inclusion requires every view delivered to an
end-point p to include p as a member, and Local Monotonicity requires
that view identifiers delivered to p be monotonically increasing.

In addition, the mbrshp automaton specifies, using the mode[p] vari-
able, that the membership service must precede every view v sent to
end-point p with at least one start change notification to p. It also
requires that, for every view v sent to p, the start change identifier
v.startId(p) be the same as the cid of the latest start change issued
to p before the view, and that v.set be a subset of the set suggested
in that start change. Note that this specification does allow the mem-
bership service to add new processes while it is reconfiguring, as long as
a new start change is sent to the clients. Also note that the specified
service is partitionable [20, 4], i.e., allows several disjoint views to exist
concurrently.

The specification allows for simple and efficient distributed imple-
mentations, e.g., [11], as well as many other existing membership algo-
rithms (e.g., [2]) which could be easily extended to provide the specified
interface and semantics. In a possible implementation, a small number
of servers could support a large number of clients, communicating with
them asynchronously via fifo ordered channels. Fault-tolerant imple-
mentations that support client migration are also possible if the server
name is included in the start change identifier to guarantee its local
uniqueness.

3.2 The reliable fifo multicast service

The group communication end-points communicate with each other
using an underlying multicast service that provides reliable fifo com-
munication between every pair of connected processes. Many existing
group communication systems (e.g., [9, 4]) implement virtual syn-
chrony over similar underlying reliable communication substrates. In
our implementation, we currently use the service of [19].
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automaton mbrshp

Type StartChangeId: Total-order; cid0 is smallest.

ViewId: Partial-order; vid0 is smallest.

View: ViewId x SetOf(Proc) x

x (Proc → StartChangeId)

Def vp = 〈vid0, {p}, {(p →cid0)}〉

Signature:
Output: start changep(cid, set), Proc p,

StartChangeId cid, SetOf(Proc) set

viewp(v), Proc p, View v

State:
(∀ Proc p) View mbrshp view[p], initially vp
(∀ Proc p) (StartChangeId x SetOf(Proc))

start change[p], initially 〈cid0, {}〉
(∀ Proc p) mode[p] ∈ {normal, change started},

initially normal

Transitions:
OUTPUT start changep(cid, set)

pre: cid > start change[p].id

p ∈ set

eff: start change[p] ← 〈cid, set〉
mode[p] ← change started

OUTPUT viewp(v)

pre: p ∈ v.set ∧ v.id > mbrshp view[p].id

v.set ⊆ start change[p].set

v.startId(p) = start change[p].id

mode[p] = change started

eff: mbrshp view[p] ← v

mode[p] ← normal

Fig. 2. Membership service safety spec.

Figure 3 presents a centralized automaton co rfifo which speci-
fies a multicast service appropriate for our group communication algo-
rithm. co rfifo maintains a fifo queue channel[p][q] for every pair
of end-points. An input action sendp(set, m) models the multicast of
message m from end-point p to the end-points listed in the set by ap-
pending m to the queues channel[p][q] for every end-point q in set.
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The deliverp,q(m) action removes the first message from channel[p][q]
and delivers it to q.

An end-point p may use the action reliablep(set) to require
co rfifo to maintain reliable (gap-free) fifo connections to the end-
points in set. For every process q not in this set, co rfifo may lose
an arbitrary suffix of the messages sent from p to q, as modeled by the
action lose(p, q).

In specifying liveness of co rfifo, we require that messages sent
to live and connected processes eventually reach their destinations. We
formulate this property by defining every deliverp,q(m) to be a task if
and only if q is a member of live set[p], a special variable periodically
set by input actions livep(set). The livep(set) inputs are assumed to
reflect the real state of the network, that is, the set of processes which
are really alive and connected to p. Notice that we could not use the
variable reliable set[p] in this formulation because it is controlled
by the client and thus does not necessarily reflect the real network
situation.

4 GCS Specifications

We present the safety and liveness properties satisfied by our group
communication service in Sections 4.1 and 4.2 respectively. These prop-
erties have been proven to be useful for many distributed applications
(see [20]).

4.1 Safety properties

We present our safety specifications in four steps, as four automata:
In Section 4.1 we specify a simple group communication service that
provides reliable fifo multicast within views. In Section 4.1 we extend
the specification of Section 4.1 to also require that processes moving
together from view v to view v′ deliver the same messages in view v. In
Section 4.1 we specify a service which provides transitional sets (first
presented as part of Extended Virtual Synchrony (EVS) [17]). In Sec-
tion 4.1 we specify the Self Delivery property which requires processes
to deliver their own messages. The specified services are partitionable.

Within-view reliable fifo multicast In Figure 4 we present the
within-view reliable fifo (wv rfifo) service specification. The speci-
fication uses centralized queues msgs[p][v] of application messages for
each sender p and view v. The action sendp(m) models the multicast
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of message m from process p to the members of p’s current view by
appending m to msgs[p][current view[p]]. The deliverp(q, m) action
models the delivery to process p of message m sent by process q while
in p’s current view. The specification enforces gap-free fifo ordered
delivery of messages by using the variable last dlvrd[q][p] to index
the last message from q delivered to p in p’s current view.

This specification captures the following properties:

– Views delivered to the application satisfy Local Monotonicity and
Self Inclusion (cf. Sec. 3.1).

– Messages are delivered in the same view in which they were sent.
This property is useful for many applications (cf. [8, 20]) and ap-
pears in several systems and specifications (e.g., see [1, 2, 17, 7]). A
weaker property that requires each message to be delivered in the
same view at every process that delivers it, but not necessarily the
view in which it was sent, is typically implemented on top of an
implementation of within-view delivery (see [20]).

– Messages are delivered in gap-free fifo order (within views). This
is a basic property upon which one can build services with stronger
ordering guarantees (e.g., causally or totally ordered multicast).

Virtual synchrony In this section we specify a virtually synchronous
reliable fifo multicast service, vs rfifo, as a child of the presented
above wv rfifo automaton. The vs rfifo specification consists of the
code given in both Figures 4 and 5.

In addition to the properties inherited from wv rfifo, the vs rfifo
specification also requires that processes moving together from view v
to view v′ deliver the same set of messages in v. To enforce this prop-
erty, the specification introduces internal actions set cut(v, v′, c) that
non-deterministically fix the set of messages to be delivered in view v
by every process that moves from v to v′. This set is represented by the
index of the last message to be delivered in v from each sender. Note
that a process that delivers messages beyond an already established cut
is not allowed to move into the view associated with the cut.

This property is commonly provided (e.g., [17, 8, 20, 18, 10]) and is
often called Virtual Synchrony by itself. It is especially useful for ap-
plications that implement data replication using the state machine ap-
proach (e.g., [7, 15]). Such applications may exploit Virtual Synchrony
to avoid sending costly synchronization messages among processes that
continue together from one view to the next.
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automaton co rfifo

Signature:
Input:

sendp(set,m), Proc p, SetOf(Proc) set, Msg m

reliablep(set), Proc p, SetOf(Proc) set

livep(set), Proc p, SetOf(Proc) set

Output: deliverp,q(m), Proc p, Proc q, Msg m

Internal: lose(p,q), Proc p, Proc q

State:
(∀ Proc p, Proc q) SeqOf(Msg) channel[p][q],

initially empty

(∀ Proc p) SetOf(Proc) reliable set[p], init. {p}
(∀ Proc p) SetOf(Proc) live set[p], init. {p}

Transitions:
INPUT sendp(set, m)

eff: (∀ q ∈ set) append m to channel[p][q]

OUTPUT deliverp,q(m) hidden parameter live set[p]

pre: m = First(channel[p][q])

eff: dequeue m from channel[p][q]

INPUT reliablep(set)

eff: reliable set[p] ← set

INTERNAL lose(p, q)

pre: q 	∈ reliable set[p]

eff: dequeue last message from channel[p][q]

INPUT livep(set)

eff: live set[p] ← set

Tasks:
1. (∀ p)(∀ q ∈ live set[p]) {deliverp,q(m)}
2. {dummy()} ∪ {deliverp,q(m) | q 	∈ live set[p]}
∪ {lose(p,q)}

Fig. 3. co rfifo service specification.
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automaton wv rfifo : spec

Signature:
Input: sendp(m), Proc p, AppMsg m

Output: deliverp(q, m), Proc p, Proc q, AppMsg m

viewp(v), Proc p, View v

State:
(∀ Proc p, View v) SeqOf(AppMsg) msgs[p][v],

initially empty

(∀ Proc p, Proc q) Int last dlvrd[p][q], init. 0

(∀ Proc p) View current view[p], init. vp

Transitions:
INPUT sendp(m)

eff: append m to msgs[p][current view[p]]

OUTPUT deliverp(q, m)

pre: m=msgs[q][current view[p]][last dlvrd[q][p]+1]

eff: last dlvrd[q][p] ← last dlvrd[q][p]+1

OUTPUT viewp(v)

pre: p ∈ v.set ∧ v.id > current view[p].id

eff: (∀ q) last dlvrd[q][p] ← 0

current view[p] ← v

Fig. 4. wv rfifo service specification.
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automaton vs rfifo : spec modifies wv rfifo : spec

Signature Extension:
Output: viewp(v) modifies wv rfifo.viewp(v)

Internal: set cut(v, v ′, c), View v, View v ′,
(Proc → Int)⊥ c new

State Extension:
(∀ View v, v ′) (Proc→Int)⊥ cut[v][v ′], init. ⊥

Transition Restriction:
OUTPUT viewp(v)

pre: cut[current view[p]][v] 	= ⊥
(∀ q) last dlvrd[q][p]= cut[current view[p]][v](q)

INTERNAL set cut(v, v ′, c)

pre: cut[v][v ′] = ⊥
eff: cut[v][v ′] ← c

Fig. 5. vs rfifo service specification.
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Transitional set While Virtual Synchrony is a useful property, a pro-
cess that moves from view v to view v′ cannot locally tell which of the
processes in v.set∩ v′.set move to view v′ directly from view v, and
which move to v′ from some other view. In order for the application to
be able to exploit the Virtual Synchrony property, application processes
need to be told which other processes move together with them from
their old views in to their new views. The set of such processes is called
a transitional set. The notion of a transitional set was first introduced
as part of a special transitional view in the EVS [17] model. In our
formulation (as in [20]), transitional sets are delivered to the applica-
tions together with (regular) views, as an additional parameter T. The
delivery of transitional sets satisfies the following property (cf. [20]):

Property 41 The transitional set delivered by a process p when it
moves from view v to view v′ is a subset of v.set ∩ v′.set that in-
cludes (a) all the processes (including p) that move directly from v to
v′ and (b) no member of v′.set that moves to v′ from any view other
than v.

Note that processes that move to the same view from different views
deliver different transitional sets.

Figure 6 contains an automaton (without inheritance) specifying
the Transitional Set property. Before p can move from view v to v′,
each member q of v.set ∩ v′.set must execute set prev viewq(v′) to
“declare” the view from which it intends to move to v′; this action sets
prev view[q][v′] to q’s current view. The transitional set delivered by
p with v′ is then computed to consist of those q in v.set ∩ v′.set for
which prev view[q][v′] = v.

Self delivery In Figure 7 we modify the wv rfifo specification au-
tomaton (Fig. 4) to capture the Self Delivery property by forbidding
an end-point p to move from view v to v′ before delivering all its own
application messages sent in v.

This safety property, when accompanied by the liveness property of
Section 4.2, implies the Self Delivery liveness properties of [20] and [17],
which require processes to eventually deliver their own messages.

4.2 Liveness property

In a fault-prone asynchronous model, it is not feasible to require that a
group communication service be live in every execution. The only way
to specify useful liveness properties without strengthening the commu-
nication model is to make these properties conditional on the underlying
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automaton trans set : spec

Signature:
Output: viewp(v,T), Proc p, View v, SetOf(Proc) T

Internal: set prev viewp(v), Proc p, View v

State:
(∀ Proc p) View current view[p], initially vp
(∀ Proc p, View v) View⊥ prev view[p][v], init. ⊥

Transitions:
OUTPUT viewp(v, T)

pre: prev view[p][v] = current view[p]

(∀ q ∈ v.set ∩ current view[p].set)

prev view[q][v] 	= ⊥
T = {q ∈ v.set ∩ current view[p].set |

prev view[q][v] = current view[p]}
eff: current view[p] ← v

INTERNAL set prev viewp(v)

pre: p ∈ v.set

prev view[p][v] = ⊥
eff: prev view[p][v] ← current view[p]

Fig. 6. Transitional set specification.

automaton self : spec modifies wv rfifo : spec

Signature Extension:
Output: viewp(v) modifies wv rfifo.viewp(v)

Transition Restriction:
OUTPUT viewp(v)

pre: last dlvrd[p][p] =
= LastIndexOf(msgs[p][current view[p]])

Fig. 7. Self Delivery property specification.

network behavior (as specified, e.g., in [7, 20]). Since our GCS uses an
external membership service, we condition its liveness on the behav-
ior of the membership service (which itself is assumed to satisfy some
meaningful liveness properties, e.g., those of [11]). Provided the mem-
bership eventually delivers the same view to all the view end-points
and does not deliver any subsequent views (i.e., stabilizes), we require
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the end-points to eventually deliver this view and all the messages sent
in this view to their applications.

Property 42 Let v be a view with v.set = S. Let α be a fair execu-
tion of a group communication service GCS in which, for every p ∈ S,
mbrshp.viewp(v) action occurs and is followed by neither mbrshp.viewp
nor mbrshp.start changep. Then at each p ∈ S, gcs.viewp(v) even-
tually occurs. Furthermore, for every gcs.sendp(m) that occurs after
gcs.viewp(v), and for every q ∈ S, gcs.deliverq(p, m) also occurs.

It is important to note that although our liveness property requires
GCS to be live only in certain executions, any implementation which
satisfies this property has to attempt to be live in every execution
because of its inability to test the external condition of the membership
becoming stable. Also note that, even though membership stability is
formally required to last forever, in practice it only has to hold “long
enough” for GCS to reconfigure.

5 The group multicast algorithm

Our group communication service is implemented by a collection of
gcs end-points, each running the same algorithm. Figure 8 (a) shows
the interaction of a gcs end-point with its environment, mbrshp and
co rfifo (see Sec. 3). The end-point interacts with its application
client by accepting the client’s send-requests and by delivering appli-
cation messages and views to the client. The end-point uses co rfifo
to send messages to other gcs end-points and to receive messages sent
by other gcs end-points. When necessary, the end-point uses the ac-
tion reliable to inform co rfifo of the set of end-points to which
co rfifo must maintain reliable (gap-free) fifo connections. The gcs
end-point also receives start change and view notifications from the
membership service.

The algorithm running at each end-point is constructed in steps, at
each step adding support for a new property:

– First, we present an algorithm wv rfifop for an end-point of a
within-view reliable fifo multicast service.

– Then, in Section 5.2, we add support for the Virtual Synchrony
and Transitional Set properties. We present a child vs rfifo+tsp
of wv rfifop, and argue that the service built from vs rfifo+tsp
end-points satisfies safety specifications vsrfifo : spec and
ts : spec, and liveness Property 42.
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Fig. 8. GCS end-point and environment.

– Finally, in Section 5.3, we add support for Self Delivery. The result-
ing automaton vs rfifo+ts+sdp models a gcs end-point. Due to
the use of inheritance, the service built from these end-points sat-
isfies wv rfifo : spec, vsrfifo : spec, and ts : spec. We argue
that it also satisfies safety specification self : spec and liveness
Property 42.

In the presented automata, each locally controlled action is defined
to be a task by itself, which means that, if it becomes and stays enabled,
it would eventually get executed.

When composing automata into a service, actions of the type
mbrshp.start changep(id, set) are linked with co rfifo.livep(set),
and mbrshp.viewp(v) with co rfifo.livep(v.set). This way, the
live set[p] at co rfifo matches the mbrshp’s perception of which
processes are alive and connected to p. (We assume that every per-
manently disconnected end-point is eventually excluded by either a
start change or a view notification.) Also, in the composed system,
all output actions except the application interface are reclassified as
internal.

We present our algorithm at a level that would be easy to follow and
then supplement this presentation with a discussion of some important,
practical optimizations.

5.1 Within-view reliable fifo multicast algorithm

In this section we present algorithm wv rfifop for an end-point p of a
service that interacts with mbrshp and co rfifo services and satisfies
the wv rfifo : spec safety specification and liveness Property 42.

The mbrshp and co rfifo services by themselves already provide
most of the properties required by the wv rfifo : spec specification:
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automaton wv rfifop

Signature:
Input: sendp(m), AppMsg m

co rfifo.deliverq,p(m), Proc q,

(AppMsg + ViewMsg + FwdMsg) m

mbrshp.viewp(v), View v

Output: deliverp(q, m), Proc q, AppMsg m

co rfifo.sendp(set, m), SetOf(Proc) set,

(AppMsg + ViewMsg + FwdMsg) m

viewp(v), View v

State:
// Variables for handling application messages
(∀ Proc q, View v) SeqOf(AppMsg⊥) msgs[q][v],

initially empty

Int last sent, initially 0

(∀ Proc q) Int last rcvd[q], initially 0

(∀ Proc q) Int last dlvrd[q], initially 0

// Variables for handling views and view messages
View current view, initially vp
View mbrshp view, initially vp
For all Proc q: View view msg[q], initially vq

SetOf(Proc) reliable set, initially vp.set

Transitions:
INPUT mbrshp.viewp(v)

eff: mbrshp view ← v

OUTPUT viewp(v)

pre: v = mbrshp view �= current view

eff: current view ← v

last sent ← 0

(∀ q) last dlvrd[q] ← 0

OUTPUT co rfifo.reliablep(set)

pre: current view.set ⊆ set

eff: reliable set ← set

OUTPUT co rfifo.sendp(set, tag=view msg, v)

pre: view msg[p] �= current view

current view.set ⊆ reliable set

set = current view.set - {p}
v = current view

eff: view msg[p] ← current view

INPUT co rfifo.deliver
q, p

(tag=view msg, v)

eff: view msg[q] ← v

last rcvd[q] ← 0

INPUT sendp(m)

eff: append m to msgs[p][current view]

OUTPUT deliverp(q, m)

pre: m = msgs[q][current view][last dlvrd[q]+1]

(q = p) ⇒ (last dlvrd[q] < last sent)

eff: last dlvrd[q] ← last dlvrd[q] + 1

OUTPUT co rfifo.sendp(set, tag=app msg, m)

pre: view msg[p] = current view

set = current view.set - {p}
m = msgs[p][current view][last sent + 1]

eff: last sent ← last sent + 1

INPUT co rfifo.deliverq,p(tag=app msg, m)

eff: msgs[q][view msg[q ]] [last rcvd[q]+1]← m

last rcvd[q] ← last rcvd[q] + 1

OUTPUT co rfifo.sendp(set,tag=fwd msg,r,v,m,i)

pre: m = msgs[r][v][i]

INPUT co rfifo.deliverq,p(tag=fwd msg,r,v,m,i)

eff: msgs[r][v][i] ← m

Fig. 9. Within-view reliable fifo multicast end-point automaton.

mbrshp generates views that satisfy Local Monotonicity and Self In-
clusion, and co rfifo provides gap-free fifo communication. Since
wv rfifop can just forward to its application the views generated by
mbrshp and can use co rfifo to multicast application messages to
other end-points, it only needs to ensure that messages are delivered
in the same views in which they were sent. This can be done simply
by tagging messages with the views in which they were sent and by al-
lowing delivery of a message when its view tag matches the end-point’s
current view.

As an optimization of this idea, instead of tagging each message
with a view in which it was sent, our algorithm sends a single, special
view msg(v) to all members of view v before sending them application
messages in that view. An end-point can deduce the view in which an
application message is sent from the latest view msg(v) received from
the application message sender.
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The algorithm is captured in the wv rfifop automaton of Figure 9.
Note that, instead of blindly relying on co rfifo regarding which mes-
sages get delivered in a given view, wv rfifo allows processes to for-
ward application messages on behalf of other processes. The code of
wv rfifop does not specify a particular forwarding strategy – it al-
lows for non-deterministic forwarding of messages. Without this, more
refined versions and extensions of wv rfifo would not be able to in-
troduce a specific forwarding strategy (as we do in vs rfifo+ts by
adding a precondition on the action that sends forwarded messages).

There is also another place where the code leaves a non-deterministic
choice: it is in handling of the reliable set of co rfifo. The code
allows it to be an arbitrary superset of current view.set. This set is
further restricted in a child vs rfifo+tsp of wv rfifop.

The correctness of wv rfifo follows from the use of ordered mes-
sage queues, the safety and liveness properties of co rfifo, and the
safety properties of mbrshp. A formal proof is given in [12].

Also note that the presented code never removes messages from its
buffers. An actual implementation can and should employ some sort of
a garbage collection mechanism, for example discard messages sent in
older views when moving in to a new view.

5.2 Virtual synchrony and transitional sets

The wv rfifo service presented above guarantees that in each view v
every member delivers some prefix of the fifo ordered messages sent by
each end-point in v. The vs rfifo+ts service presented in this section
extends wv rfifo to also guarantee that those end-points which tran-
sition directly from view v to the same view v′ deliver not just “some”
prefixes but “the same” prefixes of the fifo ordered messages sent by
each end-point in view v (cf. Sec. 4.1). Moreover, every view delivery is
accompanied by a transitional set T that satisfies the Transitional Set
property of Sec. 4.1.

In order to satisfy these two properties, an end-point moving from
a view v to a view v′ must first learn which other end-points may
transition from v to v′ and must agree with them on the lengths
of the prefixes they need to deliver. In a nutshell, here is how the
vs rfifo+ts service accomplishes this: Each time an end-point p is no-
tified via mbrshp.start changep(cid, set) of the mbrshp’s attempt
to form a new view, p reliably sends to set a synchronization message
tagged with cid. When mbrshp.viewp(v′) is delivered to p, p uses
the v′.startId mapping to determine which synchronization message
to use from each end-point q in v.set ∩ v′.set; it uses the one tagged
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with v′.startId(q). As a result, all end-points that move from view
v to v′ use the same set of synchronization messages for computing
the transitional set and the set of messages to be delivered to their
application clients before v′. Notice that, by enriching views with the
startId mapping, we eliminate the need to pre-agree on a common tag
for identifying which synchronization messages to consider for a given
view.

automaton vs rfifo+tsp modifies wv rfifop
Signature Extension:

Input: sendp(m) modifies wv rfifo.sendp(m)

mbrshp.start changep(id, set), StartChangeId id, SetOf(Proc) set new
co rfifo.deliverq,p(m), Proc q, SyncMsg m new

Output: deliverp(q, m) modifies wv rfifo.deliverp(q, m)

viewp(v, T), SetOf(Proc) T modifies wv rfifo.viewp(v)

co rfifo.reliablep(set), SetOf(Proc) set modifies wv rfifo.co rfifo.reliablep(set)

co rfifo.sendp(set, m), SetOf(Proc) set, SyncMsg m new
co rfifo.sendp(set, m) modifies wv rfifo.co rfifo.sendp(set, m), FwdMsg m

State Extension:

(StartChangeId × SetOf(Proc))⊥ start change, initially ⊥
For all Proc q, ViewId id: (View v, (Proc→ Int) cut)⊥ sync msg[q][id], initially ⊥
SetOf(FwdMsg) forwarded set, initially empty

Transition Restriction:

INPUT mbrshp.start changep(id, set)

eff: start change ← 〈 id, set〉

OUTPUT co rfifo.reliablep(set)

pre: start change = ⊥ ⇒ set = current view.set

start change �= ⊥ ⇒ set = current view.set ∪ start change.set

OUTPUT co rfifo.sendp(set, tag=sync msg, cid, v, cut)

pre: start change �= ⊥
start change.set ⊆ reliable set

〈 cid, set〉 = 〈 start change.id, start change.set - {p}〉
sync msg[p][cid] = ⊥ ∧ v = current view

(∀ q ∈ current view.set) cut(q) = LongestPrefixOf(msgs[q][v])

eff: sync msg[p][cid] ← 〈 v, cut〉

INPUT co rfifo.deliverq,p(tag=sync msg, cid, v, cut)

eff: sync msg[q][cid] ← 〈 v, cut〉

OUTPUT deliverp(q, m)

pre: if (start change �= ⊥ ∧ sync msg[p][start change.id] �= ⊥) then

if start change.id �= mbrshp view.startId(p) then

last dlvrd[q]+1 ≤ sync msg[p][start change.id].cut(q)

else let S = {r ∈ mbrshp view.set ∩ current view.set |

sync msg[r][mbrshp view.startId(r)].view = current view}
last dlvrd[q]+1 ≤ max

r ∈ S
sync msg[r][mbrshp view.startId(r)].cut(q)

OUTPUT viewp(v, T)

pre: v.startId(p) = start change.id // to prevent delivery of obsolete views
(∀ q ∈ v.set ∩ current view.set) sync msg[q][v.startId(q)] �= ⊥
T = {q ∈ v.set ∩ current view.set | sync msg[q][v.startId(q)].view = current view}
(∀ q ∈ current view.set) last dlvrd[q] = max

r ∈ T
sync msg[r][v.startId(r)].cut(q)

eff: start change ← ⊥

OUTPUT co rfifo.sendp(set,tag=fwd msg,r,v,m,i)

pre: (∀ q ∈ set) 〈 q, r, v, i〉 �∈ forwarded set

ForwardStrategyPredicate( 〈 set, r, v, i〉 , current state)

eff: (∀ q ∈ set) add 〈 q, r, v, m, i 〉 to forwarded set

Fig. 10. Virtually synchronous reliable fifo multicast and transitional set
end-point automaton.
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Algorithm details and safety argument Figure 10 presents the
vs rfifo+tsp automaton as a child of wv rfifop. While there are no
view changes, vs rfifo+tsp does not modify the behavior of wv rfifop.
During a view change, vs rfifo+tsp sends and handles synchronization
messages, and also restricts the delivery of application messages accord-
ing to the synchronization messages associated with the new view.

Upon receiving a start changep(cid, set) notification from mbrshp,
end-point p stores 〈cid, set〉 in the variable start change, tells
co rfifo to maintain reliable communication to the end-points in
current view ∪ set, and then sends a synchronization message tagged
with cid to every end-point in set. The synchronization message con-
tains p’s current view v and a cut, which is a mapping from processes
to indices; cut(q) is the index of the last message from q that p commits
to deliver before delivering any view v′ with v′.startId(p) = cid.

End-point p stores the synchronization message from q tagged with
cid in sync msg[q][cid]. Until p receives a view from mbrshp, it does
not know which synchronization messages from others to consider,
so it restricts delivery of application messages to only those identi-
fied in its own latest cut. When a mbrshp view v′ is delivered to
p, the v′.startId mapping tells p to use the synchronization messages
sync msg[q][v′.startId(q)] from q ∈ v′.set. The members of p’s transi-
tional set for view v′ are those end-points q whose
sync msg[q][v′.startId(q)].view is the same as p’s current view v. Af-
ter receiving view v′ from mbrshp, p allows delivery of application
messages identified by cuts in the synchronization messages from the
processes that are already known to be members of the transitional set.
The delivery of viewp(v′, T) to p’s application is enabled only after p
has received the synchronization messages from all the potential mem-
bers of T and after it has delivered all application messages committed
to by the cuts of the members of T. Since all the end-points that move
from v to v′ use the same set of synchronization messages, the Virtual
Synchrony and Transitional Set safety properties are satisfied.

End-point p is guaranteed to eventually receive all the applica-
tion messages sent by the members of its transitional set T. However,
p may fail to receive some of the application messages sent by dis-
connected end-points (not in T) although certain cuts of members of
T commit to deliver these messages. Such messages need to be for-
warded to p by the members of T that have them. These members
of T deduce from the p’s cut that p lacks these messages and use a
ForwardingStrategyPredicate to compute which of them have to
forward which missing messages to p. We describe some of the many
possible such predicates in [12].
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Liveness of vs rfifo+ts We show that, in a fair execution of
vs rfifo+ts in which the same view v′ is delivered to all its members
as their last mbrshp event, the three preconditions on the viewp(v′, Tp)
delivery are eventually satisfied for every p ∈ v′.set:

1. Condition v′.startId(p) = start change.id remains true since by
the assumption there are no subsequent start change events at p.

2. End-point p eventually receives synchronization messages tagged
with the “right” cid from everybody in v.set ∩ v′.set because
they keep taking steps towards reliably sending these synchroniza-
tion messages to p (by low-level fairness of the code) and because
co rfifo eventually delivers these messages to p (by the liveness
assumption on co rfifo).

3. End-point p eventually receives and delivers all the messages com-
mitted to in the cuts of the members of the transitional set Tp
because for each such message there is at least one end-point in
Tp that has the message in its msgs buffer and that would reliably
forward it to p (according to the ForwardingStrategyPredicate)
if so necessary. Also, p never delivers any messages beyond those
committed to in the cuts of the members of Tp because of the pre-
condition on application message delivery.

Optimizations Notice that end-point p does not need to send its cur-
rent view and its cut to end-points which are not in current view.set
because p cannot be included in their transitional sets. Nevertheless,
these end-points may wait to hear from p as p may still be in their cur-
rent views. Therefore, in our algorithm, p sends synchronization mes-
sages to all the end-points in start change.set. As an optimization,
p could send a smaller synchronization message to
processes in start change.set− current view.set, containing its
start change.id only (but neither a view nor a cut). The recipients of
this message would know not to include p in their transitional sets for
views v′ with v′.startId(p) = p’s start change.id. When using this
optimization, p also does not need to include its current view in the syn-
chronization messages sent to current view.set− start change.set,
since the view information can be deduced from p’s view msg.

Another optimization can be used to minimize synchronization mes-
sage sizes if we strengthen the membership specification to require a
mbrshp.start change to be sent every time the membership changes
its mind about the next view. In this case, the latest
mbrshp.start change has the same membership as the delivered
mbrshp.view, and therefore the synchronization messages do not need
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to include information about messages delivered from end-points in
start change.set ∩ current view.set because the synchronization
message from each of these end-points can terminate a stream of appli-
cation messages that this end-point would deliver in its current view.

5.3 Self delivery

As a final step in constructing the automaton that models an end-
point of our group communication service, gcsp, we add support for
Self Delivery to the vs rfifo+tsp automaton presented above. Self
Delivery requires each end-point to deliver to its application all the
messages the application sends in a view, before moving on to the next
view.

In order to implement Self Delivery and Virtual Synchrony together
in a live manner, each end-point must block its application from sending
new messages while a view change is taking place (as proven in [8]).
Therefore, we modify vs rfifo+tsp to have an output action block
and an input action block ok, and we assume that the application at
end-point p has the matching actions and that it eventually responds
to every block request with a block ok response and subsequently
refrains from sending messages until a view is delivered to it. In [12],
we model this assumption with an abstract application automaton.

The gcsp automaton appears in Figure 11. After receiving the
first start change notification in a given view, end-point p issues a
block request to the application and awaits receiving a block ok re-
sponse before sending a synchronization message to other members of
start change.set. The cut sent in the synchronization message com-
mits to all the messages p received from its application in the current
view.

Since the application is required to respond with block ok and is
then blocked from sending further messages, and since the p’s cut com-
mits to all the messages the application has sent in the current view,
the set of messages agreed upon based on the cuts includes all of p’s
messages. Therefore, p delivers all these messages before moving on to
a new view, and Self Delivery is satisfied. Since end-point p has its own
messages on the msgs[p][p] queue, the modification does not affect the
liveness property of vs rfifo+ts. Finally, we note that due to the use
of inheritance, the gcsp automaton satisfies all the properties we have
specified in Secion 4.
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automaton gcsp = vs rfifo+ts+sdp modifies vs rfifo+tsp

Signature Extension:
Input: block okp() new

Output: blockp() new

viewp(v,T) modifies vs rfifo+ts.viewp(v,T)

co rfifo.sendp(set, m) modifies

vs rfifo+ts.co rfifo.sendp(set,SyncMsg m)

State Extension:
block status ∈ {unblocked, requested, blocked},

initially unblocked

Transition Restriction:
OUTPUT blockp()

pre: start change 	= ⊥
block status = unblocked

eff: block status ← requested

INPUT block okp()

eff: block status ← blocked

OUTPUT co rfifo.sendp(set, tag=sync msg, cid, v, cut)

pre: block status = blocked

OUTPUT viewp(v,T)

eff: block status ← unblocked

Fig. 11. GCSp end-point automaton.

6 Conclusions

We have constructed a virtually synchronous group multicast algorithm
which exchanges one round of synchronization messages during recon-
figuration, in parallel with the execution of a group membership algo-
rithm. In contrast to previously suggested virtual synchrony algorithms,
our algorithm does not require processes to conduct an additional com-
munication round in order to pre-agree upon a globally unique identi-
fier and does not impose restrictions on membership service’s choice of
views. We are not aware of any other algorithm that has both of these
features.

These features are achieved by virtue of a simple yet powerful idea:
Membership service issues a locally unique start-change identifier every
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time it has new information about client membership. The inclusion
of such identifiers in views eliminates the need to tag clients’ messages
with a common (globally unique) identifier.

The start-change interface is an important aspect of the design of
a client-server oriented group communication service which decouples
membership maintenance from group multicast in order to provide scal-
able group membership services in WANs. Maestro [6] and the service
of [18] also separate the maintenance of membership from group multi-
cast. Unlike Maestro [6], in our design, the client does not wait for the
membership to agree upon a globally unique identifier before starting
the virtual synchrony algorithm, and the membership service does not
wait for responses from clients asserting that virtual synchrony was
achieved before delivering views. Unlike [18], our service does not im-
pose restrictions on the membership service’s choice of views, thereby
allowing its applications to benefit from Virtual Synchrony in more
cases (as explained in Introduction).

In [12] we show that the service presented in Section 5 also pro-
vides meaningful and correct semantics in the environment where gcs
end-points can crash and recover. In particular, it allows the recovered
gcs end-points to continue running the algorithm under their original
identity (in contrast e.g., to Isis [5] which requires recovered processes
to assume new identities). Furthermore, gcs end-points do not need to
store any information on stable storage.

Our service is implemented as part of a novel architecture for scal-
able group communication in WANs. After testing its current scalability
limits, we intend to explore ways to improve the scallability further by
incorporating a two-tier hierarchy into our algorithm, as suggested by
Guo et al. [9]. With this approach, processes would send synchroniza-
tion messages to their designated leaders, who would in turn exchange
only the cumulative information among themselves. The framework in
which we presented our algorithm allows us to incorporate extensions
such as this one.

In [12] we formally prove the correctness of our algorithms. In par-
ticular, we prove the safety properties by defining simulation relations
from the algorithm automata to the specification automata. The incre-
mental way in which we have constructed our algorithms and specifica-
tions allows us to also construct the simulation proof incrementally. For
example, in order to prove that vs rfifo+ts simulates vs rfifo+ts :
spec we extend the simulation relation from wv rfifo to wv rfifo
: spec and reason solely about the extension, without repeating the
reasoning about the parent components. This reuse is justified by the
Proof Extension theorem of [14, 13].
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Abstract. With the advent of mobile computers, new chal-
lenges arise for software designers. This paper focuses on dis-
connected operation: making mobile computers work well on
shared data whether the network is available or not. Initially
the shared data is cached on the mobile computer. Modifi-
cations and additions to this cached data will be reconciled
with the shared data when the mobile computer is reconnected
to the network. Conflict resolution will be used to reconcile
conflicting changes. In this paper, we examine these issues by
adding support for disconnected operation to Thor, an object-
oriented database.

1 Introduction

As computers become more mobile, software needs to be adapted to
work well, whether a network is available or not. The challenging aspect
is to function without a network and still have local changes integrate
easily with other data when the network is available. Initially the mobile
computer needs to cache relevant data before disconnecting from the
network. When network accessibility again becomes available, additions
and modifications to the cached data need to be reconciled with the
original data. Beyond this if two users have modified the same cached
data while disconnected, some form of conflict resolution must be used
to integrate these changes. This all must be done without violating
serializability.

For example, a travelling salesperson commuting to the office would
like to use his hand-held device to enter an appointment into his cal-
endar which is stored in a central database at work. The hand-held
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device has a cached version of the salesperson’s calendar which was
downloaded the night before. Meanwhile back at the office, the sales-
person’s assistant is sitting in front of a desktop machine connected
directly to the central database. The assistant enters an appointment
into the salesperson’s calendar for 2 PM to 4 PM, which is automat-
ically updated in the central database. After the database is updated
to reflect the assistant’s change, the salesperson on his way to work
now has stale data in his calendar. He thinks that he is free from 2
PM to 4 PM when he actually has an appointment for that time. To
make things even worse, the salesperson, on his way to work, also en-
ters an appointment into his calendar for 1 PM to 3 PM. This causes a
conflict which must be resolved once the salesperson gets to work and
reconnects his hand-held device to the database.

Several general properties become apparent from the example de-
scribed. Concurrent modifications to the same data may not always be
undesirable. In the case of the calendar, if the assistant had entered an
appointment for 12 PM to 2 PM while the salesperson made an ap-
pointment for 3 PM to 5 PM, the same shared calendar data would be
concurrently modified yet this would not violate the consistency of the
data even though the salesperson modified his calendar while it con-
tained stale data. Conflicts are based on application semantics. In the
calendar, a conflict is an overlapping of appointments in time but could
be completely different in another application. From the user’s perspec-
tive, automatic resolution of conflicts upon reconnection is desirable but
may not always be possible; thus flexibility in resolving conflicts is im-
portant. The salesperson may want all of the entries that he adds to
the calendar to take precedence over others so his assistant’s conflict-
ing entry would have been deleted to make room for his entry. However
there may also be special cases where the salesperson would not want
this to apply.

1.1 Problem Statement

The problem of concurrency and shared data has been studied at length
in the context of databases. The problem of shared data and discon-
nected operation has also been studied a great deal in the context of
network partitions. But the problem of shared data and disconnected
operation in the context of mobile devices changes because disconnec-
tions are more frequent and more predictable [12]. As a result, conflicts
will be more likely. Therefore intelligent conflict resolution is neces-
sary since the user of the mobile device will not want to lose all of the
operations that he or she has performed while disconnected.
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The problem that this paper addresses is how to build a system that
manages shared data in the presence of disconnected operation. This
system must address the issues of using stale data while disconnected
and dealing with conflicting updates upon reconnection.

1.2 Achieving consistency

To achieve consistency a system can either use a pessimistic or an opti-
mistic approach. In an optimistic scheme, users are allowed to modify
shared data that may be concurrently accessed by other users. If an op-
timistic scheme is employed and users can be disconnected, some form
of conflict resolution is required.

Pessimistic schemes prevent conflicts from occurring by permitting
modifications only to that shared data for which the user has a lock.
For the mobile computing setting, requiring the possession of locks to
modify data limits the availability of data for other users.

Another aspect of achieving consistency with shared data, is main-
taining serializability of data. Thus, a common way to handle concur-
rent accesses to shared data is to use transactions to aid in achieving
both consistency and serializability of operations on shared data. Tra-
ditional properties of transactions are: atomicity, consistency, isolation,
and durability (ACID) [10].

Various transaction models for mobile computing have been studied
in [10, 5, 9]. Each is similar in that weaker forms of transactions (i.e.
weak, tentative, or second-class transactions) are defined for transac-
tions made on data local to a mobile device while disconnected. Using
this weaker notion of transactions or tentative transactions allows for
a system to have both consistency and an optimistic scheme in the
presence of disconnections. While disconnected, tentative transactions
operate on locally cached data. Each tentative transaction is logged at
the disconnected device. Upon reconnection, each tentative transaction
will either commit or abort as it is replayed against the shared data.

1.3 Flexible conflict resolution

Tentative transactions result in the need for intelligent conflict reso-
lution. Since potentially all of the tentative transactions made while
disconnected could be aborted, it is important that the system employ
conflict resolution for those aborted transactions so that the discon-
nected user’s operations are not lost.

Dealing with conflicts or aborts that occur upon reconnection is
not simple. The problem is that resolution of conflicts is defined by
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application semantics and providing general support for a variety of
applications is hard. Systems can automatically try to resolve conflicts.
Another way to resolve the conflicts is to consult the user upon a failure.
Conflict resolution can also be left up to the application since it is best
aware of its own semantics. In the end, the most complete approach
to resolving conflicts is a combination of system, application, and user
support

Examples of such systems are Coda, Bayou, and Rover [7, 4, 6].
These systems will be discussed in greater detail in Section 5 and com-
pared with the system presented here.

2 Thor overview

This project uses the Thor distributed object-oriented database system
[8]. This paper proves the serializability of Thor and its ACID proper-
ties. In this section, an overview of the Thor architecture is presented.

2.1 Thor architecture

Thor provides a persistent store of objects where each object has a
unique identity, set of methods on a per type basis, and state. The
system has a client/server architecture where servers are repositories
of persistent objects. The server or object repository (OR) consists of
a root object plus all persistent objects that are reachable from the
root object. The OR handles validation of transactions across multiple
clients by using an optimistic concurrency control scheme described in
[1]. Clients in Thor consist of a front end (FE) and an application. The
FE handles caching of objects from the OR and transaction processing.
Applications operate on cached objects at the FE inside transactions
and commit transactions through the FE to the OR.

2.2 Objects in Thor

Each object is uniquely identified by an identifier known as an oref.
Orefs are also used to locate an object within pages at the OR and
FE. At the OR’s objects are known only by their orefs. Objects at the
FE are categorized as either persistent or non-persistent. Persistent
objects are objects that the OR’s are aware of and that are reachable
from the persistent root object. Non-persistent objects are objects that
are newly created by an application that have not yet been committed
at the OR or objects that are used temporarily by the application and
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that will not need to persist across different runs of an application.
Persistent objects at the FE are stored in the persistent cache which
caches whole pages from the OR. An object in the persistent cache can
be reached at the FE via its oref. Non-persistent objects are stored
in the volatile heap and do not have orefs until they are committed
and assigned oref’s by the OR. To facilitate program access to objects
at the FE in the persistent cache, orefs are mapped to local memory
addresses.

2.3 FE transaction logging and committing transactions

Applications make high level operations on objects. These high-level
operations on objects are reduced to reads, writes, and creations of
objects. Each of these is logged by the FE in order to create the correct
read, written, and created object sets to be sent to the OR in a commit
request.

An application completes a transaction by making a request to the
FE to commit the transaction. The FE processes this request by col-
lecting all of the logged commit sets: the read object set (ROS), modi-
fied object set (MOS), and new object set (NOS). These sets are sent
to the OR in the form of a commit request. The ROS and MOS will
contain only persistent objects and the NOS will contain only those
non-persistent objects created inside the transaction that are reachable
from some persistent object. Before a NOS is sent to the OR it must
contain orefs. The FE maintains some free pages for new orefs but in
the event that there are no free orefs available, the OR is contacted to
obtain new orefs.

To handle concurrency, an OR will validate a transaction based on
whether or not that transaction read or wrote invalidated objects. The
OR maintains a per-FE set of invalidated objects. These are objects
whose state has become invalid since the time the FE cached them. An
object at an FE is invalidated when another FE successfully commits
a transaction modifying that object since the cached version is now
stale. FE’s are notified of invalidations and must acknowledge them by
invalidating the objects in the persistent cache so that if those objects
are ever accessed by the application, their new state will be fetched
from the OR.

The OR can either commit or abort the FE’s commit request. If
the transaction is aborted by the OR, the FE must then roll back
any of the changes made by the application. This includes reverting
the state of modified objects back to the original state prior to the
transaction and removing any newly created objects from the volatile
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heap. If the transaction is committed by the OR, the FE will move any
newly created objects from the volatile heap to the persistent cache.

2.4 Summary of Thor

Thor provides transaction controlled access to shared data. Its opti-
mistic concurrency scheme is appropriate for disconnected operation
and its object-oriented nature should provide some benefits.

3 Disconnected operation in Thor

In the previous section, Thor was introduced. This section describes
how we added disconnected operation to Thor [3].

The approach to disconnected operation in Thor is to use tentative
transactions to manage shared data while disconnected and to provide
a framework that enables the application to handle conflict resolution.
The extension of Thor to support disconnected clients has two main
aspects: extensions to the application and extensions to the FE (caching
and per transaction processing).

3.1 FE support for disconnected operation

FE support for disconnected operation can be divided into three phases.
The first is preparation for disconnection. The second is operating dis-
connected: handling transactions differently. The third is reconnecting
with the OR: processing the pending transactions and the commits and
aborts resulting from them.

Preparing for disconnect To prepare for disconnection from the
OR, the FE needs to prefetch objects into the cache by processing
queries specified by the application. The application may need a special
prefetch query to ensure that all the relevant data is cached in the FE.
This will be discussed in Section 3.2.

Operating disconnected Once the client has disconnected from the
OR, an application will attempt to commit transactions as it normally
would while connected. While disconnected, a commit becomes a ten-
tative commit meaning that the commit could potentially be aborted
by the OR upon reconnection. While disconnected, applications will
operate the same as when they are connected by making operations on
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objects inside transactions. These operations will change the state of
cached objects at the FE.

The FE logs tentative transactions in the tentative transaction log.
This log saves enough state per tentative transaction in order to replay
each tentative transaction once the FE is reconnected with the OR. The
application is given an id for each tentative transaction that the appli-
cation can associate with operations performed during that transaction.
This information can be used later to assist the user in recovering from
an abort. Figure 1 depicts an example tentative transaction log.
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Fig. 1. Tentative Transaction Log

Tentative Transaction
The model used in connected Thor has the FE maintain transaction

information on a per transaction basis. This information, also known as
commit sets, consists of the read object set (ROS), the modified object
set (MOS), and the new object set (NOS) created during a transac-
tion. When the application commits the transaction, during connected
operation, these sets are inserted directly into a commit request to the
OR. But, while disconnected, these sets are maintained in the tentative
transaction log.

The definitions of the commit sets change for tentative transactions.
In a tentative transaction the ROS may consist of both persistent ob-
jects and objects that are tentatively persistent. An object is tentatively
persistent if it was created by some tentative transaction that was ten-
tatively committed but not yet committed at the OR. This also applies
to the MOS in a tentative transaction: it can have both persistent and
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tentatively persistent objects. In Figure 1, TT2, contains object g in
ROS2 since it is tentatively persistent from TT1.

In a tentative transaction, commit sets must have all of their refer-
ences to objects in oref format before they are sent to the OR. Tempo-
rary orefs are assigned to objects that are created by tentative transac-
tions. In Figure 1, when TT2 is stored into the tentative transaction log,
references to g must be updated to the correct temporary oref assigned
to it in TT1.

In order to be able to handle the abort of a tentative transaction,
each tentative transaction in the log must also save the state of each
object in the MOS prior to its first modification. Objects in the MOS
may be modified multiple times but only the initial state of the object
before any modifications is saved in the log and only the state after the
final modification in the duration of that transaction is saved in the
MOS.

Reconnect When the FE reconnects with the OR, synchronization of
the log occurs before the FE can proceed with any connected opera-
tions. Synchronization with the OR consists of replaying each tentative
transaction in the order in which they were committed while discon-
nected, handling any aborts, and also handling invalidations.

Before sending a commit request to the OR, it is necessary to up-
date temporary orefs in the NOS to permanent orefs. Permanent orefs
are assigned either from free space in the current pages at the FE or by
contacting the OR. In addition, the MOS and NOS may contain tempo-
rary orefs for tentatively persistent objects and these must be updated
as well. Then the FE sends to the OR a commit request containing the
commit sets stored for the tentative transaction.

The OR will then check if the commit request should be committed
or aborted. The request will abort if an object in the read or write
set of the transaction has been modified by another FE. When the FE
receives the OR’s response to the commit request it will process either
a commit or an abort. On a commit the FE must install newly created
objects from the tentative transaction into its persistent cache. On an
abort, the FE uses the saved copies of modified objects to revert them
back to their original state before the tentative transaction and then
deletes newly created objects from the volatile heap.

When a tentative transaction is aborted, it is handled similarly to
a connected abort. But, for a tentative transaction, in addition to re-
verting modified objects to their state before the tentative transaction,
subsequent tentative transactions that depend on that tentative trans-
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action must also be aborted. Tentative transaction TTl depends on TTk

where k < l if:

(ROSl ∩ MOSk �= ∅) ∨ (MOSl ∩ MOSk �= ∅) ∨ (ROSl ∩ NOSk �=
∅) ∨ (MOSl ∩ NOSk �= ∅).

This defines dependency since TTl can not be committed if it read
or modified objects that were in an invalid state (as indicated by the
abort of TTk). Because the abort of TTk causes the objects in NOSk

to be deleted, overall bookkeeping is simpler if transactions involving
references to NOSk are removed at the same time.

In checking for dependencies, if a subsequent tentative transaction
in the log aborts due to its dependency on an aborted transaction,
then any tentative transactions dependent on it must also abort. It is
important to be careful about the order in which the state of objects
in a tentative transaction’s MOS are reverted to their saved state. For
example, TTk with MOSk = {a} aborts. TTl with MOSl = {b} is
dependent on TTk because ROSl = {a,b}. TTm with MOSm = {b}
is dependent on TTl because ROSm = {b}. So here is a chain of de-
pendencies and after all of the dependent aborts have been processed,
the state of object a should be as it was before TTk and the state of
object b should be as it was before TTl. In the case of object b, it is
important that its state be undone backwards, first to the saved state
in TTm and then to the state saved in TTl. Therefore when aborts are
processed, the dependencies are found in a forward scan but undoing
the state of each is done in a backwards process through each of the
dependent tentative transactions.

After the entire log of tentative transactions has been processed, in-
validations are handled. In the process of replaying the tentative trans-
actions, the FE may receive invalidation messages containing orefs of
objects that have become stale. These stale objects must be marked
invalid in the persistent cache.

After the FE processes all tentative transactions and invalidations,
it must notify the application of any failures. It does this by returning
to the application a set of tentative transaction id’s containing the id
of each tentative transaction that aborted.

Figure 2 depicts the reconnect process for a sample scenario. The
tentative transaction log in this case contains three tentative trans-
actions. TT1 is aborted since some other FE made a modification to
object a which this FE has not yet seen. Object a is in ROS1 and
MOS1 so the OR must abort TT1. The OR also sends an invalidation
message for object a. Since MOS2 ∩ NOS1 �= ∅, the FE will automat-
ically abort TT2 without sending a commit request to the OR for it.
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TT3 is committed successfully. Then the FE processes the invalidation
message and sends the acknowledgement to the OR. Finally the FE
passes back to the application the list of tentative transaction id’s that
failed to commit.

Commit reply TT1

FE ORApplication

Commit reply TT3

3Commit request TT

1Commit request TT

(MOS  = d)
TT   depends on TT   − request not sent

12
2

[TT   , TT  ]
1 2

Reconnect

Invalidation message

Failed TT’s

Invalidation Ack

[abort]

[a]

[commit]

 MOS=a

 MOS=b
[ROS=b,c

 NOS=f]

[ROS=a.b.c

 NOS=d,e]

Fig. 2. Synchronizing the Log

3.2 Application support for disconnected operation

In addition to the support provided by the FE for disconnected opera-
tion, the application must also provide support for disconnected oper-
ation, namely support specific to application semantics. This support
can be divided into the three components of preparing for disconnec-
tion, operating disconnected, and reconnecting. A specific example of
an application and the support it provides will be discussed in Section
4.1.

Preparing for disconnect Application specific hoarding queries are
used to prepare the client for disconnection from the OR. A hoarding
query is an operation on the persistent objects in the database that
causes objects to be fetched or hoarded from the OR into the FE cache
prior to disconnecting from the OR.
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Operating disconnected When disconnected, attempting to commit
a transaction returns an id for the tentative commit. An application
will use this id to identify data associated with the tentative transac-
tion if it should abort. This contextual data can include operation type,
parameters, or priority. Each operation type could also have an asso-
ciated resolution function which attempts to use the saved parameters
from the tentative transaction context to resolve a failure to commit.
This extra support is necessary since Thor provides only a notification
of conflicts and does no resolution itself.

Reconnect On reconnect, after the entire tentative transaction log
has been replayed, the application receives a list of the id’s of aborted
transactions and then deals with their resolution. It does this by iterat-
ing through the list of failed transactions and calling their appropriate
resolution functions. In the process of calling a resolution function, it
is possible that the transaction will be aborted again and a series of
nested calls to resolution functions and aborts may occur.

To resolve a conflict, the application has the flexibility to do a vari-
ety of resolutions since the application has control over where conflicts
are detected and also has saved context for each transaction. While
Thor provides conservative abort semantics that guarantee serializabil-
ity of operations on shared objects, successful retries of a failed tenta-
tive transaction actually allow applications that do not require Thor’s
conservative abort semantics to achieve more relaxed semantics.

4 Evaluation

This section discusses how well disconnected operation in Thor achieves
the goals of consistent shared data and flexible conflict resolution
through the development of a sample application on top of the Thor
framework. In addition, an analysis of performance is presented to dis-
cuss the overhead from disconnected operation.

4.1 Sample client program: a shared calendar

A shared calendar system was implemented as an application using
the disconnected Thor framework described in Section 3. The calen-
dar system maintains a database of calendars where each calendar is
associated with a user but multiple users may modify a single calen-
dar. Concurrent modifications to a single calendar are possible. A user
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can add and delete events to and from a calendar. Each event has an
associated day and time.

The essential aspect of the design of the calendar application was the
data modelling phase or development of the application’s schema. The
schema is the organization or structure of the data as represented in
the database. In the data modelling phase it is important to consider
the effect of concurrency on the data. It is especially important in
Thor since conflicts are detected at the granularity of an object and
therefore the design of the object-oriented schema will directly impact
what conflicts are detected. In the calendar application, concurrent
additions of events to a user’s calendar are permissible so long as they
do not overlap in time. The correct behavior is for a conflict to be
detected only when concurrent updates to the calendar modify events
that conflict in time. However, these conflicts are not always significant
and in some situations, a user may want more relaxed semantics. These
situations can be accommodated with the flexible resolution of conflicts.

Calendar

Time Slots ...
Event

Description

Fig. 3. Calendar Schema

To achieve the correct calendar conflict semantics in the calendar
application, the schema was designed to detect conflicts at the granu-
larity of time slot objects rather than the entire calendar object. This
is depicted in Figure 3 where the calendar is a set of time slot objects
and each time slot can be assigned to some event. With this design, if
two users concurrently modify the same time slot object, then a conflict
will be detected by Thor. This is the correct semantics for a conflict in
a calendar, namely when two appointments are made for overlapping
times. However since the user may want to allow this at times, it is im-
portant to consider the conflict resolution and the different properties
that a user might want to be able to have in his calendar.

With the described design of the calendar, we maintain consistency
in addition to getting the correct conflict semantics. Consistency is
maintained since multiple users can concurrently add events to the
calendar without having a conflict as long as a transaction does not read
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stale objects in the calendar. An additional factor to consider in the
calendar application design is that a transaction that writes an event
should be careful not to include reads of other time slots. This requires
that the application developer be very careful in the organization of
commit points in the application. For example, in a transaction that
adds an event to the calendar, the application should not also read all
of the objects in the calendar, since this will increase the likelihood of
an abort.

Conflict resolution in the calendar application is flexible since it is
possible for the application to have control over where conflicts are de-
tected. In the case of the calendar, we know that conflicts are over time
slots, so if a conflict occurs, we know it is because another user has al-
ready modified that same time slot. It is then up to the application to
deal with this conflict. In order to be able to deal with a conflict the ap-
plication needs to understand the context for a transaction. Therefore,
as discussed in section 3.2, the calendar application saves the high-level
operations made by the transaction and any arguments to the opera-
tions.

Using the saved context and having fine-grained control over conflict
detection through the design of the application schema, any number of
policies can be implemented to resolve conflicts.

4.2 Performance

The overall performance of the Thor system is discussed in [1]. Thor
compares favorably with similar systems in terms of throughput and
scalability. This section discusses the added overhead of supporting
disconnected operation. First, the number of tentative transactions is
limited by the amount of memory in the client. The overhead varies by
the number of tentative transactions in the log, the read:write:new ob-
ject ratio in the commit sets, and the level of contention or percentage
of aborts for a given number of tentative transactions in the log. The
remainder of this section will discuss the overhead of disconnected op-
eration in Thor using experiments based on the OO7 benchmark which
provides a comprehensive test of object-oriented database management
system performance. The details of this benchmark are described in [2].

In comparison to connected operation in Thor, the design of dis-
connected operation in Thor has several differences that affect perfor-
mance. These differences occur both while operating disconnected and
upon reconnection. Experiments were conducted with a single FE and
OR. The OR was run on a 400 Mhz dual Pentium II with 128 MB
of RAM running the Linux Redhat distribution 6.2. The FE was run
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a 450 Mhz Pentium II with 128 MB of RAM running Linux Redhat
distribution 6.2. The FE cache size for all experiments was 24 MB. All
communication between the two machines was on an isolated network
so that variations in network traffic would not affect the experimental
results.

Each experiment uses an OO7 traversal to compare connected with
disconnected operation. The difference between disconnected and con-
nected operation occurs at commit points. During connected operation,
the application simply waits for the response to a commit request from
the OR. In disconnected operation, a commit has two parts. The first
part is to tentatively commit the transaction while disconnected. This
places the transaction in the tentative transaction log. The second part
is to reconnect and send the tentative transaction from the log to the
OR as a commit request.

Upon reconnection, replay of the log incurs two major costs that
do not occur in connected commits. The first overhead incurred is,
in preparation to send the tentative transaction as a commit request
to the OR, newly created objects that have temporary orefs must be
updated to have new permanent orefs. Getting permanent orefs is a
cost that is also incurred during connected commits, however objects
in the MOS and NOS need to be updated with these new orefs. This
updating incurs the extra cost of a second traversal of the objects in
the MOS and NOS for all tentatively committed transactions in the
log.

We evaluated the average overhead to be 36.32% for updating tem-
porary orefs on logs ranging from 10-100 tentative transactions with a
workload of an OO7 insertion query with 5 new composite objects and 2
modified objects per transaction. The growth of the time to tentatively
commit and reconnect is linear with respect to the number of tenta-
tive transactions. However it does grow at a faster rate than connected
commits. This is due to an increasing number of permanent orefs to
search through when replacing temporary orefs with permanent ones.

The second major source of overhead from disconnected operation
comes from aborts. If a transaction is aborted, the log must be updated
to abort any dependent transactions. This dependency check has the
extra cost of scanning the log with a backwards undo (as described in
Section 3.1) each time an abort happens.

Experiments were conducted in both low and moderate contention
(abort rate) environments similar to experiments made by Adya for
concurrency control studies in Thor [1]. The experiments make use of
the OO7 T2a traversal rather than the Tnew since the Tnew traversal
creates dependent tentative transactions. By using the T2a traversal
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both the low and moderate abort rate experiments have no dependen-
cies between transactions to show the case of maximal scanning. Figure
4 shows the results for an OO7 T2a traversal with a 20% abort rate
which is considered moderate contention. The results for a low 5% abort
rate show similar trends.

5 Related work

Providing consistent shared data in the presence of disconnected oper-
ation is not a new problem. Researchers have analyzed the issues and
systems have been implemented that support disconnected operation
and the sharing of data.

The major relevant analytical work is [11]. Disconnected operation
in Thor largely implements the behavior described in the caching ex-
ample in this paper: the mobile computer performs weak transactions
while disconnected. These transactions are committed only if they do
not conflict with the strict transactions at the server. Beyond actually
implementing this model, we have started to understand how applica-
tions can make use of this system.

Some implementations include Bayou, Rover, and Coda as men-
tioned in Section 1.3. Having discussed the design of disconnected op-
eration in Thor and evaluated its effectiveness in achieving consistent
shared data with flexible conflict resolution, this section visits each of
the systems described in Section 1.3 to see how they compare. In general
each system uses a similar notion of “tentative” data for data modified
while disconnected but has different methods for handling concurrency
and conflicts.

Coda supports disconnected operation but it is oriented around a
file system. Conflicts are detected only at the granularity of files which
gives an application much less control over the semantics of conflicts.
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Thor on the other hand, can be used for a variety of applications where
data easily fits into an object model where objects are small. However
if an application is concerned over file-sharing such as in a collaborative
document editing system, Coda may actually be a more suitable choice.

Both Bayou and Rover do not provide for any built-in notion of con-
sistency. It is up to the application to define in its procedures, checks
for conflicts and the procedures to resolve them. Thor takes some of
the burden of this away from the application by having built-in con-
flicts detected on objects. While it is true that the application does
play a role in defining conflicts since the application schema must be
carefully designed to achieve the correct conflict semantics, Thor pro-
vides a framework with which the application can work. In addition
this framework is a familiar one since it is essentially the framework of
an object-oriented programming language.

Bayou and the approach to disconnected operation in Thor are sim-
ilar in that application-specific conflict detection and resolution are fa-
cilitated. Bayou’s dependency-check procedure is analogous to schema
design in Thor since the manner in which the schema is designed, con-
trols what conflicts are detected. Bayou’s merge-proc function is analo-
gous to application conflict resolution in Thor. The difference between
the two is that there is no built in notion of consistency in Bayou. While
Thor allows for an application to have control over where conflicts will
be detected, the serializability of data will not be violated at any point.
Thor could perhaps benefit from Bayou’s notion of merge-procs. Since
Thor applications must now include all conflict resolution code inside
the application, it would be beneficial to add to Thor, a framework for
applications to write resolution functions or perhaps even select from
a set of common resolution functions.

6 Conclusion

This paper has described a system that can, with more experimenta-
tion, be extended to support a variety of applications. These applica-
tions will behave well using shared data whether the network is available
or not.

Disconnected operation in Thor suits a variety of applications since
it can provide strict consistency rules for applications that require them
such as a banking system or airline reservation system. Yet, with the
framework provided, it also allows applications with more relaxed con-
sistency requirements to have enough control over conflicts and their
resolution to achieve more flexible consistency semantics.
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Abstract. This paper presents the design and implementa-
tion of the Intentional Naming System (INS), a resource dis-
covery and service location system for dynamic and mobile
networks of devices and computers. Such environments require
a naming system that is (i) expressive, to describe and make
requests based on specific properties of services, (ii) respon-
sive, to track changes due to mobility and performance, (iii)
robust, to handle failures, and (iv) easily configurable. INS
uses a simple language based on attributes and values for its
names. Applications use the language to describe what they
are looking for (i.e., their intent), not where to find things
(i.e., not hostnames). INS implements a late binding mecha-
nism that integrates name resolution and message routing, en-
abling clients to continue communicating with end-nodes even
if the name-to-address mappings change while a session is in
progress. INS resolvers self-configure to form an application-
level overlay network, which they use to discover new services,
perform late binding, and maintain weak consistency of names
using soft-state name exchanges and updates. We analyze the
performance of the INS algorithms and protocols, present mea-
surements of a Java-based implementation, and describe three
applications we have implemented that demonstrate the feasi-
bility and utility of INS.

1 Introduction

Network environments of the future will be characterized by a variety of
mobile and wireless devices in addition to general-purpose computers.
Such environments display a degree of dynamism not usually seen in
traditional wired networks due to mobility of nodes and services as well
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as rapid fluctuations in performance. There is usually no pre-configured
support for describing, locating, and gaining access to available ser-
vices in these heterogeneous, mobile networks. While the packet rout-
ing problem in mobile networks has been extensively researched [6, 32],
the important functions of resource discovery and service location are
only recently beginning to receive attention in the research community.
We believe that this is an important problem to solve because the cost
of deploying and running such a network infrastructure is dominated
by software and service management, while diminishing hardware costs
are making it cheap to network all sorts of devices. Examples of appli-
cations in such environments include sending a job to the closest (based
on geographic location) and least-loaded printer, retrieving files from
a mobile, replicated server based on network performance and server
load, and retrieving the current image from all the mobile cameras in
a particular section of a building.

Based on our target environment and applications, we identify the
following important design goals for a naming system that enables dy-
namic resource discovery and service location:

– Expressiveness. The naming system must be flexible in order to
handle a wide variety of devices and services. It must allow appli-
cations to express arbitrary service descriptions and queries.

– Responsiveness. The naming system must adapt quickly to end-
node and service mobility, performance fluctuations, and other fac-
tors that can cause a change in the “best” network location of a
service.

– Robustness. The naming system must be resilient to name re-
solver and service failures as well as inconsistencies in the internal
state of the resolvers.

– Easy configuration. The name resolvers should configure them-
selves with minimal manual intervention and the system should not
require manual registration of services. The resulting system should
automatically distribute request resolution load among resolvers.

The main contribution of our work is the design and implementa-
tion of INS, an Intentional Naming System that meets the above goals.
Because applications in our environment (as in many distributed envi-
ronments) often do not know the best network location that satisfies
their needs for information or functionality, we argue in favor of an
intentional naming scheme and resolution architecture in which appli-
cations describe what they are looking for, not where to find it. Name
resolvers in the network route requests to the appropriate locations by
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maintaining a mapping between service descriptions and their network
locations.

INS achieves expressiveness by using an intentional name language
based on a hierarchy of attributes and values, allowing nodes that pro-
vide a service to precisely describe what they provide and consumers
to easily describe what they require. Names based on attributes and
values have been suggested before in other contexts [5, 7, 13, 45] and
we draw upon previous work in this area in designing our naming lan-
guage. While several complex query languages based on attributes and
values exist in the literature, ours is particularly simple and has a small
set of commonly used operators, which makes it lightweight and easy
to implement even on impoverished devices. We also design the INS
resolution architecture to be independent of the specific language used
to perform queries, so that it can also be used in the context of other
service description languages.

An important characteristic of our target environment is mobility,
where the network location (e.g., IP address) of an end-node changes.
Node mobility may occur due to physical mobility or when a node
changes the network used to communicate (e.g., changing from an wired
Ethernet to a radio frequency network). Another form of mobility is ser-
vice mobility, where the network addresses of a service does not change,
but the end-nodes mapping to a service change because of a change in
the values of the attributes sought by clients. In addition, our environ-
ment is dynamic because of performance fluctuations—as the load on
service nodes and paths in the network changes, so does the location
of the best node to serve each client request. Hence, INS should reflect
performance changes in the results of name resolution.

In INS, clients use an intentional name to request a service with-
out explicitly listing the end-node(s) that ultimately serve the request.
This “level of indirection” provided by an intentional name allows ap-
plications to seamlessly continue communicating with end-nodes even
though the mapping from name to end-node addresses may change dur-
ing the session, transparent to the client. Thus, INS supports mobile
applications, which use intentional names rather than IP addresses.

INS achieves responsiveness by integrating name resolution and mes-
sage routing, operations that have traditionally been kept separate in
network architectures. INS applications benefit from this abstraction
using a late binding option, where the binding between the intentional
name and network location(s) is made at message delivery time rather
than at request resolution time. This binding is “best-effort” since INS
provides no guarantees on reliable message delivery. Thus, INS uses an
intentional name not only to locate services, but also to route mes-
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sages to the appropriate end-points. This integration leads to a general
method for performing application-level routing using names, effected
by applications including data with the name resolution query.

Our integrated routing and resolution system provides two basic
types of message delivery service using late binding. An application may
request that a message be delivered to the “optimal” service node that
satisfies a given intentional name, called intentional anycast. Here, the
metric for optimality is application-controlled and reflects a property of
the service node such as current load. A second type of message delivery,
intentional multicast, is used to deliver data to all service nodes that
satisfy a given name, for example, the group of sensors that have all
recorded sub-zero temperatures. These two delivery services allow INS
to achieve application-level anycast and multicast.

In keeping with the end-to-end principle [37], we leave the under-
lying network-layer addressing and routing of the IP architecture un-
changed. Rather, our approach to providing these services is to layer
them as an overlay network over unicast IP. The only network layer
service that we rely upon is IP unicast, which is rapidly becoming
ubiquitous in mobile and wireless environments1.

Another reason for leaving the core infrastructure unmodified is
that often, a network-layer service does not perfectly match the re-
quirements of the application at hand. Indeed, performing anycast on
a specific network-layer criterion such as hop-count, network latency or
available bandwidth, is ineffective from the point of view of many appli-
cations because it does not optimize the precise metric that applications
require. For example, a network-layer anycast [31] to find the “best”
printer on a floor of a building cannot locate the least-loaded printers.
To remedy this, INS allows intentional anycast based on application-
controlled metrics, where resolvers select the least value according to a
metric that is meaningful to and advertised by applications.

Despite allowing application-controlled routing metrics, INS presents
a simple and well-defined service model for intentional anycast and mul-
ticast. In contrast to the active networks architecture [41, 46] and their
naming counterpart, ActiveNames [43], where arbitrary code and ser-
vices may be injected into the data path to customize the functions
of an IP router or name resolver, INS resolvers do not run arbitrary
code nor embed any application-specific semantics in the routing and
resolution architecture. Instead, our system relies on structured names
to express application parameters. This decision to leave IP unicast un-
modified is based on the difficulties encountered in deploying other IP

1 Note that we do not rely on Mobile IP [32] in INS.
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extensions, for example, IP multicast [12], guaranteed services [10], and
more recently, active IP networks [46]. In this sense, one may view the
INS architecture as similar in philosophy to application-level anycast [3]
and Web server selection, which have recently gained in popularity.

INS uses a decentralized network of resolvers to discover names and
route messages. To ease configuration, INS resolvers self-configure into
an application-level overlay network and clients can attach to any of
them to resolve their requests and advertise services. These resolvers use
soft-state [9] periodic advertisements from services to discover names
and delete entries that have not been refreshed by services, eliminat-
ing the need to explicitly de-register a service. This design gracefully
handles failures of end-nodes and services. They also implement load-
balancing and load-shedding algorithms, which allows them to scale
well to several thousand services.

The INS resolution architecture presented in this paper makes three
key contributions: (i) it integrates resolution and routing, allowing ap-
plications to seamlessly handle node and service mobility, and provides
flexible group communication using an intentional name as the group
handle; (ii) its resolvers self-configure into an overlay network and incor-
porate load-balancing algorithms to perform well; and (iii) it maintains
weak consistency amongst replicated resolvers using soft-state message
exchanges. These features distinguish it from other service discovery
proposals made in the recent past, including the IETF Service Loca-
tion Protocol (SLP) [44, 33], Sun’s Jini service discovery [21], the Sim-
ple Service Discovery Protocol [19], universal plug-and-play [42], and
Berkeley’s service discovery service [11].

An important feature of our architecture is its potential for in-
cremental and easy deployment in the Internet, without changing or
supplanting the existing Internet service model. INS is intended for
dynamic networks on the order of several hundred to a few thousand
nodes, many of which could be mobile (e.g., inside a single administra-
tive domain, building, office or home network). We note, however, that
the architecture presented in this paper is not directly applicable in
the wide-area Internet. We are currently developing a wide-area archi-
tecture to complement this intra-domain INS architecture. However,
despite this cautionary note, our performance results show that our
resolution algorithms and load-balancing strategies permit a network
of INS resolvers to scale to several thousand names and services. Our
experimental results show that the time to discover new names is on
the order of tens of milliseconds. We find that the time to process name
updates is the performance bottleneck in many cases, and describe a
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technique to partition the namespace amongst resolvers to alleviate this
problem.

To demonstrate the utility of INS, we describe its programming
interface and the implementation of three applications: Floorplan, a
map-based service discovery tool for location-dependent services, Cam-
era, a mobile camera network for remote surveillance, and Printer, a
load-balancing printer utility that sends user print requests to the best
printer based on properties such as physical location and load. These
applications use the INS API and support for mobility, group commu-
nication, and service location, gaining these benefits without any other
pre-installed support (e.g., Mobile IP [32], IP multicast [12], SLP [44],
etc.) for these features.

The rest of this paper is organized as follows. We describe the INS
architecture in Section 2, the API and some applications in Section 3,
our implementation in Section 4, its performance in Section 5, related
work in Section 6, and our conclusions in Section 7.

2 System architecture

INS applications may be services or clients: services provide function-
ality or data and clients request and access these. Intentional Name
Resolvers (INRs) route client requests to the appropriate services, im-
plementing simple algorithms and protocols that may be implemented
even on computationally impoverished devices. Any device or computer
in an ad hoc network can potentially act as a resolver, and a network of
cooperating resolvers provides a system-wide resource discovery service.

INRs form an application-level overlay network to exchange service
descriptions and construct a local cache based on these advertisements.
Each service attaches to an INR and advertises an attribute-value-
based service description and an application-controlled metric. Each
client communicates with an INR and requests a service using a query
expression. Because service descriptions are disseminated through the
INR network in a timely manner, a new service becomes known to the
other resolvers and through them to the clients.

When a message arrives at an INR, it is resolved on the basis of the
destination name. The INR makes a resolution/forwarding decision de-
pending on the specific service requested by the client application. If the
application has chosen early binding (selected using the early-binding
flag in the request), the INR returns a list of IP addresses correspond-
ing to the name. This is similar to the interface provided by the Internet
Domain Name System (DNS) [27] and most other existing service dis-
covery systems, and is useful when services are relatively static. When
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Fig. 1. The architecture of the Intentional Naming System. The upper-left
corner shows an application using early binding: the application sends an
intentional name to an INR to be resolved (1), receives the network loca-
tion (2), and sends the data directly to the destination application (3). The
middle-left shows an application using intentional anycast—the application
sends an intentional name and the data to an INR (4), which tunnels to
exactly one of the destinations that has the least metric (5). The lower-left
corner shows an application using intentional multicast: the application sends
an intentional name and the data to an INR, which forwards it through the
INR network to all of the destination applications. The lower-right corner
shows an application announcing intentional names to an INR. The inten-
tional names are beginning to propagate throughout the INR network. An
application discovering names sends a query to an INR (6), receives a set of
names that match the name in query.

there are multiple IP addresses corresponding to a name, the client may
select an end-node with the least metric, which is available from the
result of the resolution request. This metric-based resolution is richer
than round-robin DNS resolution.

INS applications use the two late binding options—intentional any-
cast and intentional multicast—to handle more dynamic situations.
Here, the network addresses are not returned to the client, but instead,
the INR forwards the name and the associated application payload
directly to the end-nodes (e.g., services). If the application requests in-
tentional anycast, the INR tunnels the message to exactly one of the
end-nodes in its list that has the least metric. In INS, this metric does
not reflect a network-layer metric such as hop-count used in network-
layer anycast [31]; rather, INS allows applications to advertise arbitrary
application-specific numeric metrics such as average load. In intentional
multicast, the INR forwards each message to all next-hop INRs asso-
ciated with the destination name. The message is forwarded along the
INR overlay to all the final destination nodes that match the name.
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INRs self-configure into a spanning-tree overlay network topology,
optimizing the average delay between neighboring INRs. In construct-
ing this overlay topology, we use measurements of INR-to-INR round-
trip time. The spanning tree is used to disseminate service descriptions
as well as receiver subscriptions. Unlike other overlay networks that
maintain pre-configured, static neighbors such as the MBone [14] or
the 6Bone [17], INRs can be spawned or terminated and automati-
cally adjust their neighbor relationships based on network conditions.
They also implement load-balancing algorithms to perform better, by
spawning new resolvers on other nodes when the incoming request rate
is high and delegating portions of the namespace to the newly spawned
instances.

Figure 1 summarizes the architecture of INS, illustrating how ap-
plications and INRs interact.

2.1 Name-specifiers

INS implements intentional names using expressions called name-spe-
cifiers. Clients use name-specifiers in their message headers to identify
the desired destinations (and sources) of messages. Name-specifiers are
designed to be simple and easy to implement. The two main parts of
the name-specifier are the attribute and the value. An attribute is a
category in which an object can be classified, for example its ‘color.’
A value is the object’s classification within that category, for example,
‘red.’ Attributes and values are free-form strings2 that are defined by
applications; name-specifiers do not restrict applications to using a fixed
set of attributes and values. Together, an attribute and its associated
value form an attribute-value pair or av-pair.

A name-specifier is a hierarchical arrangement of av-pairs such that
an av-pair that is dependent on another is a descendant of it. For in-
stance, in the example name-specifier shown in Figure 2, a building
called the Whitehouse is meaningful only in the context of the city
of Washington, so the av-pair building=whitehouse is dependent on
the av-pair city=washington. Av-pairs that are orthogonal to each
other but dependent on the same av-pair, are siblings in the tree. For
example, a digital camera’s data-type and resolution can be selected
2 Attributes and values being free-form strings is not a fundamental prop-

erty; fixed length integers could be used just as easily if the bandwidth or
processing power required for handling names is a concern. Not having hu-
man readable strings makes debugging more difficult, but does not affect
normal use of the system, since applications still need to understand the
semantics of attribute and values to present them to users.
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Fig. 2. A graphical view of an example name-specifier. The hollow circles
are used to identify attributes; the filled circles identify values. The tree is
arranged such that dependent attributes are descendants, and orthogonal
attributes are siblings. This name-specifier describes a public-access camera
in the Oval office.

independently of each other, and are meaningful only in the context of
the camera service. Therefore, the av-pairs data-type=picture and
resolution=640x480 are orthogonal. This hierarchical arrangement
narrows down the search space during name resolution, and makes
name-specifiers easier to understand.

A simpler alternative would have been to construct a hierarchy of
attributes, rather than one of av-pairs. This would result in building
being directly dependent on city, rather than city=washington. How-
ever, it is also less flexible; our current hierarchy allows child attributes
to vary according to their parent value. For example, country=us has a
child that is STATE=virginia, while country=canada has a child that
is PROVINCE=ontario.

Name-specifiers have a representation (Figure 3) that is used when
they are included in a message header to describe the source and des-
tination of the message. This string-based representation was chosen
to be readable to assist with debugging, in the spirit of other string-
based protocols like HTTP [16] and NNTP [22]. Levels of nesting are
indicated by the use of brackets ([ and ]), and attributes and values
are separated by an equals sign (=). The arbitrary use of whitespace is
permitted anywhere within the name specifier, except in the middle of
attribute and value tokens.

In addition to exact-value matches, name-specifiers also permit wild-
card matching of values. To do this, the value is simply replaced by the
wild-card token (*). Thus to construct a name-specifier that refers to
all public cameras providing 640x480 pictures in the West Wing of the
Whitehouse, not just the one in the Oval Office, an application replaces
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[city = washington [building = whitehouse

[wing = west

[room = oval-office]]]]

[service = camera [data-type = picture

[format = jpg]]

[resolution = 640x480]]

[accessibility = public]

Fig. 3. The wire representation of the example name-specifier shown in Fig-
ure 2, with line-breaks and extra spacing added to improve readability.

the value oval-officewith ‘*’ in the name-specifier shown in Figures 2
and 3. We are currently incorporating inequality operators (<, >, ≤,
and ≥) to provide range selection operations in name-specifiers, to aug-
ment the matches described above.

2.2 Discovering names

Services periodically advertise their intentional names to the system
to describe what they provide. Each INR listens to these periodic an-
nouncements on a well-known port to discover services running at dif-
ferent end-nodes. INRs replicate and form an overlay network among
themselves, over which they send updates of valid names in the system.

The name discovery protocol treats name information as soft-state [9,
35], associated with a lifetime. Such state is kept alive or refreshed
whenever newer information becomes available and is discarded when
no refresh announcement is received within a lifetime. Rapid changes
due to node mobility quickly propagate through the system and new in-
formation automatically replaces old, outdated information. Soft-state
enables robust operation of the system since INRs can recover from
errors and failures automatically without much disruption because in-
correct information is updated by new messages. This choice allows
a design where applications may join and leave the system without
explicit registration and de-registration, because new names are au-
tomatically disseminated and expired names automatically eliminated
after a timeout.

When clients make name resolution requests, INRs use the informa-
tion obtained using service advertisements and INR updates to resolve
them. In addition to sending resolution requests, clients can discover
particular types of names or all known names in the system by sending
a name discovery message to an INR, specifying an intentional name for
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the INR to match with all the names it knows about. This mechanism
is useful for clients to bootstrap in a new environment.

INRs disseminate name information between each other using a
routing protocol that includes periodic updates and triggered updates
to their neighbor INRs. Each update contains the following information
about a name-specifier:

– The IP addresses for this name-specifier and a set of [port-number,
transport-type] pairs for each IP address. The port number and
transport type (e.g., HTTP [2], RTP [38], TCP [34], etc.) are re-
turned to the client to allow it to implement early binding.

– An application-advertised metric for intentional anycast and early
binding that reflects any property that the service wants anycast
routing on, such as current or average load.

– The next-hop INR and the metric, currently the INR-to-INR round-
trip latency in the overlay network for the route, used for intentional
multicast.

– A unique identifier for the announcer of the name called the An-
nouncerID, used to differentiate identical names that originate from
two different applications on the same node.

INRs use periodic updates to refresh entries in neighboring INRs
and to reliably flood names. Triggered updates occur when an INR
receives an update from one of its neighbors (either an INR or a client or
service) that contains new information (e.g., a newly discovered name-
specifier) or information that is different from the one previously known
(e.g., better metric)3.

For applications requiring intentional multicast, INRs forward the
name and payload message through the overlay network to all of the
network locations that announce a given name. In our current imple-
mentation, INRs use the distributed Bellman-Ford algorithm [1] to cal-
culate shortest path trees to those end-nodes announcing the name.
Unlike traditional routing protocols that use the algorithm [26], the
INS architecture allows multiple identical names to exist in the system.
The unique AnnouncerID ensures that routes to identical names can
be differentiated. In our implementation, applications generate an An-
nouncerID by concatenating their IP address with their startup time,
allowing multiple instances to run on the same node.
3 For inter-INR communications we could have had the INRs use reliable

TCP connections and send updates only for entries that change, perhaps
eliminating periodic updates at the expense of maintaining connection
state in the INRs. We do not explore this option further in this paper, but
intend to in the future.
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2.3 Name lookup and extraction

The central activity of an INR is to resolve name-specifiers to their
corresponding network locations. When a message arrives at an INR,
the INR performs a lookup on the destination name-specifier in its
name-tree. The lookup returns a name-record, which includes the IP
addresses of the destinations advertising the name as well as a set of
“routes” to next-hop INRs. The late binding process for anycast and
multicast do not change the name-specifiers or data in any way. By
integrating resolution with routing in the late binding process, INS
enables seamless communication between clients and services even if
the name-to-location mapping changes during the session.

The rest of this section describes how names are stored at an INR,
lookups are performed on an incoming name, and how names are ex-
tracted for periodic or triggered updates in the name discovery protocol.

Name-trees Name-trees are a data structure used to store the corre-
spondence between name-specifiers and name-records. The information
that the name-records contain are the routes to the next-hop INRs, the
IP addresses of potential final destinations, the metric for the routes,
end-node metrics for intentional anycast, and the expiration time of
the name-record.

The structure of a name-tree bears a close resemblance to a name-
specifier. Like a name-specifier, it consists of alternating levels of at-
tributes and values, but unlike a name-specifier there can be multiple
values per attribute, since the name-tree is a superposition of all the
name-specifiers the INR knows about. Each of these name-specifiers
has a pointer from each of its leaf-values to a name-record. Figure 4
depicts an example name-tree, with the example name-specifier from
Figure 2 in bold.

Name lookup The Lookup-Name algorithm, shown in Figure 5, is
used to retrieve the name-records for a particular name-specifier n from
the name-tree T . The main idea behind the algorithm is that a series of
recursive calls reduce the candidate name-record set S by intersecting
it with the name-record set consisting of the records pointed to by each
leaf-value-node. When the algorithm terminates, S contains only the
relevant name-records.
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Fig. 4. A partial graphical view of an example INR name-tree. The name-tree
consists of alternating layers of attribute-nodes, which contain orthogonal
attributes, and value-nodes, which contain possible values. Value-nodes also
contain pointers to all the name-records they correspond to. The part of the
name-tree corresponding to the example name-specifier shown in Figure 2 is
in bold.
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The algorithm starts by initializing S to the set of all possible name-
records. Then, for each av-pair of the name-specifier, it finds the cor-
responding attribute-node in the name-tree. If the value in the av-pair
is a wild card, then it computes S′ as the union of all name-records in
the subtree rooted at the corresponding attribute-node, and intersects
S with S′. If not, it finds the corresponding value-node in the name-
tree. If it reaches a leaf of either the name-specifier or the name-tree,
the algorithm intersects S with the name-records at the corresponding
value-node. If not, it makes a recursive call to compute the relevant set
from the subtree rooted at the corresponding value-node, and intersects
that with S.

This algorithm uses the assumption that omitted attributes corre-
spond to wild-cards; this is true for both queries and advertisements. A
nice property of the algorithm is that it executes in a single pass with-
out any backtracking. This also means that wild-cards should be used
only on the leaf values (any av-pairs after a wild-card will be ignored).

Section 5.1 analyses this algorithm and discusses the experimental
results of our implementation.

Name extraction To send updates to neighboring INRs, an INR
needs to get name-specifiers from its name-tree to transmit. Since the
name-tree is a superposition of all the name-specifiers the INR knows
about, extracting a single name-specifier is non-trivial. The Get-Name
algorithm, shown in Figure 6, is used to retrieve the name-specifiers
for a particular name-record r from the name-tree T . The main idea
behind the algorithm is that a name-specifier can be reconstructed
while tracing upwards to the root of the name-tree from parent of the
name-record, and grafting on to parts of the name-specifier that have
already been reconstructed.

All the value-nodes in the name-tree, T , are augmented with a
“PTR” variable, which is a pointer to the corresponding av-pair in the
name-specifier being extracted. Initially, all the PTRs are set to null,
since they have no corresponding av-pairs; the root pointer (T .PTR)
is set to point to a new, empty name-specifier. Then, for each parent
value of r, the algorithm traces upwards through the name-tree. If it
gets to part of the name-tree where there is a corresponding av-pair
(v.PTR != null), and it has a name-specifier subtree to graft on to
(s != null), it does so. If not, it creates the corresponding part of the
name-specifier, sets v.PTR to it, grafts on s if applicable, and contin-
ues the trace with the parent value of v and the new subtree. Figure 7
illustrates an in-progress execution of the algorithm.
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Lookup-Name(T ,n)
S ← the set of all possible name-records
for each av-pair p := (na, nv) in n

Ta ← the child of T such that
Ta’s attribute = na’s attribute

if Ta = null
continue

if nv = * � wild card matching
S′ ← ∅
for each Tv which is a child of Ta

S′ ← S′ ∪ all of the name-records in the
subtree rooted at Tv

S ← S ∩ S′

else � normal matching
Tv ← the child of Ta such that

Tv’s value = nv’s value
if Tv is a leaf node or p is a leaf node

S ← S ∩ the name-records of Tv

else
S ← S ∩ Lookup-Name(Tv, p)

return S∪ the name-records of T

Fig. 5. The Lookup-Name algorithm. This algorithm looks up the name-
specifier n in the name-tree T and returns all appropriate name-records.

2.4 Resolver network

To propagate updates and forward data to services and clients, the
INRs must be organized as a connected network. In our current design,
this application-level overlay network is constructed in a distributed
way by INRs self-configuring to form a spanning tree based on metrics
that reflect INR-to-INR round-trip latency. The experiments conducted
by the INRs to obtain this metric are called INR-pings, which consist
of sending a small name between INRs and measuring the time it takes
to process this message and get a response.

A list of active and candidate INRs is maintained by a well-known
entity in the system, called the Domain Space Resolver (DSR). The
DSR may be thought of as an extension to a DNS server for the ad-
ministrative domain in which we currently are, and may be replicated
for fault-tolerance. DSRs support queries to return the currently active
and candidate INRs in a domain.
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Get-Name(T ,r)
n ← a new, empty name-specifier
T .PTR ← n
for each Tv which is a parent value-node of r

Trace(Tv, null)
reset all PTRs that have been set to null
return n

Trace(Tv,n)
if Tv.PTR �= null � something to graft onto

if n �= null � something to graft
graft n as a child of Tv.PTR

else � nothing to graft onto; make it
Tv.PTR ← a new av-pair consisting of

Tv’s value and its parent’s attribute
if n �= null � something to graft

graft n as a child of Tv.PTR
Trace(parent value-node of Tv, Tv.PTR)

Fig. 6. The Get-Name algorithm. This algorithm extracts and returns the
name-specifier for the name-record r in the name-tree T . Trace implements
most of the functionality, tracing up from a leaf-value until it can graft onto
the existing name-specifier.

When a new INR comes up, it contacts the DSR to get a list of
currently active INRs. The new INR then conducts a set of INR-pings
to the currently active INRs and picks the one with the minimum value
to establish a neighbor relationship (or peer) with. If each INR does this,
the resulting topology is a spanning tree. Because the list of active INRs
is maintained by the DSR, and all the other INRs obtain the same list,
race conditions are avoided and one can impose a linear order amongst
the active INRs based on the order in which they became active in the
overlay network. Each INR on the active list, except the first one, has
at least one neighbor ahead of it in the linear order, and the resulting
graph is clearly connected by construction. Furthermore, each time a
node arrives after the first one, it peers with exactly one node, so the
number of links formed in an n−node network is n− 1. Any connected
graph with n nodes and n − 1 links must be a tree.

Of course, despite each node making a local minimization decision
from the INR-pings, the resulting spanning tree will not in general be
the minimum one. We are currently working on improving this config-
uration algorithm by designing a relaxation phase that asynchronously
changes neighbor relationships to eventually converge to an optimal
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Fig. 7. An illustration of an in-progress execution of the Get-Name algo-
rithm. The name-specifier being created is shown in gray on the left, while the
name-tree it is being created from is shown in black on the right. The parts
of the name-tree that are circled with dotted lines are the paths through the
name-tree that have been traced. The dotted arrows are used to illustrate
the assignments of the PTR variables. The thick arrows indicate the parts of
the data structures that are currently being manipulated. In this example,
the name-specifier fragment rooted at n is being grafted onto Tv.PTR, which
is part of the main name-specifier.

tree in the absence of mobility. We also note that a spanning tree may
not be a sufficiently robust overlay topology to exchange names and
perform intentional multicast, because it has several single points of
failure. We are currently exploring other algorithms for constructing
more redundant overlay structures.

2.5 Load balancing and scaling

There are two potential performance and scaling bottlenecks in the
system—lookups and name update processing. To handle excessive
lookup loads, we allow INRs to spawn instances on other candidate
(but currently inactive) resolvers, and kill themselves if they are not
loaded. To spawn an INR on a candidate node, an INR obtains the
candidate-node information from the DSR. An INR can also terminate
itself if its load falls below a threshold, informing its peers and the
DSR of this. The spanning tree overlay algorithm then adjusts to these
changes in the active INR list.
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Since INRs exchange name information with other resolvers on a
periodic basis and also via triggered updates, update scalability is a se-
rious concern. That is, after a point, the volume of name updates will
start to saturate either the available bandwidth or processing capacity
of a given resolver node. We conducted several experiments to under-
stand the bottlenecks in our design. While the link bandwidth and pro-
cessing time required for the name update protocol depends on the size
of the name-specifiers and the complexity of the name tree, we found
that the process was CPU-bound in all our experiments. On our Java
implementation between various Pentium II machines running Linux
RedHat 5.2 over 1-5 Mbps wireless links, we found that for a relatively
rapid refresh interval of 15 seconds with randomly-generated 82-byte
intentional names, the processor was saturated before the bandwidth
consumption was 1 Mbps (Figure 8). We also found that the name
processing in the name dissemination protocol dominated the lookup
processing in most of our experiments. This occurs because in this de-
sign, all the resolvers need to be aware of all the names in the system
and have to process them.
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Fig. 8. An example of a CPU-bound configuration of INS. The Pentium II
processor is saturated well before a 1mbit/s link. Numbers are shown with
refreshes happening every 15 seconds.

Based on these experiments and a better understanding of the scal-
ing bottleneck, we describe a solution that alleviates it. The idea is to



The Design and Implementation of an Intentional Naming System 139

partition the namespace into several virtual spaces, ensuring that each
resolver only needs to route for a subset of all the active virtual spaces
in the system. Conceptually, there is now one resolver overlay network
per virtual space (however, the overlays for different virtual spaces may
span the same resolver nodes).

More formally, we define a virtual space to be an application-specified
set of names that share some attributes in common. For instance, all
the cameras in building NE-43 at MIT could form the camera-ne43
virtual space, and all the devices in the building NE43 could form the
building-NE43 virtual space. In the first case, the names (services) in
the space might share the “service” (equal to “camera”) and “location”
(equal to NE-43 in MIT) attributes in common, while in the second
case, they all share the same location. INS does not assume particular
virtual space names in the system, but does require that each service
name the virtual spaces it belongs to (it may belong to multiple virtual
spaces too). Clients and applications may interact with services in any
virtual space.

An INR knows which virtual space an advertisement or query be-
longs to because it standardizes a well-known attribute, “vspace” by
which applications can express the name of their virtual space. The
names of two virtual spaces for different sets of services must not col-
lide, and we are currently exploring ways of handling this issue. Inter-
nally, an INR stores the names of different virtual spaces in separate,
self-contained name trees.
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Partitioning virtual spaces appears to be a promising way to shed
load and significantly improve the scalability of INS, especially up to
several thousand services. Based on several experiments, we found that
the processing time required for periodic updates reduces proportion-
ally when we partition the names into different virtual spaces and then
distribute them on to separate resolvers, as shown in Figure 9. If an
INR gets a request from a client to resolve for a virtual space it does
not route for, it needs to forward the request to a resolver that does.
This can be done by caching the resolvers for a small number of popular
virtual spaces, and if a cache miss occurs, sending the request to the
DSR to be resolved by an appropriate resolver.

In summary, two simple techniques hold promise for scaling the
current performance of INS. If an INR is heavily loaded because of
name lookups, it can obtain a candidate-INR list and spawn a new
INR to handle some of its current load. The configuration protocol
used by clients to pick a default INR will cause some of them to move
to the newly spawned INR. If an INR is loaded because of update
processing, it is likely that all the INRs in that virtual space are also
loaded. Therefore, the solution is not to spawn another one for the same
space, but to delegate one or more virtual spaces to a new INR network.
Our experimental results indicate that this is a promising approach to
take and we have started implementing this idea.

3 Applications

This section describes the INS API and three of the applications we
have developed using it that leverage its support for resource discovery,
mobility, and group communication. We describe Floorplan, a map-
based discovery tool for location-dependent services, Camera, a mobile
camera network, and Printer, a load-balancing printer utility.

An application uses the API to create a name-specifier for a service
and to periodically advertise it to the INR network. To discover new
services, an application uses the API to send a discovery message to
an INR to find out what services matching a given name-specifier have
been discovered by it. After discovering name-specifiers, the application
communicates with the corresponding services by using the API func-
tions to construct a message. Applications choose intentional anycast
or intentional multicast by setting the Delivery bit-flag in the message
header, and early or late binding by setting the Binding bit-flag.
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3.1 Floorplan : a service discovery tool

Floorplan is a service discovery tool that shows how various location-
based services can be discovered using the INS. As the user moves into
a new region, a map of that region pops up on her display as a building
floorplan. Floorplan learns about new services by sending a discovery
message to an INR. This message contains a name-specifier that is used
as a filter, and all the name-specifiers that match it are sent back to
the application. Floorplan uses the location and service information
contained in the returned name-specifiers to deduce the location and
the type of each service and display the appropriate icon.

An important component of Floorplan is Locator, a location server.
Rather than directly incorporate maps of regions, Floorplan retrieves
them as needed from Locator. This retrieval is done by sending a request
using a name-specifier such as:
[service=locator[entity=server]][location].

In response, Locator retrieves the desired map and sends it back to the
requesting Floorplan instance, using the requestor’s intentional name
to route the message.

As services are announced or timed out, new icons are displayed
or removed. Clicking on an icon invokes the appropriate application
for the service the icon represents. The implementation of Floorplan
deployed in our building allows users to discover a variety of services
including networked cameras (Section 3.2), printers (Section 3.3), and
device controllers for TV/MP3 players. These service providers adver-
tise name-specifiers specifying several of their attributes, including their
location in the building. For example, a camera in Room 510 advertises
the following name-specifier:
[service=camera[entity=transmitter][id=a]][room=510]

3.2 Camera: a mobile camera service

We have implemented a mobile camera service, Camera, that uses INS.
There are two types of entities in Camera: transmitters and receivers.
A receiver requests images from the camera the user has chosen (in
Floorplan) by sending requests to an intentional name that describes
it. These requests are forwarded by INRs to a Camera transmitter,
which sends back a response with the picture.

There are two possible modes of communication between camera
transmitters and receivers. The first is a request-response mode, while
the second is a subscription-style interaction that uses intentional mul-
ticast for group communication. In the request-response mode, a re-
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ceiver sends an image request to the transmitter of interest by appro-
priately naming it; the corresponding transmitter, in turn, sends back
the requested image to the receiver. To send the image back to only the
requester, the transmitter uses the id field of the receiver that uniquely
identifies it. Camera uses this to seamlessly continue in the presence of
node or camera mobility.

For example, a user who wants to request an image from a camera
in room 510 can send out a request to INRs with destination name-
specifier:
[service=camera[entity=transmitter]][room=510]

and source name-specifier:
[service=camera[entity=receiver][id=r]][room=510]

The transmitter that receives this request will send back the image with
the source and destination name-specifiers inverted from the above. The
room attribute in the destination name-specifier refers to the transmit-
ter’s location; the id attribute allows the INRs to forward the reply to
the interested receiver.

When a mobile camera moves to a different network location, it
sends out an update to an INR announcing its name from the new lo-
cation. The name discovery protocol ensures that outdated information
is removed from the name-tree, and the new name information that re-
flects the new network location will soon come into effect. Thus, any
changes in network location of a service is rapidly tracked and refreshed
by INRs, allowing applications to continue.

In addition to such network mobility, INS also allows applications to
handle service mobility. Here, a service such as a mobile camera moves
from one location to another, and its network location does not (nec-
essarily) change. However, its intentional name may change to reflect
its new location or any new properties of the new environment it has
observed, and it may now be in a position to provide the client with the
information it seeks. With intentional names, such application-specific
properties such as physical location can be expressed and tracked.

Camera uses intentional multicast to allow clients to communicate
with groups of cameras, and cameras to communicate with groups of
users. It takes advantage of the property that an intentional name can
be used not only for rich service descriptions, but also to refer to a
group of network nodes that share certain properties that are specified
in their names.

To use this feature, the Camera transmitter sends out an image
destined to all users subscribing to its images by setting the D bit-
flag to all. When an INR looks up a name-specifier, it finds all of the
network locations that match it. Rather than forwarding the data to
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just the best one of them, it sends the data to each next-hop INR for
which there is an associated network location. Similarly, a user can also
subscribe to all cameras in the building (or a subset of them named by
certain criteria).

For example, a camera transmitter located in room 510 sends out its
images to all of its subscribers at once using the following destination
name-specifier:
[service=camera [entity=receiver][id=*]][room=510]

and set the Delivery bit-flag to all. The use of wild card [id=*] refers
to all subscribers, regardless of their specific IDs.

When implementing Camera, we noticed that it would be useful to
cache pictures at various places in the network, so that requests do not
have to go back to the original server every time. To achieve this, we de-
signed an application-independent extension to INS that allows INRs to
cache data packets. Intentional names made the design of application-
independent caching rather simple. With traditional naming schemes
each application provides its own opaque names for its data units, and
today’s distributed caching schemes are tied to specific applications
(e.g., Web caches). In contrast, intentional names give applications a
rich vocabulary with which to name their data, while keeping the struc-
ture of these names understandable without any application-specific
knowledge. Thus, the intentional names can be used as a handle for a
cached object. Of course, it is still necessary to provide additional in-
formation to describe if or for how long the object should be cached; we
therefore added a small number of additional fields to the INS message
header to convey this information to the INRs.

3.3 Printer : a load-balancing printer utility

The printer client application starts when the user clicks on a printer
icon on the floorplan display. The printer client application has several
features. It can retrieve a list of jobs that are in the queue of the
printer, remove a selected job from the queue provided the user has
permission to do so, and allow the user to submit files to the printer.
Job submissions to Printer can be done in two ways, one of which uses
intentional anycast to discover the “best” printer according to location
and load characteristics.

The first submission mode is the straightforward “submit job to
name,” where the name is the printer’s intentional name. The second
mode, which is one we find useful in day-to-day use, is to submit a job
based on the user’s location. The printer servers, which are proxies for
the actual printers in our implementation, change the metrics that are
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periodically advertised to the INRs taking into account the error status,
number of enqueued jobs, the length of each one, etc. The INRs forward
jobs to the currently least-loaded printer based on these advertisements,
and inform the user of the chosen printer. Advertising a smaller metric
for a less loaded printer and using intentional anycast allows Printer
to perform automatically balance their load.

For example, to submit a file to the least-loaded printer in room 517,
the printer client sends the file with the following destination name-
specifier:
[service=printer [entity=spooler]][room=517]

and sets the Delivery bit-flag to any. Note that the name of the printer
is omitted on purpose. Using intentional anycast, INRs automatically
pick the route that has the best metric for the specified printer name-
specifier, which corresponds to the least-loaded printer in room 517.

4 Implementation

We have implemented INS and tested it using a number of applications,
including those described in the previous section. Our INR implemen-
tation is in Java, to take advantage of its cross-platform portability;
clients and services, however, are not constrained to be written in Java.
In this section, we present the details of two aspects of INS: the archi-
tecture of an INR node, and the packet formats for intentional names.

INRs use UDP to communicate with each other. At an INR, the
Node object manages all network resources. It maintains the NameTree
that is used to resolve an intentional name to its corresponding name-
record, a NodeListener that receives all incoming messages, and a
ForwardingAgent to forward messages to INRs and applications. In
addition, a NameDiscovery module implements the name discovery
protocol, and a NetworkManagement application provides a graphical
interface to monitor and debug the system, and view the name-tree. At
the client, a MobilityManager detects network movement and rebinds
the UDP socket if the IP address changes, transparent to applications.

The INR implementation consists of approximately 8500 lines of
Java code, of which about 2500 lines are for the INS API. The API sig-
nificantly eases application development—for instance, the Floorplan
and Camera applications presented in Section 3 were each implemented
in less than 400 lines of Java code (including both service and client
code, but excluding the graphical user-interface), and the Printer ap-
plication in less than 1000 lines.

Figure 10 shows the INS packet format for intentional names. The
binding bit-flag (B) is used to determine whether early or late binding
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should be used, while the delivery bit-flag (D) is used to determine
whether intentional anycast or multicast delivery should be used. Be-
cause name-specifiers are of variable length, the header contains point-
ers to the source name-specifier, destination name-specifier, and data,
which give offsets from the beginning of the packet. This allows the
forwarding agent of an INR to find the end of name-specifiers without
having to parse them. INRs do not process application data. In addi-
tion, a hop limit field decrements at each hop and limits the number
of hops a message can traverse in the overlay. The cache lifetime field
gives the lifetime the data of this packet may be cached for, with a
value of zero disallowing caching.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version
Pointer to destination name-specifier Pointer to data

Pointer to source name-specifier

Source name-specifier

Destination name-specifier

D

Hop limit

BUnused

Cache lifetime

Fig. 10. The INS message header format.

5 Performance analysis and evaluation

In this section, we analyze the performance of the INS name lookup
algorithm and present the results of our experiments with the lookup
algorithm and name discovery protocol. These experiments were all
conducted using off-the-shelf Intel Pentium II 450 MHz computers with
a 512 kb cache and 128 Mb RAM, running either Red Hat Linux 5.2
or Windows NT Server 4.0, with our software built using Sun’s Java
version 1.1.7. The network nodes were connected over wireless RF links
ranging between 1 and 5 Mbps.

5.1 Name lookup performance

Analysis To understand how INS scales with increasing lookup load,
it is important to analyze the performance of the lookup algorithm.
We analyze the worst-case run-time of the algorithm as a function of
the complexity of the incoming name-specifier and the name-tree. To
simplify the analysis, we assume that name-specifiers grow uniformly
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in the following dimensions (illustrated in Figure 11):

d One-half the depth of name-specifiers
ra Range of possible attributes in name-specifiers
rv Range of possible values in name-specifiers
na Actual number of attributes in name-specifiers

ra

rv

Name-tree Name-specifier

2d na

Fig. 11. A uniformly grown name-tree. Note that d = (tree depth)/2 = 1 for
this tree.

In each invocation, the algorithm iterates through the attributes in
the name-specifier, finding the corresponding attribute and value in the
name-tree and making a recursive call. Thus, the run-time is given by
the recurrence:

T (d) = na · (ta + tv + T (d − 1)),

where ta and tv represent the time to find the attribute and value
respectively. For now, assume that it takes time b for the base case:

T (0) = b

Setting t = ta + tv and performing the algebra yields:

T (d) = na · (t + T (d − 1))

=
nd

a − 1
na − 1

· t + nd−1
a · b

= Θ(nd
a · (t + b))

If linear search is used to find attributes and values, the running time
would be:

T (d) = Θ(nd
a · (ra + rv + b)),

because ta ∝ ra and tv ∝ rv in this case.
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However, using a straightforward hash table to find these reduces
the running time to:

T (d) = Θ(nd
a · (1 + b))

From the above analysis, it seems that the nd
a factor may suf-

fer from scaling problems if d grows large. However, both na and d,
scale up with the complexity of a single application associated with the
name-specifier. There are only as many attributes or levels to a name-
specifier as the application designer needs to describe the objects that
are used by their application. Consequently, we expect that d will be
near-constant and relatively small; indeed, all our current applications
have this property in their name-specifiers.

The cost of the base case, b, is the cost of an intersection operation
between the set of route entries at the leaf of the name-tree and the
current target route set. Taking the intersection of the two sets of size
s1 and s2 takes Θ(max(s1, s2)) time, if the two sets are sorted (as in
our implementation). In the worst case the value of b is of the order
of the size of the universal set of route entries (Θ(|U |)), but is usually
significantly smaller. Unfortunately, an average case analysis of b is
difficult to perform analytically since it depends on the number and
distribution of names.

Experiments To experimentally determine the name lookup perfor-
mance of our (untuned) Java implementation of an INR, we constructed
a large, random name-tree, and timed how long it took to perform
1000 random lookup operations on the tree. The name-tree and name-
specifiers were uniformly chosen with the same parameters as in the
analysis in Section 5.1. We varied n, the number of distinct names in
the tree, and measured lookup times. We limited the maximum heap
size of the Java interpreter to 64 Mb and set the initial allocation to
that amount to avoid artifacts from other memory allocation on the
machine. The range of our experiments was limited by the memory
required to store the distinct names to be looked up (part of the ex-
perimental apparatus) rather than the name-tree itself (which is much
more compact).

We fixed the parameters at ra = 3, rv = 3, na = 2, and d = 3,
and varied n from 100 to 14300 in increments of 100. Our results are
shown in Figure 12. For this name-tree and name-specifier structure,
our performance went from a maximum of about 900 lookups per second
to a minimum of about 700 lookups per second. This experiment gave
us a practical idea of how the base case b affects performance.
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For the same experiment, we also recorded the amount of memory
allocated by Java to the experiment; this amount should be greater than
the actual name-tree size by only a constant amount. The strings we
used for attribute and value names were only one (Unicode) character
or 16 bits long, thus the memory is representative of what a more
compact encoding of attributes and values would achieve. However the
growth of the name-tree would remain the same, since after the first
thousand names are in the name tree (where the graph curves up from
zero) all of the attributes and values that exist are stored in the name-
tree, and additional memory usage comes only from additional pointers
and name-records. Our results are shown in Figure 13. The amount
of memory allocated to the name-tree went from approximately 0.5
megabytes to 4 megabytes as the number of names was increased. We
believe that this order-of-magnitude of lookup performance is adequate
for intra-domain deployment, because of the load balancing provided
by having multiple INRs and the parallelism inherent in independent
name lookups.
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Fig. 12. Name-tree lookup performance. This graph shows how the name-
tree lookup performance of an INR varies according to the number of names
in its name-tree.

5.2 Name discovery performance

This section shows that INS is responsive to change and dynamism in
services and nodes, by discussing the performance of the name discov-
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Fig. 13. Name-tree size. This graph shows how the name-tree size varies
according to the number of names in its name-tree.

ery protocol. We measured the performance of INS in discovering new
service providers, which advertise their existence via name-specifiers.
Figure 14 shows the average discovery time of a new name-specifier as
a function of n, the number of hops in the INR network from the new
name.

When an INR observes a new name-specifier from a service ad-
vertisement, it processes the update message and performs a lookup
operation on the name-tree to see if a name-specifier with the same
AnnouncerID already exists. If it does not find it, it grafts the name-
specifier on to its name-tree and propagates a triggered update to its
neighbors. Thus, the name discovery time in a network of identical
INRs and links, Td(n) = n(Tl + Tg + Tup + d), where Tl is the lookup
time, Tg is the graft time, Tup is the update processing time, and d is
the one-way network delay between any two nodes. That is, name dis-
covery time should be linear in the number of hops. The experimental
question is what the slope of the line is, because that determines how
responsive INS is in tracking changes.

In our experiments the structure of the name-tree on each INR was
relatively constant except for the new grafts, since we were not running
any other applications in the system during the measurements. Thus,
the lookup and graft times at one INR and the others were roughly the
same. As shown in Figure 14, Td(n) is indeed linear in n, with a slope
of less than 10 ms/hop. This implies that typical discovery times are
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only a few tens of milliseconds, and dominated by network transmission
delays.
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Fig. 14. Discovery time of a new network name. This graph shows that the
time to discover a new network name is linear in the number of INR hops.

5.3 Routing performance

In addition to the lookup and discovery experiments, we also measured
the performance of the overall system when both occur simultaneously.
For these experiments, we sent a burst of one hundred 586-byte mes-
sages, gathered from the Camera application, between 15-second peri-
odic update intervals. The name specifier source and destination ad-
dresses were randomly generated, on average 82 bytes long. The results
are shown in Figure 15.

For the case in which the sender and receiver are on the same node,
the processing and routing time varies somewhat with the name-tree
size for the given virtual space, from 3.1 ms per packet with 250 names
to 19 ms per packet with 5000 names. This is partially due to the
speed of the name-tree lookups, but is also an artifact of the current
end-application delivery code, which happens to vary linearly with the
number of names. We observe a flatter line by when examining the
data for packets destined to a remote INR in the name-tree of the same
virtual space. For the most part, the next-hop processing time is about
9.8 ms per packet during the burst. In this case, name-tree lookups still
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occur, but the end-application delivery code is not invoked. This gives
a better indication of the pure lookup and forwarding performance.

When the recipient resides in a different virtual space on another
node, we observe a nearly constant time of 381 ms to resolve and route
the burst of 100 messages. This steady time comes from the node having
no knowledge of the end virtual space except for a next-hop INR ad-
dress, which is requested and cached from the DSR on the first access,
to which it can forward packets.
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Fig. 15. Processing and routing time per INR for a 100-packet burst, in the
intra-INR, inter-INR, and inter-virtual-space cases.

6 Related work

A flexible naming and resolution system for resource discovery, such as
that provided by INS, is well-suited to dynamic network environments.
INS uses a simple, expressive name language, late binding machinery
that integrates resolution and routing for intentional anycast and mul-
ticast, soft-state name dissemination protocols for robustness, and a
self-configuring resolver network.

INS is intended to complement, not replace the Internet DNS, which
maps hostnames to IP addresses. DNS names are strictly hierarchical,
whereas INS names use a more expressive attribute-based language.
Unlike DNS, name propagation in INS resembles a routing protocol,
tuned to perform rapid updates. In INS, names originate from and
are refreshed by applications that advertise them. This enables fate
sharing [9] between names and the corresponding services—if a node
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providing a service crashes, it will also cease to announce that service. In
DNS, resolvers form a static overlay network consisting of the client’s
nameserver, the root server, and the owner domain’s nameserver to
route and resolve requests, unlike the INS self-configuring overlay.

There has been some recent activity in service discovery for hetero-
geneous networks of devices. Sun’s Jini [21] provides a framework for
spontaneous distributed computing by forming a “federation of net-
worked devices” over Java’s Remote Message Invocation (RMI). Jini
does not address how resource discovery will work in a dynamic envi-
ronment or when services fail, and can benefit from INS as its resource
discovery system. Universal plug-and-play [42] uses a subset of XML to
describe resources provided by devices and, like Jini, can benefit from
INS as a discovery system. The Service Location Protocol (SLP) [44,
33] facilitates the discovery and use of heterogeneous network resources
using centralized Directory Agents. The Berkeley Service Discovery Ser-
vice (SDS) [11] extends this concept with secure, authenticated com-
munications and a fixed hierarchical structure for wide-area operation.
Unlike Jini, SLP, and SDS, INS handles dynamism via late binding,
provides intentional anycast and multicast services, has self-configuring
resolvers, and does not rely on IP multicast to perform discovery.

Numerous attribute-based directory services have been proposed in
the past. The X.500 distributed directory [7, 36] by the CCITT (now
the ITU-T) facilitates the discovery of resources by using a single global
namespace with decentralized maintenance. INS differs from X.500 in
its goals and mechanisms to achieve responsiveness and expressiveness;
INS enables late binding and uses soft-state name dissemination. The
INS resolver network is also different from the static X.500 hierarchy.
These differences arise from differences in our environment, which is a
dynamic and mobile network with little pre-configured infrastructure.

In addition to the wealth of classical literature on naming in dis-
tributed systems (e.g., Grapevine [4], Global Name Service [23], etc.),
there has been some recent research in wide-area naming and resolu-
tion. For example, Vahdat et al. [43] present a scheme for ActiveNames,
which allow applications to define arbitrary computation that executes
on names at resolvers. INS and ActiveNames share some goals in com-
mon, but differ greatly in how they achieve them. In particular, INS
does not require mobile code, relying instead on a simple but expres-
sive naming scheme to enable applications to express intent, and late
binding to be responsive to change. In addition, INS implements a self-
configuring resolver network based on network performance.

An early proposal to decouple names from object locations was de-
scribed in a paper by O’Toole and Gifford [28], where they describe
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a content naming scheme and its application to Semantic File Sys-
tems [18]. Their design and application of content names is very differ-
ent from ours, but the underlying philosophy is similar. The Discover
system [39] is an HTTP-based document discovery system that uses
query routing to forward a query to the servers that contain the re-
sult. Discover is document-centric and uses parallel processes to search
servers and merge the results.

Oki et al. introduce the Information Bus [30] to allow applications
to communicate by describing the subject of the desired data, with-
out knowing who the providers are. Other projects with a similar fla-
vor include Malan et al.’s Salamander [25] and Talarian’s SmartSock-
ets [40]. These use a flat naming scheme, do not support late binding,
and have statically configured resolvers. The idea of separating names
from network locations was also proposed by Jacobson in the context
of multicast-based self-configuring Web caches [20]. Estrin et al. build
on this, exploring a diffusion-based approach to data dissemination in
sensor networks using data attributes to instantiate forwarding state
at sensor nodes [15]. Our intentional naming scheme has some features
in common with these proposals, but differs in the details of the res-
olution, late binding and name dissemination processes, as well as the
overall resolver architecture.

Cisco’s DistributedDirector [8] resolves a URL to the IP address of
the “closest” server, based on client proximity and client-to-server link
latency. Unlike INS, DistributedDirector is not a general framework
for naming and resolution and does not integrate resolution and rout-
ing. Furthermore, each resolver is independent in DistributedDirector,
whereas they form a cooperating overlay network in INS.

IBM’s “T Spaces” [24] enable communication between applications
in a network by providing a lightweight database, over which network
nodes can perform queries. However, this system has been optimized for
relatively static client-server applications rather than for dynamic peer-
to-peer communication, and uses a central database to maintain tuple
mappings. Other architectures for object-oriented distributed comput-
ing are OMG’s CORBA [29] and the ANSA Trading Service [13], where
federated servers resolve client resolution requests.

Retaining network connectivity during mobility requires a level of
indirection so that traffic to the mobile host can be redirected to its
current location. Mobile IP [32] uses a Home Agent in the mobile host’s
home domain for this. With INS, the level of indirection to locate mo-
bile services and users is obtained using the intentional naming system,
since all traffic to the mobile service would go through the name reso-
lution process. The tight integration of naming and forwarding enables
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continued network connectivity in the face of service mobility, and the
decentralized INS architecture and name discovery protocols enhance
robustness. A number of protocols for ad hoc or infrastructure-free
routing have recently been proposed (e.g., [6]). These protocols, are
essential to enable IP connectivity, but do not provide resource discov-
ery functionality.

7 Conclusions

In this paper, we established the need for an intentional naming scheme,
where applications describe what they are looking for, not where to find
data. Our design goals were expressiveness, responsiveness, robustness
and easy configuration. We presented the design, implementation and
evaluation of an Intentional Naming System (INS) that meets these
goals. INS uses a simple naming language based on attributes and val-
ues to achieve expressiveness, integrates name resolution and message
routing to allow applications to be responsive to mobility and per-
formance changes, uses periodic service advertisements and soft-state
name dissemination protocols between replicated resolvers to achieve
robustness, and deploys self-configuring name resolvers to ease configu-
ration. The INS service model supports three types of resolution: early
binding, where an application can obtain a list of IP addresses corre-
sponding to a name, and two forms of late binding: intentional anycast
and intentional multicast. Intentional anycast forwards a message to
the “best” node satisfying a query while optimizing an application-
controlled metric, and intentional multicast forwards a message to all
names satisfying a query.

We presented the design and analysis of an efficient algorithm for
name lookups and measurements of our implementation, which show
that a Java implementation can perform between several hundred look-
ups per second (for complex name-specifiers) to a few thousand lookups
per second. We evaluated the name discovery protocol and demon-
strated that INS could disseminate information about new names in
tens of milliseconds. We also measured the the processing time for name
updates, analyzed the scaling bottlenecks, and found that namespace
partitioning is a practical technique to improve the scalability of INS.

Our experience with INS has convinced us that using intentional
names with late binding is a useful way of discovering resources in
dynamic, mobile networks, and simplifies the implementation of appli-
cations. We emphasize that INS allows applications to efficiently track
dynamic data attributes, because the choice of attributes to use in
name-specifiers is completely under application-control. We therefore
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believe that INS has the potential to become an integral part of future
device and sensor networks where decentralized, easily configurable re-
source discovery is essential.

There remain some important areas of research before the full ben-
efits of INS can be realized. First, we need to carefully expand the set
of supported operators in the resolution process, incorporating range
matches in addition to exact matches of attributes and values. Second,
the current INS architecture is intended for intra-domain deployment.
We are actively developing a wide-area architecture to scale INS to
wide-area networks. Third, the name discovery protocols need to be
tuned to use bandwidth efficiently while disseminating names; some
names are more ephemeral or more important than others, implying
that all names must not be treated equally by the soft-state dissemi-
nation protocol [35]. And perhaps most importantly, we need to incor-
porate security mechanisms in the naming architecture before a more
wide-scale deployment. Ultimately, the benefits of INS are in facilitating
the development of useful applications and services, and we are imple-
menting more applications to demonstrate the benefits of INS and to
characterize the class of applications that INS facilitates.
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Abstract. We present the design and implementation of an
end-to-end architecture for Internet host mobility using dy-
namic updates to the Domain Name System (DNS) to track
host location. Existing TCP connections are retained using se-
cure and efficient connection migration, enabling established
connections to seamlessly negotiate a change in endpoint IP
addresses without the need for a third party. Our architecture
is secure—name updates are effected via the secure DNS up-
date protocol, while TCP connection migration uses a novel
set of Migrate options—and provides a pure end-system alter-
native to routing-based approaches such as Mobile IP.

Mobile IP was designed under the principle that fixed Internet
hosts and applications were to remain unmodified and only
the underlying IP substrate should change. Our architecture
requires no changes to the unicast IP substrate, instead mod-
ifying transport protocols and applications at the end hosts.
We argue that this is not a hindrance to deployment; rather,
in a significant number of cases, it allows for an easier de-
ployment path than Mobile IP, while simultaneously giving
better performance. We compare and contrast the strengths
of end-to-end and network-layer mobility schemes, and argue
that end-to-end schemes are better suited to many common
mobile applications. Our performance experiments show that
handoff times are governed by TCP migrate latencies, and are
on the order of a round-trip time of the communicating peers.
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1 Introduction

The proliferation of mobile computing devices and wireless networking
products over the past decade has made host and service mobility on the
Internet an important problem. Delivering data to a mobile host across
a network address change without disrupting existing connections can
be tackled by introducing a level of indirection in the routing system.
This is the approach taken by Mobile IP [28, 30], which deploys a home
agent that intercepts packets destined for a host currently away from
its home network, and delivers it to the mobile host via a foreign agent
in the foreign network. This approach does not require any changes
to the fixed (correspondent) hosts in the Internet, but does require
changing the underlying IP substrate to effect this triangle routing, and
an authentication protocol to ensure that connections are not hijacked
by a malicious party. Mobile IP is a “pure” routing solution, a network-
layer scheme that requires no changes to any higher layer of the Internet
protocol stack.

There are many classes of mobile applications [17]: those where
other hosts originate connections to a mobile host and can benefit from
both host location and handoff support (e.g., a mobile Web server,
mobile telephony); those where the mobile host originates all connec-
tions, which do not require host location services but can benefit from
handoff support (e.g., mail readers, Web browsers); and those where
an application-level retry suffices if the network address changes unex-
pectedly during a short transaction, which need neither to work well
(e.g., DNS resolution). We believe that a good end-to-end architecture
for host mobility will support all these modes, and empower applica-
tions to make the choice best suited to their needs. Our architecture
is motivated by, and meets, this goal. It is an end-to-end approach; no
changes to the IP substrate are required.

In our mobility architecture, the decision of whether to support
transparent connectivity across network address changes (especially
useful for mobile servers) or not (not needed for short client-server
transactions) is left to the application. While Mobile IP-style, fully-
transparent mobility support is general and sufficient for mobile ap-
plications, this generality comes at significant cost, complexity, and
performance degradation.

To locate mobile hosts as they change their network attachment
point, we take advantage of the widely-deployed Domain Name System
(DNS) [21] and its ability to support secure dynamic updates [9, 36].
Because most Internet applications resolve hostnames to an IP address
at the beginning of a transaction or connection, this approach is viable
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for initiating new sessions with mobile hosts. When a host changes its
network attachment point (IP address), it sends a secure DNS update
to one of the name servers in its home domain updating its current lo-
cation. The name-to-address mappings for these hosts are uncacheable
by other domains, so stale bindings are eliminated.

The ability to support continuous communication during periods
of mobility without modifying the IP substrate is a more challenging
problem. Because TCP is a connection-oriented reliable protocol, many
TCP applications reasonably expect this service model in the face of
losses and transient link failures, route changes, or mobility. The two
communicating peers must securely negotiate a change in the underly-
ing network-layer IP address and then seamlessly continue communi-
cation. Furthermore, an approach that requires either communicating
peer to learn about the new network-layer address before a move oc-
curs is untenable because network-layer moves may be quite sudden
and unpredictable.

We design a new end-to-end TCP option to support the secure mi-
gration of an established TCP connection across an IP address change.
Using this option, a TCP peer can suspend an open connection and re-
activate it from another IP address, transparent to an application that
expects uninterrupted reliable communication with the peer. In this
protocol, security is achieved through the use of a connection identi-
fier, or token, which may be secured by a shared secret key negotiated
through an Elliptic Curve Diffie-Hellman (ECDH) key exchange [37]
during initial connection establishment. It requires no third party to
authenticate migration requests, thereby allowing the end points to use
whatever authentication mechanism they choose to establish a trust re-
lationship. Although we only describe details for TCP migration, we
find that this idea is general and can be implemented in a like man-
ner for specific UDP-based protocols such as the Real-time Transport
Protocol (RTP) to achieve seamless mobility for those protocols as well.

One way of thinking of our work is in the context of the end-to-
end argument [33], which observes that functionality is often best im-
plemented in a higher layer at an end system, where it can be done
according to the application’s specific requirements. We show that it
is possible to implement mobility as an end-to-end service without
network-layer support, while providing multiple mobility modes. In this
sense, this is akin to applications deciding between UDP and TCP as a
transport protocol; many opt for UDP’s simplicity and timeliness over
TCP’s reliability. In the same fashion, applications should be able to
select the mobility mode of their choice.
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The other significant advantage of handling mobility on an end-to-
end basis is that it enables higher layers like TCP and HTTP to learn
about mobility and adapt to it. For example, it is a good idea after
a network route change to restart TCP transmissions from slow start
or a window-halving [14] since the bottleneck might have changed, or
adapt the transmitted content to reflect new network conditions. These
optimizations can be made naturally if mobility is handled end-to-end,
since no extra signalling is needed. Indeed, the large body of work in
mobile-aware applications [16, 23, 26] can benefit from our architecture.

Experience with previous end-to-end enhancements such as vari-
ous TCP options (e.g., SACK [20]), path MTU discovery, HTTP/1.1,
etc., has shown that such techniques often meet with less resistance
to widespread deployment than changes to the IP substrate. This sup-
ports our belief that, in addition to the flexibility it offers, an end-to-end
approach may be successfully deployed.

We have implemented this mobility architecture in Linux 2.2 and
have conducted several experiments with it. We are encouraged by the
ease with which seamless mobility can be achieved, the flexibility it
provides, and the lack of performance degradation. Since our scheme
does not impose any triangle routing anomalies, end-to-end latency for
active connections is better than standard Mobile IP, and similar to
Mobile IP with route optimization.

The rest of this paper describes the technical details of our ap-
proach. In Section 2, we survey related work in the area of mobility
support. We describe our architecture in Section 3, and detail our new
Migrate TCP option in Section 4. We discuss the security ramifications
of our approach in Section 5 and our implementation and performance
results in Section 6. We address some deployment issues in Section 7
and conclude in Section 8.

2 Related work

The problem of Internet host mobility has been approached from many
angles in the literature, but they can be classified into two categories.
Some techniques attempt to handle host relocation in a completely
transparent fashion, hiding any changes in network structure from the
end hosts. We term these techniques network-layer mobility. By con-
trast, many other approaches attempt to handle relocation at a higher
level in the end host.
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2.1 Network-layer mobility

Mobile IP (RFC 2002) [30] is the current IETF standard for supporting
mobility on the Internet. It provides transparent support for host mo-
bility by inserting a level of indirection into the routing architecture.
By elevating the mobile host’s home address from its function as an
interface identifier to an end-point identifier (EID), Mobile IP ensures
the delivery of packets destined to a mobile host’s home address, in-
dependent of the host’s physical point of attachment to the Internet,
as reflected in its care-of address. Mobile IP does this by creating a
routing tunnel between a mobile host’s home network and its care-of
address.

Such routing tunnels need to be implemented with care because ad-
vertising explicit host routes into the wide-area routing tables destroys
routing scalability. Mobile IP uses a home agent physically attached to
the mobile host’s home network to intercept and tunnel packets to the
mobile host. Hence, packets undergo triangle routing, which is often
longer than the optimal unicast path.

Further compounding the problem is the widespread deployment of
ingress filters [10], ratified in February 2000 by the IETF as a “Best
Current Practice” to combat denial-of-service attacks. With this mech-
anism, a router does not forward packets with a source address foreign
to the local network, which implies that a packet sent by a mobile host
in a foreign network with its source address set to its home address
will not be forwarded. The solution to this is to use reverse tunneling,
which tunnels packets originating at the mobile host first to the host’s
home agent (using the host’s care-of address as a source address), and
then from there on to the destination using the home address as the
source address. Thus, routing anomalies occur in both directions.

Perkins and Johnson present a route optimization option for Mo-
bile IP to avoid triangle routing [29]. Here, correspondent hosts cache
the care-of address of mobile hosts, allowing communication to proceed
directly. It requires an authenticated message exchange from the home
agent to the correspondent host [27]. The resulting Mobile IP scheme
achieves performance almost equivalent to ours, but requires modifi-
cations to the end hosts’ IP layer1 as well as the infrastructure. In
contrast, our approach achieves secure, seamless connection migration
without a third-party home agent. It also provides a mobile host the
ability to pick a mobility mode based on the needs of its applications.
1 In fact, the draft allows on-path routers to cache the care-of addresses

instead of the end host, but this requires modifying yet another level of
infrastructure.
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IPv6 provides native support for multiple simultaneous host ad-
dresses, and Mobile IPv6 provides mobility support for IPv6 in much
the same fashion as Mobile IP for IPv4. IPv6 extensions allow for the
specification of a care-of address, which explicitly separates the role of
the EID (the host’s canonical IP address) and routing location (the
care-of address). Gupta and Reddy propose a similar redirection mech-
anism for IPv4 through the use of ICMP-like control messages which
establish care-of bindings at the end hosts [11].

Mysore and Bharghavan propose an interesting approach to network-
layer mobility [24], where each mobile host is issued a permanent Class
D IP multicast address that can serve as a unique EID. If multicast
were widely deployed, this is a promising approach; because a Class D
EID has the benefit of being directly routable by the routing infrastruc-
ture, it removes the need for an explicit care-of address. However, this
scheme requires a robust, scalable, and efficient multicast infrastructure
for a large number of sparse groups.

2.2 Higher-layer methods

The home-agent-based approach has also been applied at the transport
layer, as in MSOCKS [19], where connection redirection was achieved
using a split-connection proxy.

The general idea of using names as a level-of-indirection to handle
object and node mobility is part of computer systems folklore. For
some years now, people have talked about using the DNS to effect
the level-of-indirection needed to support host mobility, but to our
knowledge ours is the first specific and complete architecture that uses
the DNS to support Internet host mobility. Recently, Adjie-Winoto et
al. proposed the integration of name resolution and message routing in
an Intentional Naming System to implement a “late binding” option
that tracks highly mobile services and nodes [2], and it seems possible to
improve the performance of that scheme using our connection migration
approach.

Our approach differs fundamentally from EID/locator techniques
since it requires no additional level of global addressing or indirec-
tion, but only a (normally pre-existing) DNS entry and a shared con-
nection key between the two end hosts. Furthermore, unlike previ-
ous connection-ID draft proposals such as Huitema’s ETCP [12] for
TCP connection re-addressing, it requires no modification to the TCP
header, packet format, or semantics.2 Instead, it uses an additional
2 Special RST handling is required on some networks that may rapidly re-

assign IP addresses; Section 4.5 discusses this issue.
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TCP option and the inserts an additional field into the Transmission
Control Block (TCB).

There is a large body of work relating to improving TCP perfor-
mance in wireless and mobile environments [6, 7]. While not the focus
of our work, our adherence to standard TCP semantics allows these
schemes to continue to work well in our architecture. Furthermore,
since end hosts are explicitly notified of mobility, significant perfor-
mance enhancements can be achieved at the application level [26].

3 An end-to-end architecture

In this section, we describe our end-system mobility architecture. There
are three important components in this system: addressing, mobile host
location, and connection migration. By giving the mobile host explicit
control over its mobility mode, we remove the need for an additional
(third-party) home-agent to broker packet routing. The DNS already
provides a host location service, and any further control is managed
by the communicating peers themselves, triggered by the mobile host
when it changes network location.

We assume, like most mobility schemes, that mobile hosts do not
change IP addresses more than a few times a minute. We believe this
is a reasonable assumption for most common cases of mobility. We em-
phasize that this does not preclude physical mobility at rapid velocities
across a homogeneous link technology, since that can be handled at the
physical and link layers, e.g., via link-layer bridging [13].

The rest of this section discusses addressing in a foreign network
and host location using the DNS. Section 4 is devoted to a detailed
description of TCP connection migration.

3.1 Addressing

The key to the scalability of the Internet architecture is that the IP
address serves as a routing locator, reflecting the addressee’s point of
attachment in the network topology. This enables aggregation based on
address prefixes and allows routing to scale well. Our mobility archi-
tecture explicitly preserves this crucial property of Internet addressing.

Like Mobile IP, we separate the issues of obtaining an IP address
in a foreign domain from locating and seamlessly communicating with
mobile hosts. Any suitable mechanism for address allocation may be
employed, such as manual assignment, the Dynamic Host Configuration
Protocol (DHCP) [8], or an autoconfiguration protocol [35].
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While IP addresses fundamentally denote a point of attachment in
the Internet topology and say nothing about the identity of the host
that may be connected to that attachment point, they have implicitly
become associated with other properties as well. For example, they
are often used to specify security and access policies as in the case of
ingress filtering to alleviate denial-of-service attacks. Our architecture
works without violating this trust model and does not require any form
of forward or reverse tunneling to maintain seamless connectivity. In a
foreign network, a mobile host uses a locally obtained interface address
valid in the foreign domain as its source address while communicating
with other Internet hosts.

3.2 Locating a mobile host

Once a mobile host obtains an IP address, there are two ways in which
it can communicate with correspondent hosts. First, as a client, when it
actively opens connections to the correspondent host. In this case, there
is no special host location task to be performed in our architecture;
using the DNS as before works. However, if the mobile host were to
move to another network attachment point during a connection, a new
address would be obtained as described in the previous section, and the
current connection would continue seamlessly via a secure negotiation
with the communicating peer as described in Section 4. If a mobile host
were always a client (not an uncommon case today), then no updates
need to be made to any third party such as a home agent or the DNS.

To support mobile servers and other applications where Internet
hosts actively originate communication with a mobile host, we use the
DNS to provide a level of indirection between a host’s current loca-
tion and an invariant end-point identifier. In Mobile IP, a host’s home
address is the invariant, and all routing (in the absence of route opti-
mization) occurs via the home agent that intercepts packets destined to
this invariant. Ours is not a network-layer solution and we can therefore
avoid the indirection for every packet transmission. We take advantage
of the fact that a hostname lookup is ubiquitously done by most ap-
plications that originate communication with a network host, and use
the DNS name as the invariant. We believe that this is a good ar-
chitectural model: a DNS name identifies a host and does not assume
anything about the network attachment point to which it may currently
be attached, and the indirection occurs only when the initial lookup is
done via a control message (a DNS lookup).

This implies that when the mobile host changes its attachment
point, it must detect this and change the hostname-to-address (“A-
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record”) mapping in the DNS. Fortunately, both tasks are easy to ac-
complish, the former by using a user-level daemon as in Mobile IP, and
the latter by using the well-understood and widely available secure DNS
update protocol [9, 36]. We note that some DHCP servers today issue
a DNS update at client boot time when handing out a new address to
a known client based on a static MAC-to-DNS table. This augurs well
for the incremental deployability of our architecture, since DNS update
support is widely available.

The DNS provides a mechanism by which name resolvers can cache
name mappings for some period of time, specified in the time-to-live
(TTL) field of the A-record. To avoid a stale mapping from being used
from the name cache, we set the time-to-live (TTL) field for the A-
record of the name of the mobile host to zero, which prevents this
from being cached.3 Contrary to what some might expect, this does
not cause a significant scaling problem; name lookups for an uncached
A-record do not have to start from a root name server, because in
general the “NS-record” (name server record) of the mobile host’s DNS
name is cacheable for a long period of time (many hours by default).
This causes the name lookup to start at the name server of the mobile
host’s domain, which scales well because of administrative delegation
of the namespace and DNS server replication in any domain. We note
that some content distribution networks for Web server replication of
popular sites use the same approach of small-to-zero TTL values to
redirect client requests to appropriate servers (e.g., Akamai [3]). There
is no central hot spot because the name server records for a domain are
themselves cacheable for relatively long periods of time.

Even with uncacheable DNS entries there still exists a possible race
condition where a mobile host moves between when a correspondent
host receives the result of its DNS query and when it initiates a TCP
connection. Assuming a mobile host updates its DNS entry immediately
upon reconnection, the chances of such an occurrence are quite small,
but non-zero, especially for a mobile host that makes frequent moves.
In this case, the correspondent host will attempt to open a TCP con-
nection to the mobile host’s old address, and has no automatic fail-over
mechanism.

In this case, the application must perform another DNS lookup to
find the new location of the mobile host. We note that the trend to-
wards dynamic DNS records has caused such application-level retries to
find their way into applications already—for instance, current FreeBSD
telnet and rsh applications try alternate addresses if an initial connec-

3 Modern versions of BIND honor this correctly.
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tion fails to a host that has multiple DNS A-records. It seems to be only
a minor addition to refresh DNS bindings if connection establishment
fails.

4 TCP connection migration

A TCP connection [32] is uniquely identified by a 4-tuple: 〈source ad-
dress, source port, dest address, dest port〉. Packets addressed to a dif-
ferent address, even if successfully delivered to the TCP stack on the
mobile host, must not be demultiplexed to a connection established
from a different address. Similarly, packets from a new address are also
not associated with connections established from a previous address.
This is crucial to the proper operation of servers on well-known ports.

We propose a new Migrate TCP option, included in SYN segments,
that identifies a SYN packet as part of a previously established con-
nection, rather than a request for a new connection. This Migrate op-
tion contains a token that identifies a previously established connection
on the same destination 〈address, port〉 pair. The token is negotiated
during initial connection establishment through the use of a Migrate-
Permitted option. After a successful token negotiation, TCP connec-
tions may be uniquely identified by either their traditional 〈source ad-
dress, source port, dest address, dest port〉 4-tuple, or a new 〈source
address, source port, token〉 triple on each host.

A mobile host may restart a previously-established TCP connection
from a new address by sending a special Migrate SYN packet that
contains the token identifying the previous connection. The fixed host
will than re-synchronize the connection with the mobile host at the
new end point. A migrated connection maintains the same control block
and state (with a different end point, of course), including the sequence
number space, so any necessary retransmissions can be requested in the
standard fashion. This also ensures that SACK and any similar options
continue to operate properly. Furthermore, any options negotiated on
the initial SYN exchange remain in effect after connection migration,
and need not be resent in a Migrate SYN.4

Since SYN segments consume a byte in the TCP sequence number
space, Migrate SYNs are issued with the same sequence number as
the last transmitted byte of data. This results in two bytes of data
in a migrated TCP connection with the same sequence number (the
4 They can be, if needed. For example, it might be useful to renegotiate a

new maximum segment size (MSS) reflecting the properties of the new
path. We have not yet explored this in detail.



An End-to-End Approach to Host Mobility 169

new SYN and the previously-transmitted actual data), but this is not
a problem since the Migrate SYN segment need never be explicitly
acknowledged. Any packet received from the fixed host by a migrating
host at the mobile host’s new address that has a sequence number in the
appropriate window for the current connection implicitly acknowledges
the Migrate SYN. Similarly, any further segments from the mobile host
provide the fixed host an implicit acknowledgement of its SYN/ACK.
Thus, there is exactly one byte in the sequence space that needs explicit
acknowledgement even when the Migrate SYN is used.

4.1 An example

SYN 531521:531521(0)〈migrateOk km〉, 〈timestamp Tm〉, . . .

SYN 083521:083521(0)

ack 531522, 〈migrateOk kf 〉, 〈timestamp Tf 〉, . . .

ack 083522

545431:545967(53
6)

ack 092398

SYN 092397:092397(0)〈migrate T ,R〉

SYN 545967:545967(0)

ack 092398

ack 545968

mobile fixed

1

2

3

4

5

6

7

Fig. 1. TCP Connection Migration

Figure 1 shows a sample connection where a mobile client connects
to a fixed host and later moves to a new address. The mobile client ini-
tiates the TCP connection in standard fashion in message 1, including
a Migrate-Permitted option in the SYN packet. The values km and Tm

are parameters used in the token negotiation, described in Section 4.3.
The fixed server, with a migrate-compliant TCP stack, indicates its
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acceptance of the Migrate-Permitted option by including the Migrate-
Permitted option in its response (message 2). The client completes the
three-way handshake with message 3, an ACK. The connection then
proceeds as any other TCP connection would, until message 4, the last
packet from the fixed host to the mobile host at its current address.

At some time later the mobile host moves to a new address, and
notifies the fixed server by sending a SYN packet from its new address
in message 5. This SYN includes the Migrate option, which contains the
previously computed connection token as part of a migration request.
Note that the sequence number of this Migrate SYN segment is the
same as the last byte of transmitted data. The server responds in kind
in message 6, also using the sequence number of its last transmitted
byte of data. The ACK, however, is from the same sequence space as
the previous connection. While in this example it acknowledges the
same sequence number as the SYN that generated it, it could be the
case that segments were lost during a period of disconnect while the
mobile host moves, and that the ACK will be a duplicate ACK for the
last successfully received in-sequence byte. Since it is addressed to the
mobile host’s new location, however, it serves as an implicit ACK of the
SYN as well. Upon receipt of this SYN/ACK, the mobile host similarly
ACKs in the previous sequence space, and the connection resumes as
before. All of the options negotiated on the initial SYN except the
Migrate-Permitted option are still in effect, and need not be replicated
in this or any subsequent migrations.

4.2 Securing the migration

It is possible to partially hijack TCP connections if an attacker can
guess the sequence space being used by the connection [22]. With the
Migrate options, an attacker who can guess both the sequence space
and the connection token can hijack the connection completely. Fur-
thermore, the ability to generate a Migrate SYN from anywhere greatly
increases the connection’s exposure. While ingress filtering can be used
to prevent connection hijacking by attackers not on the path between
the end hosts, such methods are ineffective in our case. We must there-
fore take care to secure the connection token.

The problem is relatively easy to solve if IP security (IPsec) [5]
were deployed. While the spectrum of approaches that could be used
is outside the scope of this paper, we note that IPsec provides suffi-
cient mechanisms to secure migrateable connections. Currently, how-
ever, IPsec has not found wide-spread deployment. Hence, we provide
a mechanism to self-secure the Migrate options. End hosts may elect
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to secretly negotiate an unguessable connection token, which then re-
duces the security of a migrateable TCP connection to that of a stan-
dard TCP connection, since no additional attacks are possible against
a migrateable connection without guessing the token, and any attack
against a standard TCP connection clearly remains feasible against a
migrateable TCP connection.

An unguessable connection token is secured with a secret connection
key. Since any host that obtains the connection key could fabricate the
token and issue a Migrate request, we select the key with an Elliptic
Curve Diffie-Hellman key exchange [37], as described below. Hosts using
IPsec, or unconcerned with connection security, may choose to disable
key negotiation to avoid excess computation.

4.3 Migrate-permitted option

Hosts wishing to initiate a migrateable TCP connection send a Migrate-
Permitted option in the initial SYN segment. Similar to the SACK-
Permitted option [20], it should only be sent on SYN segments, and
not during an established connection. Additionally, hosts wishing to
cryptographically secure the connection token may conduct an Elliptic
Curve Diffie-Hellman (ECDH) key exchange through the option nego-
tiation. (Elliptic Curve Diffie-Hellman is preferred to other methods
of key establishment due to its high security-to-bit-length ratio. Read-
ers unfamiliar with Elliptic Curve cryptography can find the necessary
background material in [4].)

Kind: 15 Length = 3/20 Curve Name ECDH PK

ECDH Public Key (cont.)

ECDH Public Key (cont.)

ECDH Public Key (cont.)

ECDH Public Key (cont.)

Fig. 2. TCP Migrate-Permitted option

As seen in figure 2, the Migrate-Permitted option comes in two
variants—the insecure version, of length 3, and the secure version, with
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length 20. The secure version is used to negotiate a secret connection
key, and contains an 8-bit Curve Name and a 136-bit ECDH Public
Key fragment. The curve name field selects a particular set of domain
parameters (the curve, underlying finite field, F , and its representation,
the generating point, P , and the order of P , n), as specified in [4]. Use
of the insecure version, which contains only a Curve Name field (which
must be set to zero) allows the end host to skip the key negotiation
process. In that case, the connection key is set to all zeros.

The secure variant of the Migrate-Permitted option also requires
the use of the Timestamp [15] option in order to store up to 200 bits
of ECDH keying material. The EDCH Public Key is encoded using
the compressed conversion routine described in [4, Section 4.3.6]. The
136 least-significant bits are stored in the EDCH Public Key field of
the Migrate-Permitted option, while the remaining 64 bits of the key
are encoded in the Timestamp option. The timestamp option, while
often included, is not used on SYN segments. The Protection Against
Wrapped Sequence Numbers (PAWS) [15] check is only performed on
synchronized connections, which by definition [32] includes only seg-
ments after the three-way handshake. Similarly, the Round-Trip Time
Measurement (RTTM) [15] procedure only functions when a times-
tamp has been echoed—clearly this is never the case on an initial SYN
segment. Hence the value of the Timestamp option on SYN segments
is entirely irrelevant to current TCP stacks. Legacy TCP stacks will
never receive a Migrate-Permitted option on a SYN/ACK, hence the
Timestamp option will be processed normally. Special handling is only
required for the SYN/ACK and following ACK segment on connec-
tions that have negotiated the Migrate-Permitted option, as Times-
tamp fields on these segments will not contain timestamps. Hence the
RTTM algorithm must not be invoked for SYN/ACK or initial ACK
segments of connections that have negotiated the Migrate-Permitted
option.

The Timestamp TSVal field contains the 32 most-significant bits
of the public key, while the TSecr field contains the next 32 most-
significant bits. These two components, combined with the 136-bit
EDCH Public Key field of the Migrate-Permitted option, constitute
the host’s public key, k. If the public key is less than 200 bits, it is
left-padded with zeros. For any host, i, ki is generated by selecting a
random number, Xi ∈ [1, n − 1], where n is the order of P , and com-
puting

ki = Xi ∗ P

The ∗ operation is the scalar multiplication operation over the field F .
The security of the connection hinges on the secrecy of the negotiated
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key, hence Xi should be randomly generated and stored in the con-
trol block for each new connection. Any necessary retransmissions of
the SYN or SYN/ACK must include identical values for the Migrate-
Permitted and Timestamp option.

Upon receipt of an initial SYN with a Migrate-Permitted option, a
host, j, with a compliant TCP stack must include a Migrate-Permitted
option (and a Timestamp option if the secure variant is used) in its
SYN/ACK segment. It similarly selects a random Xj ∈ [1, n−1] which
it uses to construct kj , its public key, which it sends in the same fashion.

After the initiating host’s reception of the SYN/ACK with the
Migrate-Permitted and Timestamp options, both hosts can then com-
pute a shared secret key, K, as specified in [37]:

K = ki ∗ Xj = kj ∗ Xi

This secret key is then used to compute a connection validation to-
ken. This token, T , is computed by hashing together the key and the
initial sequence numbers Ni and Nj using the Secure Hash Algorithm
(SHA-1) [25] in the following fashion (recall that host i initiated the
connection with an active open, and host j is performing a passive
open):

T = SHA1(Ni, Nj , K)

While SHA-1 produces a 160-bit hash, all but the 64 most-significant
bits are discarded, resulting in a cryptographically-secure 64-bit token
that is unique to the particular connection. Since SHA-1 is collision-
resistant, the chance that another connection on the same 〈address,
port〉 pair has an identical token is extremely unlikely. If a collision is
detected, however, the connection must be aborted by sending a RST
segment. (The host performing a passive open can check for collisions
before issuing a SYN/ACK, and select a new random Xj until a unique
token is obtained. Hence the only chance of collision occurs on the host
performing the active open.)

4.4 Migrate option

The Migrate option is used to request the migration of a currently
open TCP connection to a new address. It is sent in a SYN segment
to a host with which a previously-established connection already exists
(in the ESTABLISHED or FIN WAIT states), over which the Migrate-
Permitted option has been negotiated.

There are two 64-bit fields in a Migrate option: a token, and a re-
quest. In addition, there is an 8-bit sequence number field, reqNo, which
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Kind: 16 Length = 19 ReqNo

Token

Token (cont.)

Request

Request (cont.)

Fig. 3. TCP Migrate option

must be monotonically increasing with each new migrate request is-
sued by an end host for a connection. (The sequence number allows
correspondent hosts to ensure Migrate SYNs were not reordered by
the network. Sequence space wrap-around is dealt with in the standard
fashion.) The token is simply the 64 most-significant bits of the con-
nection’s SHA-1 hash as computed in the Migrate-Permitted option
exchange. The request, R, is similarly the 64 most-significant bits of
a SHA-1 hash calculated from the sequence number of the connection
initial sequence numbers N , Migrate SYN segment, S, the connection
key, K, and the request sequence number, I.

R = SHA1(Ni, Nj , K, S, I)

SYN segments may now correctly arrive on a bound port not in the
LISTEN state. They should be processed only if they contain the Mi-
grate option as specified above. Otherwise, they should be treated as
specified in [32]. Upon receipt of a SYN packet with the Migrate option,
a TCP stack that supports migration attempts to locate the connection
on the receiving port with the corresponding token. The token values
for each connection were precomputed at connection establishment, re-
ducing the search to a hash lookup.

If the token is valid, meaning an established connection on this
〈address, port〉 pair has the same token, and the reqNo is greater than
any previously received migrate request, the fixed host then computes
R = SHA1(Ni, Nj , K, S, I) as described above, and compares it with
the value of the request in the Migrate SYN. If the comparison fails, or
the token was invalid, a RST is sent to the address and port issuing the
Migrate SYN, and the SYN ignored. If, on the other hand, the token and
request are valid, but the reqNo is smaller than a previously received
request, the SYN is assumed to be out-of-order and silently discarded.
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If the reqNo is identical to the most recently received migrate request
this SYN is assumed to be a duplicate of the most recently received
SYN, and processed accordingly.

Otherwise, the destination address and port5 associated with the
matching connection should be updated to reflect the source of the Mi-
grate SYN, and a SYN/ACK packet generated, with the ACK field set
to the last received contiguous byte of data, and the connection placed
in the SYN RCVD state. Upon receipt of an ACK, the connection con-
tinues as before.

4.5 MIGRATE WAIT state

This section assumes that the reader is familiar with the TCP state
machine and transitions [34, Chapter 18].

Special processing of TCP RST messages is required with migrate-
able connections, as a mobile host’s old IP address may be reassigned
before it has issued a migrate request to the fixed host. Figure 4 shows
the modified TCP state transition diagram for connections that have
successfully negotiated the Migrate-Permitted option. The receipt of
a RST that passes the standard sequence number checks in the ES-
TABLISHED state does not immediately terminate the connection,
as specified in [32]. Instead, the connection is placed into a new MI-
GRATE WAIT state. (A similar, but far less likely situation can occur
if the fixed host is in the FIN WAIT1 state—the application on the
fixed host has closed the connection, but there remains data in the
connection buffer to be transmitted. For simplicity, these additional
state transitions are not shown in figure 4.)

Connections in the MIGRATE WAIT state function as if they were
in the ESTABLISHED state, except that they do not emit any seg-
ments (data or ACKs), and are moved to CLOSED if they remain in
MIGRATE WAIT for over a specified period of time. We recommend
using the 2MSL ([32] specifies a Maximum Segment Lifetime (MSL) as
2 minutes, but common implementations also use values of 1 minute or
30 seconds for MSL [34]) period of time specified for the TIME WAIT
state.

Any segments received while in the MIGRATE WAIT state should
be processed as in the ESTABLISHED state, except that no ACKs
should be generated. The only way a connection is removed from the
MIGRATE WAIT state is on the receipt of a Migrate SYN with the
5 Migrated connections will generally originate from the same port as before.

However, if the mobile host is behind a NAT, it is possible the connection
has been mapped to a different port.
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corresponding connection key. The connection then responds in the
same fashion as if it were in the ESTABLISHED state when it received
the SYN.

The MIGRATE WAIT state prevents connections from being inad-
vertently dropped if the address allocation policy on the mobile host’s
previous network reassigns the mobile host’s old IP address before the
mobile host has reconnected at a new location and had a chance to
migrate the connection. It also prevents the continued retransmission
of data to an unreachable host.

This passive approach to disconnection discovery is preferred over
an active, mobile-initiated squelch message because any such message
could be lost.6 Furthermore, a mobile host may not have sufficient (if
any) notice of address reassignment to issue such messages. As an added
performance enhancement, however, mobile hosts aware of an impend-
ing migration may themselves emit a special RST to the peer, which
will force the connection into MIGRATE WAIT, preventing additional
packet transmission until the mobile host has successfully relocated,
although such action invokes the strict 2MSL time bound on the allow-
able delay for host relocation and connection migration.

5 Security issues

An end-to-end approach to mobility simplifies the trust relationships
required to securely support end-host mobility compared to network-
layer approaches such as Mobile IP. In addition to the relationship
between a mobile host and any proxies or home agents, several Mobile
IP-based proposals require that a correspondent host in communica-
tion with a mobile host assume the responsibility of authenticating
communication with an arbitrary set of foreign agents. In their route
optimization draft [29], Perkins and Johnson state:

One of the most difficult aspects of Route Optimization for Mo-
bile IP in the Internet today is that of providing authentication
for all messages that affect the routing of datagrams to a mobile
node.

Since no third parties are required or even authorized to speak on
the mobile host’s behalf in an end-to-end architecture, the only trust
relationship required for secure relocation is between the mobile and
correspondent host. Clearly they already must have a level of trust
6 And any guaranteed-reliable transmission mechanism could take un-

bounded time.
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commensurate with the nature of their communications since they chose
to communicate in the first place.

Regardless of the simplicity of trust relationships, there remains
the possibility that untrusted parties could launch attacks against the
end hosts or connections between them utilizing either dynamic DNS
updates or the Migrate and Migrate-Permitted options. The security
of dynamic DNS updates is addressed in RFC 2137 [9], resting on the
strength of the digital signature scheme used to authenticate mobile
hosts.

Possible attacks against the Migrate TCP options include both
denial-of-service attacks and methods of migrating connections away
from their appropriate end hosts. We discuss these attacks below, and
either show why the Migrate options are not vulnerable, or explain why
the attack presents no additional threat in relation to standard TCP.

5.1 Denial of service

SYN flooding is a common form of Denial-of-Service (DoS) attack, and
most modern TCP implementations have taken great care to avoid
consuming unnecessary resources unless a three-way handshake is com-
plete. To validate a Migrate request, the correspondent host performs
a significant computation (the SHA-1 hash), which implies we need to
be especially vigilant against DoS attacks that attempt to deplete the
CPU resources of a target host. The validation is not performed unless
an attacker succeeds in guessing a valid, pre-computable token (with
a 1 in 264 probability); since a RST message is generated if either the
token or the request is invalid, an attacker has no way to identify when
it has found a valid token. Because a would-be attacker would therefore
have to issue roughly 263 Migrate SYNs to force a request validation, we
argue that the TCP Migrate option does not introduce any additional
DoS concerns above standard TCP.

5.2 Connection hijacking

Since a Migrate request contains a hash of both the SYN segment’s
sequence number and migrate request sequence number, a replayed
Migrate option can only be used until either a new byte of data or an-
other migrate connection is sent on the connection. Since self-migration
is not allowed, duplicate Migrate SYNs (received outside of the three-
way handshake) are ignored by the peer TCP. If, however, the mobile
host moves rapidly to a another new location, a replayed Migrate SYN
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could be used to migrate the connection back to the mobile host’s pre-
vious IP, which may have been subsequently assumed by the attacker.
In order to prevent this attack, the Migrate Request option processing
ignores the source address and port in duplicate packets, as a valid
request from a relocated mobile host would include a higher request
number.

More worrisome, however, is the fact that once a Migrate SYN has
been transmitted, the token is known by any hosts on the new path,
and denial-of-service attacks could be launched by sending bogus Mi-
grate SYNs with valid tokens. If a mobile host includes a new Migrate-
Permitted option in its Migrate SYN, however, the window of opportu-
nity when the previous connection token can be used (if it was snooped)
is quite small—only until the new three-way handshake is successfully
completed.

5.3 Key security

The connection key used by the Migrate option is negotiated via Ellip-
tic Curve Diffie-Hellman to make it extremely difficult even for hosts
that can eavesdrop on the connection in both directions to guess the
key. Without sufficient information to verify possible keys off-line, an
attacker would have to continually generate Migrate SYNs and trans-
mit them to one of the end hosts, hoping to receive a SYN/ACK in
response to a correct guess. Clearly such an attack is of little concern
in practice, as the expected 263 SYN packets required to successfully
guess the key would generate sufficient load as to be a DoS problem in
and of themselves.

Hosts that lie on the path between end hosts, however, have suffi-
cient information (namely the two Elliptic Curve Diffie-Hellman com-
ponents) to launch an attack against the Elliptic Curve system it-
self. The best known attack is a distributed version of Pollard’s rho-
algorithm [31], which [18] uses to show that a 193-bit EC system would
require 8.52 · 1014 MIPS years, or about 1.89 · 1012 years on a 450Mhz
Pentium II, to defeat.

While this seems more than secure against ordinary attackers, an
extremely well-financed attacker might be able to launch such an attack
on a long-running connection in the not-too-distant future. The obvious
response is to increase the key space. Unfortunately, we are restricted
by the 40-byte limitation on TCP options. Given the prevalence of the
MSS (4 bytes), Window Scale (3 bytes), SACK Permitted (2 bytes), and
Timestamp (10 bytes) options (of which we are already using 8 bytes) in
today’s SYN segments, the 20-byte Migrate-Permitted option is already



180 Alex C. Snoeren and Hari Balakrishnan

as large as is feasible. We argue that further securing the connection
key against brute-force attacks from hosts on the path between the two
end hosts is largely irrelevant, given the ability of such hosts to launch
man-in-the-middle attacks against TCP with much less difficulty!

The security of TCP connections, migrateable or not, continues to
remain with the authentication of end hosts, and the establishment of
strong session keys to authenticate ongoing communication. Although
we have taken care to ensure the Migrate option does not further de-
crease the security of TCP connections, the latter are inherently inse-
cure, as IP address spoofing and sequence number guessing are not very
difficult. Hence we strongly caution users concerned with connection se-
curity to use additional application-layer cryptographic techniques to
authenticate end points and the payload traffic.

5.4 IPsec

When used in conjunction with IPsec [5], there are additional issues
raised by the use of the Migrate options. IPsec Security Associations
(SAs) are established on an IP-address basis. When a connection with
an associated SA is migrated, a new SA must be established with the
new destination address before communication is resumed. If the estab-
lishment of a this new SA conflicts with existing policy, the connection
is dropped. This seemingly unfortunate result is actually appropriate.
Since IPsec’s Security Policy Database (SPD) is keyed on IP network
address, the policies specified within speak to a belief about the trust-
worthiness of a particular portion of the network.

If a mobile host attaches to a foreign network, any security assump-
tions based on its normal point of attachment are invalid. If the end
host itself continues to have sufficient credentials independent of its
point of attachment, an end-to-end authentication method should be
used, and a secure tunnel established for communication over the un-
trusted network. A discussion of such techniques is outside of the scope
of this document.

6 Implementation

We have implemented this architecture in the Linux 2.2.15 kernel, using
Bind 8.2.2-P3 as the name server for mobile hosts. The IPv4 TCP
stack has been modified to support the Migrate options. Connection
migration can be affected through two methods. Applications with open
connections may explicitly request a migration by issuing an ioctl()
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on the connection’s file descriptor specifying the address to migrate to.
Most current applications, however, lack a notification method so the
system can inform them the host has moved. Hence we also provide
a mechanism for processes to migrate open connections, regardless of
whether they have the file descriptor open or not.

This is done through the Linux /proc file system. A directory
/proc/net/migrate contains files of the form source address:source
port->dest address:dest port for each open connection that has success-
fully negotiated the Migrate-Permitted option. These files are owned
by the user associated with the process that opened the connection.
Any process with appropriate permissions can then write a new IP
address to these files, causing the corresponding connection to be mi-
grated to the specified address. This method has the added benefit of
being readily accessed by a user directly through the command line.

It is expected that mobile hosts will run a mobility daemon that
tracks current points of network attachment, and migrates open con-
nections based on some policy about the user’s preference for certain
methods of attachment. For instance, when an 802.11 interface comes
up on a laptop that previously established connections on a CDPD
link, it seems likely that the user would opt to migrate most open con-
nections to the address associated with the 802.11 link. Similarly the
daemon could watch for address changes on attached interfaces (possi-
bly as a result of DHCP lease expirations and renewals) and migrate
connections appropriately. We plan to implement such a daemon in the
near future.

6.1 Experiments

Figure 5 shows the network topology used to gather the TCP traces
shown in figures 6 and 7. The traces were collected at the fixed basesta-
tion, which is on the path between the fixed host and both mobile host
locations. We conducted TCP bulk transfers from a server on the fixed
host to a client on the mobile host. The client initiates the connection
from one location, and migrates to another location at some later point.
Both mobile host locations use identical connections, a 19.2Kbps serial
link with ≈100ms round-trip latency. The basestation and fixed host
are on a 100Mbps Ethernet segment, hence the link to the mobile host
is the connection bottleneck. This topology is intentionally simple in
order to isolate the various subtleties of migrating TCP connections,
as discussed below.

Figure 6 shows the TCP sequence trace of a migrated TCP connec-
tion. At time t ≈ 4.9s the mobile host moved to a new address and
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Fig. 5. Network topology used for migration experiments
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Fig. 6. A TCP connection sequence trace showing the migration of
an open connection
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issued a Migrate SYN, as depicted by the dotted line. Since the host
is no longer attached at its previous address, all of the enqueued seg-
ments at the bottleneck are lost. (The amount of lost data is bounded
by the advertised receive window of the mobile host. A host that moves
frequently across low-bandwidth connections may wish to advertise a
smaller receive window to reduce the number of wasted segments.) Fi-
nally, at t ≈ 6.8s the fixed host’s SYN/ACK passes through the bot-
tleneck, and is ACKed by the fixed host a RTT later.

The fixed host does not immediately restart data transmissions be-
cause the TCP Migrate options do not change the congestion-avoidance
or retransmission behavior of TCP. The sender is still waiting for ACKs
for the lost segments; as far as it is concerned, it has only received two
(identical) ACKs—the original ACK, and one duplicate as part of the
Migrate SYN three-way handshake.

Finally, at t ≈ 7.8s the retransmission timer expires (the interval is
from the first ACK, sent earlier at t ≈ 4.9s) and the fixed host retrans-
mits the first of the lost segments. It is immediately acknowledged by
the mobile host, and TCP resumes transmission in slow-start after the
timeout.
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Fig. 7. A TCP Migrate connection (with SACK) sequence trace
with losses just before migration

Figure 7 shows the TCP sequence trace of a similar migrate TCP
connection. As before, the dashed line indicates the mobile host issued a
migrate request at time t ≈ 27.1s. This time, however, there were addi-
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tional losses on the connection that occurred just before the migration,
as can be seen at t ≈ 24.9s. These segments are fast-retransmitted, and
pass through the bottleneck at t ≈ 28s due to the DUP-ACKs gener-
ated by the remaining SYNs. Unfortunately, this is after the mobile
host has migrated, so they, along with all the segments addressed to
the mobile host’s initial address after t ≈ 27.1s, are lost.

At t ≈ 29s, the Migrate SYN/ACK makes it out of the queue at the
bottleneck, and the mobile host immediately generates an ACK. As in
the previous example, however, the fixed host is still awaiting ACKs for
previously transmitted segments. It is only at t ≈ 31s that the timer ex-
pires and the missing segments are retransmitted. Notice that because
SACK prevents the retransmission of the previously-received segments,
only those segments lost due to the mobile host’s address change are
retransmitted, and the connection continues as before. The success of
this trace demonstrates that the Migrate options work well with SACK
due to the consistency of the sequence space across migrations.

6.2 Performance enhancements

Several enhancements can be made by implementations to improve
overall connection throughput during connection migration. The most
obvious of these is issuing three DUP-ACKs immediately after a mi-
grate request, thereby triggering the fast-retransmit algorithm and avoid-
ing the timeout seen in the previous example [7]. By preempting the
timeout, the connection further avoids dropping into slow-start and
congestion avoidance.

Such techniques should be used with care, however, as they assume
the available bandwidth of the new path between mobile and fixed host
is on the same order-of-magnitude as the previous path. For migrations
across homogeneous technologies this may be a reasonable assumption.
When moving from local to wide-area technologies, however, there may
be order-of-magnitude discrepancies in the available bandwidth. Hence
we do not include such speed-ups in the TCP Migrate specification,
and leave it to particular implementations to responsibly evaluate the
circumstances and provide behavior compatible with standard TCP.

7 Deployment issues

As with any scheme for mobility support, there are some deployment
issues to be addressed. By pushing the implementation of mobility
mechanisms—connection migration in particular—to the end points,
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our system requires changes to each transport protocol. Fortunately,
our TCP connection migration protocol can be generalized to other
UDP-based protocols with little difficulty. Significant examples include
streaming protocols such as RTP and proprietary protocols like Real,
Quicktime and Netshow. We note that most of these already have a
control channel used for congestion and quality control, and such ap-
plications would likely wish to be informed of changes due to mobil-
ity as well. Furthermore, we argue that not all applications require
network-layer mobility, especially those characterized by short trans-
actions where an application-level retry of the transaction is easy to
perform; we therefore make the case using the end-to-end argument
that mobility might be best implemented as a higher-level, end-to-end
function just like reliability.

Perhaps the biggest limitation of our approach is that both peers
cannot move simultaneously.7 Because our scheme has no anchor point
like Mobile IP’s home agent, any IP address change must be completed
before the other can proceed. We do not view this as a serious limitation
to the widespread applicability of the protocol, since we are primarily
targeting infrastructure-based rather than ad-hoc network topologies
in this work.

In addition to these two limitations, there are several issues that
crop up when one considers presently-deployed applications. While it is
currently possible for Internet hosts to be re-addressed while operating
(due to a DHCP lease expiration or similar event), it is quite rare.
Hence some applications have made assumptions about the stability of
network addresses, which are no longer valid in our architecture. We
discuss some of these issues below.

7.1 Address caching

There is a class of applications that store IP addresses within the ap-
plication, and communicate these addresses to a remote host. Such
applications would not function properly under our architecture. They
are readily identifiable, however, as another currently widely-deployed
technology also breaks such applications: Network Address Translators
(NATs). While the wisdom of Network Address Translation is a hotly
debated topic, there is little chance it will disappear any time soon.
Hence most applications designed today take care not to transmit ad-
dresses as part of the application-layer communication, and therefore
7 “Simultaneously” is defined as whenever the intervals between address

change and the (would-be) reception of the Migrate SYN by the corre-
sponding host for both end hosts overlap.
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will also work in our architecture. In fact, one can make the case that
such applications are broken, since IP addresses are only identifiers of
attachment points, not hosts.

Another, larger class of applications cache the results of gethostby-
name(), and may not perform further hostname resolution.8 Further-
more, DNS resolvers themselves cache hostname bindings as discussed
in Section 3. Unfortunately many older name servers enforce a local
TTL minimum, often set to five minutes. Since newer versions of pop-
ular name servers adhere to the TTL specified in the returned resource
record, this problem should disappear as upgrades are made.

7.2 Proxies and NATs

Proxies actually help the deployment of our scheme, as we only need to
modify the proxy itself, and all communications through the proxy will
support mobility. Similarly, NATs can also provide transparent support
without remote system modification. In fact, a NAT doesn’t even need
a modified TCP stack. It need only snoop on TCP SYNs (which it does
anyway), note the presence of a Migrate-Permitted option, and snoop
for the SYN/ACK (which it does anyway). If the SYN/ACK does not
contain a Migrate-Permitted option, the NAT can support connection
migration internal to its network by inserting a corresponding Migrate-
Permitted option, and continuing to snoop the flow looking for any
Migrate SYNs. It need only fabricate a corresponding SYN/ACK and
update its address-to-port mappings, without passing anything to the
end host. Further, by avoiding any explicit addressing in migrate re-
quests, the Migrate options function properly though legacy NATs, and
even allow a mobile host to move between NATs, as connections may
change not only address but port as well.

7.3 Non-transactional UDP applications

Many UDP applications are transactional in nature. UDP is, by defi-
nition, a datagram protocol, and an inopportune change of IP address
is only one of many reasons for an unsuccessful UDP transaction. The
transaction will need to be retried, although a new hostname binding
should be obtained first.

There exists at least one glaring exception to this rule. The Network
File System protocol (NFS) represents one of the most prevalent UDP

8 Some popular Web browsers display this behavior.
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applications in use today and uses IP addresses in its mount points.9

We believe, given the characteristics of network links likely to be en-
countered by mobile hosts, it is likely that NFS-over-TCP is a better
choice than UDP. Otherwise, a mobile host would need to dismount
and re-mount NFS filesystems upon reconnection.

8 Conclusion

This paper presents an end-to-end architecture for Internet host mo-
bility that makes no changes to the underlying IP communication sub-
strate. It uses secure updates to the DNS upon an address change to
allow Internet hosts to locate a mobile host, and a set of connection
migration options to securely and efficiently negotiate a change in the
IP address of a peer without breaking the end-to-end connection. We
have implemented this architecture in the Linux operating system and
are encouraged by the ease with which mobility can be achieved with-
out any router support, the flexibility to mobile hosts provided by it,
and performance comparable to Mobile IP with route optimization.

Our architecture allows end systems to choose a mobility mode best
suited to their needs. Routing paths are efficient with no triangle rout-
ing, and any connection involving the mobile host shares fate only with
the communicating peer and not with any other entity like a home
agent. When a mobile host is in a foreign network and communicating
with another host, the disruption in connectivity caused by a sudden
IP address change is proportional to the round-trip time of the connec-
tion. When a mobile host accepts no passive connections, the protocol
does not require even the DNS update notification, and seamless con-
nectivity across host mobility is achieved using completely end-to-end
machinery.

The security of our approach is based on a combination of the well-
documented secure DNS update protocol in conjunction with a new
secure connection migration mechanism. Our architecture and imple-
mentation function across a variety of other components of the Inter-
net architecture, including firewalls, NATs, proxies, IPsec, and IPv6.
We believe that our architecture scales well even when most Inter-
net hosts become mobile because lookups and updates are distributed
across administratively-delegated, replicated DNS servers.

9 We note that most other advanced file systems, such as Coda [23] and
newer versions of NFS use TCP, which gives good congestion control and
reliability behavior.
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We note that our connection migration scheme, the
MIGRATE WAIT state in particular, avoids address assignment race
conditions, but does not support host disconnectivity. Hence, as with
Mobile IP and other mobility schemes, TCP connections may be lost
if the mobile host’s relocation is accompanied by a prolonged period
of disconnectivity. We are hopeful our end-to-end approach may be
extended to support general host disconnectivity as well.
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Abstract. Despite the popularity of mobile computing plat-
forms, appropriate system support for mobile operation is lack-
ing in the Internet. This paper argues this is not for lack of
deployment incentives, but because a comprehensive system ar-
chitecture that efficiently addresses the needs of mobile applica-
tions does not exist. We identify five fundamental issues raised
by mobility—location, preservation of communication, discon-
nection handling, hibernation, and reconnection—and suggest
design guidelines for a system that attempts to support Internet
mobility.

In particular, we argue that a good system architecture should
(i) eliminate the dependence of higher protocol layers upon
lower-layer identifiers; (ii) work with any application-selected
naming scheme; (iii) handle (unexpected) network disconnec-
tions in a graceful way, exposing its occurrence to applications;
and (iv) provide mobility services at the mobile nodes them-
selves, rather than via proxies. Motivated by these principles,
we propose a session-oriented, end-to-end architecture called
Migrate, and briefly examine the set of services it should pro-
vide.

1 Introduction

The proliferation of laptops, handheld computers, cellular phones, and
other mobile computing platforms connected to the Internet has trig-
gered much research into system support for mobile networking over
the past few years. Yet, when viewed as a large-scale, heterogeneous,
� This research was funded by DARPA (Grant No. MDA972-99-1-0014),
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distributed system, the Internet is notoriously lacking in any form of
general support for mobile operation.

We argue that previous work has failed to comprehensively address
several important issues. This paper discusses some of these issues and
describes a session-oriented architecture we are developing to preserve
end-to-end application-layer connectivity under various mobile condi-
tions.

Mobility raises five fundamental problems:

1. Locating the mobile host or service: Before any communica-
tion can be initiated, the desired end-point must be located and
mapped to an addressable destination.

2. Preserving communication: Once a session has been established
between end points (typically applications), communication should
be robust across changes in the network location of the end points.

3. Disconnecting gracefully: Communicating applications should
be able to rapidly discern when a disconnection at either end, or a
network partition, causes communication to be disrupted.

4. Hibernating efficiently: If a communicating host is unavailable
for a significant period of time, the system should suspend commu-
nications, and appropriately reallocate resources.

5. Reconnecting quickly: Communicating peers should detect the
resumption of network connectivity in a timely manner. The sys-
tem should support the resumption of all previously established
communication sessions without much extra effort on the part of
the applications.

Most current approaches provide varying degrees of support for
the first two problems. The last three—disconnection, hibernation, and
reconnection—have received little attention outside of the file system
context [19]. We argue that a complete—and useful—solution must ad-
dress all these issues.

One need look no further than interactive terminal applications like
ssh or telnet, one of the Internet’s oldest applications, for a practical
example of the continuing lack of support for these important com-
ponents. A user with an open session might pick up her laptop and
disconnect from the network. After traveling for some period of time,
she reconnects at some other network location and expects that her
session continue where it left off. Unfortunately, if there was any activ-
ity on the session during the period of disconnectivity, she will find the
connection aborted upon reconnection to the network. The particular
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details of the example are irrelevant, but demonstrate just how lacking
current support is, even for this simple scenario.

Based on our own experience developing various mobile protocols
and services [3, 5, 14, 26] and documented reports of several other re-
searchers over several years [9, 13, 15, 18, 28], we identify four important
guidelines that we believe should be followed as hints in designing an
appropriate network architecture for supporting mobile Internet ser-
vices and applications:

1. Eliminate lower-layer dependence from higher layers. A large num-
ber of problems arise because many higher layers of the Internet
architecture use identifiers from lower layers, assuming they will
never change during a connection.

2. Do not restrict the choice of naming techniques. Dynamic naming
and location-tracking systems play an important role in address-
ing mobility. In general, whenever an end point moves, it should
update a naming system with its new location—but forcing all ap-
plications to use a particular naming scheme is both unrealistic and
inappropriate.

3. Handle unexpected disconnections gracefully. We advocate treating
disconnections as a common occurrence, and exposing them to ap-
plications as they occur.

4. Provide support at the end hosts. Proxies are attractive due to their
perceived ease of deployment. However, it becomes markedly more
difficult to ensure they are appropriately located when hosts are
mobile.

We elaborate upon these guidelines in Section 2. They have served
as a guide in our development of an end-to-end, session-oriented system
architecture, called Migrate, over which mobile networking applications
and services can be elegantly layered. We describe our proposed archi-
tecture in Section 3, discussing how it addresses four of the five prob-
lems mentioned above: preserving communication, and handling dis-
connection, hibernation, and resumption. We do not provide or enforce
a particular location or naming scheme, instead leveraging domain-
specific naming services (e.g., DNS, service discovery schemes [3, 12],
etc.) for end-point location.

An attractive feature of our architecture is that it accomplishes
these tasks without sacrificing common-case performance. Migrate pro-
vides generic mechanisms for managing disconnections and reconnec-
tions in each application session, and for handling application state and
context. We briefly discuss related work in Section 4 before concluding
in Section 5.
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2 Design guidelines

In this section, we elaborate on our four design guidelines for supporting
applications on mobile hosts.

2.1 Eliminate lower-layer dependence

The first step in enabling higher-layer mobility handling is to remove
inter-layer dependences. In a 1983 retrospective paper on the DoD In-
ternet Architecture, Cerf wrote [8]: “TCP’s [dependence] upon the net-
work and host addresses for part of its connection identifiers” makes
“dynamic reconnection” difficult, “a problem . . . which has plagued net-
work designers since the inception of the ARPANET project in 1968.”
The result is that when the underlying network-layer (IP) address of
one of the communicating peers changes, the end-to-end transport-layer
(TCP) connection is unable to continue because it has bound to the
network-layer identifier, tacitly (but wrongly) assuming its permanence
for the duration of the connection.

A host of other problems crop up because of similar linkages. For
example, the increasing proliferation of network address translators
(NATs) in the middle of the network has caused problems for appli-
cations (like FTP) that use network- and transport-layer identifiers as
part of their internal state. These problems can be avoided by removing
any assumption of stability of lower-layer identifiers. If a higher layer
finds it necessary to use a lower-layer identifier as part of its internal
state, then the higher layer should allow for it to change, and continue
to function across such changes.

Furthermore, each layer should expose relevant changes to higher
layers. In today’s Internet architecture, applications have almost no
control over their network communication because lower layers (for the
most part) do not concern themselves with higher-layer requirements.
When important changes happen at a lower layer, for example to the
network-layer address, they are usually hidden from higher layers. The
unfortunate consequence of this is that it makes it hard for any form
of adaptation to occur.

For example, a TCP sender attempts to estimate the properties
of the network path for the connection. A significant change in the
network-layer attachment point often implies that previously discov-
ered path properties are invalid, and need to be rediscovered. This con-
sequence is not limited to classical TCP congestion management—for
example, if mobile applications are notified of changes in their envi-
ronment and given the power to effect appropriate changes, significant
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improvements in both performance and usability can be realized [19,
21]. Similar results have also been shown in the network layer [9, 13,
30], and in the area of transport optimization over wireless links [5, 7,
26].

2.2 Beware the Siren song of naming

Many researchers have observed that the first problem raised by mo-
bility, namely locating the mobile host or service, can be addressed
through a sophisticated naming system, hence most proposals for man-
aging Internet mobility attempt to provide naming and location services
as a fundamental part of the mobility system.1 Unfortunately, the tight
binding between naming schemes and mobility support often causes the
resulting system to be inefficient or unsuitable for various classes of ap-
plications. For example, Mobile IP assumes that the destination of each
packet needs to be independently located, thereby necessitating a home
agent to intercept and forward messages to a mobile host. The utility
of alternative proposals to use agile naming [3] or IP multicast [20]
for mobility support hinges on widespread deployment of their location
systems.

We believe that inexorably binding mobility handling with nam-
ing unnecessarily complicates the mobility services, and restricts the
ability to integrate advances in naming services. On the face of it, it
appears attractive that a “good” naming scheme can provide the level
of indirection by which to handle mobility. In practice, however, it is
important to recognize and separate two distinct operations. The first
is a “location” operation: The process of finding an end point of interest
based on an application-specific name. The second is a “tracking” oper-
ation: Preserving the peer-to-peer communication in some way. There
are two problems with using a new idealized naming scheme: First,
there are a large number of ways in which applications describe what
they are looking for, which forces this ideal naming scheme to perform
the difficult task of accommodating them all. Experience shows that
each application is likely to end up using a naming scheme that best
suits it (e.g. INS, DNS, JINI, UPnP), rather than suffer the inadequa-
cies of a universal one. Second, if this tracking is done through the same
name resolution mechanism, every packet would invoke the resolution
process, adding significant overhead and degrading performance.

We therefore suggest that an application use whichever naming
scheme is sufficiently adept at providing the appropriate name-to-loca-
1 Indeed, the authors of this paper are guilty of having taken this position

in the past.
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tion binding in a timely fashion. This service is used at the beginning of
a session between peers, or in the (unlikely) event that all peers change
their network locations “simultaneously.” At all other times, the onus
of preserving communication across moves rests with the peers them-
selves. In the common case when only a subset of the peers moves at a
time, the task of reconnection is efficiently handled by the peers them-
selves. We have previously described the details of such a scheme in the
context of TCP connection migration [26].

2.3 Handle unexpected disconnections

The area of Internet mobility that has received the least attention is
support for efficient disconnection and reconnection. While significant
work has been done in the area of disconnected file systems [15, 19], less
attention has been paid to preserving application communication when
a disconnection occurs, enabling it to quickly resume upon reconnec-
tion. The key observation about disconnections is that they are usually
unexpected. Furthermore, they last for rather unpredictable periods of
time, ranging from a few seconds to several hours (or more). Today’s
network stacks terminate a connection as soon as a network disconnec-
tion is detected, with unfortunate consequences—the application (and
often the user) has to explicitly reinitiate connectivity and application
state is usually lost.

Like all other aspects of network communication, we believe the
system should therefore provide standard support for unexpected dis-
connection, enabling applications to gracefully manage session state,
releasing system resources and reallocating them when communication
is restored. Even if the duration of the disconnection period is short
enough to avoid significantly impacting communication or draining sys-
tem resources, the disconnection and ensuing reconnection events are
often hidden by current network stacks, leaving the higher network
layers and application to eventually discover (often with unfortunate
results) that network conditions have changed dramatically.

2.4 Provide services at the end points

A great deal of previous work in mobility management has relied on a
proxy-based architecture, providing enhanced services to mobile hosts
by routing communications through a (typically fixed) waypoint that
is not collocated with the host [5, 10, 11, 17, 22, 28]. It is often easier
to deploy new services through a proxy, as the proxy can provide en-
hanced services in a transparent fashion, inter-operating with legacy
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systems. Unfortunately, in order to provide adequate performance, it
is not only necessary to highly engineer the proxy [17], but locate the
proxy appropriately as well.

Several researchers have proposed techniques to migrate proxy ser-
vices to the appropriate location, avoiding the need to preconfigure
locations [10, 27]. Unfortunately, all candidate proxy locations must be
appropriately preconfigured to participate. Further, in the face of gen-
eral mobility, proxies (or at least their internal state) must be able to
move with the mobile host in order to remain along the path from the
host to its correspondent peers. This is a complex problem [28]; we
observe that it can be completely avoided if the support is collocated
with the mobile host itself.

3 Migrate approach

We now describe the Migrate approach to mobility, which leverages ap-
plication naming services and informed transport protocols to provide
robust, low-overhead communication between application end points.
We describe a session-layer protocol that handles both changes in net-
work attachment point and disconnection in a seamless fashion, but
is flexible enough to allow a wide variety of applications to maintain
sufficient control for their needs.

3.1 Service model

The number of communication paradigms in use on the Internet re-
mains small, but the type and amount of mobility support needed varies
dramatically across modalities [9]. In particular, the notion of a session
is application-dependent and varies widely, from a set of related connec-
tions (e.g. FTP’s data and control channels) to an individual datagram
exchange such as those often found in RPC-based applications (e.g. a
cached DNS response). As the lengths of sessions grow longer and they
become more complex in terms of the system resources they consume,
applications can benefit from system support for robust communication
between application end points. However, due to the disparate perfor-
mance and reliability requirements of different session-based applica-
tions, it is important that a mobility service enables the application to
dictate its requirements through explicit choice of transport protocols
and policy defaults.

Hence we propose an optional session layer. This layer presents a
simple, unified abstraction to the application to handle mobility: a ses-
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sion. Sessions exist between application-level end points, and can sur-
vive changes in the transport, network, and even other session layer
protocol states. It also includes basic check-pointing and resumption
facilities for periods of disconnection, enabling comprehensive, session-
based state management for mobile-aware applications. Unlike previous
network-layer approaches, our session layer exports the specifics of the
lower layers to the application, and provides an API to control them,
if the application is inclined to do so.

3.2 Session layer

Applications specify their notion of a session by explicitly joining to-
gether related transport-layer connections (or destinations in connec-
tionless protocols). Once established, a session is identified by a locally-
unique token, or Session ID, and serves as the system entity for inte-
grated accounting and management. The session layer exports a unified
session abstraction to the application, managing the connections as a
group, adapting to changes in network attachment point as needed.
The selection of network end point and transport protocol, however,
remains completely under the application’s control.

To assist in the timely detection of connectivity changes, the ses-
sion layer accepts notification from lower layers (e.g., loss of carrier,
power loss, change of address, etc.), the application itself, or appropri-
ately authorized external entities that may be concurrently monitoring
connection state [4]. Since a session may span multiple protocols, con-
nections, destinations, and application processes, there may be several
sources of connectivity information. Regardless of the source, the ses-
sion manager handles notification of disconnection and reconnection in
a consistent fashion.

3.2.1 Disconnection. If a host can no longer communicate with a
session end point due to mobility, as signaled by changes in the network
layer state, transport layer failure, or other mechanisms, it informs the
application. If the application is not prepared to handle intermittent
connectivity itself, the session layer provides appropriate management
services, depending on the transport layers in use, including data buffer-
ing for reliable byte streams. Specifically, it may block or buffer stream
sockets, selectively drop unreliable datagrams, etc. Additional applica-
tion and transport-specific services can be provided, such as disabling
TCP keep-alives.

Depending on the system configuration, the session layer may need
to actively attempt to reestablish communication, or it may be notified
by network or transport layers when it becomes available again. Sys-
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tem policy may dictate trying multiple network interfaces or transport
protocols. In either case, if the period of disconnection becomes appro-
priately long (as determined by system and application configuration),
it will attempt to conserve resources by reducing the state required in
the network, transport, and session layers (with possibly negative per-
formance implications upon reconnection), and notify the application,
enabling additional, domain-specific resource reallocation.

3.2.2 Reconnection. Upon reattachment, a mobile host contacts
each of its correspondent hosts directly, informing them of its new loca-
tion. Some transport layers may be unable to adequately or appropri-
ately handle the change in network contexts. In that case, the session
layer can restart them, using the session ID to re-sync state between the
end points. In either case, the session layer informs the application of
reattachment, and resynchronizes the state of the corresponding session
layers.

The complexity of synchronization varies with the transport pro-
tocols in use; a well-designed transport layer can handle many things
by itself. By using a transport-layer token, and not a network layer
binding, the persistent connection model can provide limited support
for changes in attachment point, often with better performance than
higher-layer approaches [23, 26]. Similarly, the performance of even tra-
ditional transport protocols can be enhanced when the network layer
exposes the appropriate state [5, 7]. Similarly, grouping multiple trans-
port instances between the same end points into sessions can provide
additional performance improvement [4, 24].

Legacy transport protocols may be completely unable to handle
changes in network addresses. In that case, the session layer may initiate
an entirely new connection, and resynchronize them transparently at
the session layer. In the worst case, the application itself may be unable
to handle unexpected address changes, and provide no means of system
notification. Such applications are still supported via IP encapsulation.
The correspondent session layers establish an IP tunnel to the new end
point, and continue to send application data using the old address.

If a correspondent end point is no longer reachable (possibly be-
cause the other end point also moved), the application is instructed
to perform another naming/location resolution operation in attempt
to locate the previous correspondent, returning a network end point
(host, protocol, port) to use for communication. The particular seman-
tics of suitable alternative end points and look-up failure are application
specific. It may be a simple matter of another application-layer name
resolution (perhaps a fresh DNS query), or the application may which
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wish to perform its own recovery in addition to or in place of reissuing
the location query.

While the amount overhead varies with the capabilities of the avail-
able lower layer technologies, overhead is incurred almost exclusively
during periods of disconnectivity and reconnection. This provides high
performance for the common case of communication between static
peers.

3.3 State management

In a spirit similar to Coda, our architecture considers disconnection to
be a natural, transient occurrence that should be handled gracefully
by end hosts. For extended periods of disconnection, resource alloca-
tion becomes an additional concern. While managing application state
is outside the scope of our architecture, enabling efficient strategies
is decidedly not. In particular, since disconnection often occurs with-
out prior notice, applications may require system support to reclaim
resources outside of their control.

There has been a great deal of study on application specific-methods
of dealing with disconnected or intermittent operation. Most of it has
focused on providing continued service at the disconnected client, and
has not addressed the scalability of servers. If our approach becomes
popular, and disconnected sessions begin to constitute a non-negligible
fraction of the connections being served, servers will need to free re-
sources dedicated to those stalled connections, and be able to easily re-
allocate them later. We are considering a variety of state management
services the session layer should implement, and briefly hypothesize
about two: migrating session state between the system and applica-
tion, and providing contextual validation of session state.

3.3.1 State migration. We believe the session abstraction may
be a useful way to compartmentalize small amounts of connection state,
reducing the amount of state applications need to store themselves, and
simplifying its management. Furthermore this state could be tagged as
being associated with a particular communication session, and managed
in an efficient fashion together with system state [6]. System support
may allow intelligent paging or swapping of associated state out of core
if the period of disconnection becomes too long.

3.3.2 Context management. There is a significant amount of
context associated with a communication session, and it may be the
case that some (or all) of it will be invalidated by disconnection and/or
reconnection. In particular, previous work has shown that context
changes in the transport layer can be leveraged to adapt application
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protocol state [25]. Hence any state the session layer manages needs to
be revalidated, possibly internally, possibly through application-specific
up-calls. Changes in context may dictate that buffers be cleared, data
be reformatted, alternate transport protocols be selected, etc. This re-
quires a coherent contextual interface between the application and the
session layer.

4 Related work

The focus of the Migrate architecture is on preserving end-to-end ap-
plication communication across network location changes and discon-
nections. Much work has been done in the area of system support for
mobility over the past few years; this section outlines the work most
directly related to ours.

At the network-layer, several schemes have been proposed to han-
dle mobile routing including Mobile IP [22] and multicast-based mo-
bility [20]. Mobile IP uses a home agent as to intercept and forward
packets, with a route optimization option to avoid triangle routing.
The home-agent-based approach has also been applied at the transport
layer, as in MSOCKS [17], where connection redirection was achieved
using a split-connection proxy, providing so-called transport-layer mo-
bility. Name resolution and message routing were integrated to imple-
ment a “late binding” option that tracks highly mobile services and
nodes in the Intentional Naming System [3].

Most TCP-specific solutions for preserving communication across
network-layer changes [23, 26] do not handle the problems associated
with connections resuming after substantial periods of disconnectivity.
A “persistent connection” scheme where the communication end-points
are location independent was proposed for TCP sockets and DCE
RPC [29], but the mapping between global endpoint names and current
physical endpoints is done through a global clearinghouse, which no-
tifies everyone of binding updates. Session layer mobility [16] explored
moving entire sessions by utilizing a global naming service to provide
endpoint bindings; address changes are affected through a TCP-specific
protocol extension.

5 Conclusion

In this paper, we have defined five salient issues concerning host mobil-
ity in the Internet. We presented a set of design guidelines for building
a system to address these issues, distilled from a decade of research in
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mobile applications and system support for mobility on the Internet.
Following these principles, we outlined Migrate, a basic session-based
architecture to preserve end-to-end application-layer communication in
the face of mobility of the end points. We believe the general abstrac-
tions for disconnection, hibernation, and reconnection provided by the
session layer define an appropriate set of interfaces to enable more ad-
vanced system support for mobility.
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Span: An Energy-Efficient Coordination
Algorithm for Topology Maintenance in

Ad Hoc Wireless Networks
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Abstract. This paper presents Span, a power saving tech-
nique for multi-hop ad hoc wireless networks that reduces en-
ergy consumption without significantly diminishing the capac-
ity or connectivity of the network. Span builds on the observa-
tion that when a region of a shared-channel wireless network
has a sufficient density of nodes, only a small number of them
need be on at any time to forward traffic for active connections.
Span is a distributed, randomized algorithm where nodes make
local decisions on whether to sleep, or to join a forwarding
backbone as a coordinator. Each node bases its decision on
an estimate of how many of its neighbors will benefit from
it being awake, and the amount of energy available to it. We
give a randomized algorithm where coordinators rotate with
time, demonstrating how localized node decisions lead to a
connected, capacity-preserving global topology.
Improvement in system lifetime due to Span increases as the
ratio of idle-to-sleep energy consumption increases. Our simu-
lations show that with a practical energy model, system life-
time of an 802.11 network in power saving mode with Span is
a factor of two better than without. Additionally, Span also
improves communication latency and capacity.

1 Introduction

Minimizing energy consumption is an important challenge in mobile
networking. Enough progress has been made on low-power hardware

� This research was funded in part by NTT Corporation under the NTT-
MIT collaboration and by Intel Corporation.
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Fig. 1: A connected backbone does not necessarily preserve capacity. In this

connected topology, black nodes are coordinators. Nodes that are within radio

range of each other are connected by solid or dotted lines. Solid lines represent

connections to and between coordinators. Packets between nodes 3 and 4 may

contend for bandwidth with packets between nodes 1 and 2. On the other hand,

if node 5 was a coordinator, no contention would occur.

design for mobile devices that the wireless network interface is often a
device’s single largest consumer of power. Since the network interface
may often be idle, this power could be saved by turning the radio off
when not in use. In practice, however, this approach is not straight-
forward: a node must arrange to turn its radio on not just to send
packets, but also to receive packets addressed to it and to participate
in any higher-level routing and control protocols. The requirement of
cooperation between power saving and routing protocols is particularly
acute in the case of multi-hop ad hoc wireless networks, where nodes
must forward packets for each other. Coordination of power saving with
routing in ad hoc wireless networks is the subject of this paper.

A good power-saving coordination technique for wireless ad-hoc net-
works ought to have the following characteristics. It should allow as
many nodes as possible to turn their radio receivers off most of the
time, since even an idle receive circuit can consume almost as much
energy as an active transmitter. On the other hand, it should forward
packets between any source and destination with minimally more delay
than if all nodes were awake. This implies that enough nodes must stay
awake to form a connected backbone. The algorithm for picking this
backbone should be distributed, requiring each node to make a local de-
cision. Furthermore, the backbone formed by the awake nodes should
provide about as much total capacity as the original network, since
otherwise congestion may increase. This means that paths that could
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operate without interference in the original network should be repre-
sented in the backbone. For example, Figure 1 illustrates a topology
that violates this principle. In this topology, black nodes are coordi-
nators. Nodes that are within radio range of each other are connected
by solid or dotted lines. Packets between nodes 3 and 4 may contend
for bandwidth with packets between nodes 1 and 2 (solid arrows). On
the other hand, if node 5 was a coordinator, node 3 can send packets
to node 4 via the path shown by the dotted arrow, and no contention
would occur.

A good coordination technique should not make many assumptions
about the link layer’s facilities for sleeping; it should work with any link-
layer that provides for sleeping and periodic polling, including 802.11’s
ad-hoc power saving mode. Finally, power saving should inter-operate
correctly with whatever routing system the ad-hoc network uses.

The algorithm presented in this paper, Span, fulfills the above re-
quirements. Each node in the network running Span makes periodic,
local decisions on whether to sleep or stay awake as a coordinator and
participate in the forwarding backbone topology. To preserve capacity,
a node volunteers to be a coordinator if it discovers, using information
it gathered from local broadcast messages, that two of its neighbors
cannot communicate with each other directly or through one or two
existing coordinators. To keep the number of redundant coordinators
low and rotate this role amongst all nodes, each node delays announc-
ing its willingness by a random time interval that takes two factors
into account: the amount of remaining battery energy, and the number
of pairs of neighbors it can connect together. This combination en-
sures, with high probability, a capacity-preserving connected backbone
at any point in time, where nodes tend to consume energy at about the
same rate. Span does all this using only local information, and conse-
quently scales well with the number of nodes. Our simulation results,
with energy parameters from measurements of today’s 802.11 wireless
interfaces, show that system lifetime with Span is more than a factor
of two better than without Span, for a range of node densities, without
much reduction in overall forwarding capacity.

The rest of the paper describes and evaluates Span. Section 2 re-
views related work. Section 3 describes Span’s algorithms and its inter-
actions with the link layer. Section 4 presents our implementation of
Span on top of an IEEE 802.11 link layer in the ns-2 network simulator.
Section 5 presents performance results of several experiments. Finally,
Section 6 concludes.
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2 Related work

The set of coordinators elected by Span at any time is a connected
dominating set of the graph formed by the nodes of the ad hoc network.
A connected dominating set S of a graph G is a connected subgraph of
G such that every vertex u in G is either in S or adjacent to some v in
S. Routing using connected dominating sets of a graph can reduce the
search space for routes [6, 27].

Das and Bharghavan [6] approximate the minimum connected dom-
inating set of an ad hoc network, and route packets using nodes from
that set. The set of coordinators elected by Span, however, has the ad-
ditional property of being capacity preserving. Consequently, the con-
nected dominating set elected by Span is likely to be larger than a
minimal connected dominating set. For example, the black nodes in
Figure 1 form a minimal connected dominating set. However, Span’s
election algorithm would additionally elect node 5 to be a coordinator
to preserve capacity.

Wu and Li [27] propose a distributed algorithm for approximating
connected dominating sets in an ad hoc network that also appears to
preserve capacity. In a later paper, Wu an Gao [26] discuss power aware
routing using the connected dominating sets. Their algorithm is similar
to Span’s coordinator election algorithm. Span, however, elects fewer
coordinators because it actively prevents redundant coordinators by
using randomized slotting and damping.

The recent GAF [29] scheme of Xu et al. has similar goals to Span.
In GAF, nodes use geographic location information to divide the world
into fixed square grids. The size of each grid stays constant, regard-
less of node density. Nodes within a grid switch between sleeping and
listening, with the guarantee that one node in each grid stays up to
route packets. Span differs from GAF in two important ways. First,
unlike GAF, Span does not require that nodes know their geographic
positions. Instead, Span uses local broadcast messages to discover and
react to changes in the network topology. Second, Span integrates with
802.11 power saving mode nicely: non-coordinator nodes can still re-
ceive packets when operating in power saving mode.

In AFECA [28], each node maintains a count of the number of nodes
within radio range, obtained by listening to transmissions on the chan-
nel. A node switches between sleeping and listening, with randomized
sleep times proportional to the number of nearby nodes. The net effect
is that the number of listening nodes is roughly constant, regardless
of node density; as the density increases, more energy can be saved.
AFECA’s constants are chosen so that there is a high probability that
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the listening nodes form a connected graph, so that ad hoc forwarding
works. An AFECA node does not know whether it is required to listen
in order to maintain connectivity, so to be conservative AFECA tends
to make nodes listen even when they could be asleep. Span differs from
AFECA in that, with high likelihood, Span never keeps a node awake
unless it is absolutely essential for connecting two of its neighbors. Fur-
thermore, Span explicitly attempts to preserve the same overall system
capacity as the underlying network where all nodes are awake, which
ensures that no increase in congestion occurs.

The PAMAS power-saving medium access protocol [18, 23] turns off
a node’s radio when it is overhearing a packet not addressed to it. This
approach is suitable for radios in which processing a received packet
is expensive compared to listening to an idle radio channel. Kravets
and Krishnan [13] present a system in which mobile units wake up
periodically and poll a base station for newly arrived packets. Like
Stemm and Katz [24], they show that setting the on/off periods based
on application hints reduces both power and delay. Span assumes the
presence of an ad hoc polling mechanism such as that provided by
802.11, and could potentially work in concert with application hints;
such hints would apply only to sleeping nodes, not coordinators. Smith
et al. [15] propose an ad hoc network that elects a virtual base station
to buffer packets for local nodes. They do not, however, attempt to
make sure that enough of these base stations are present to preserve
connectivity in a multi-hop ad hoc network.

Minimum-energy routing [22] saves power by choosing paths through
a multi-hop ad hoc network that minimize the total transmit energy.
This approach has been extended by Chang and Tassiulas [4] to maxi-
mize overall network lifetime by distributing energy consumption fairly.
In this protocol, nodes adjust their transmission power levels and se-
lect routes to optimize performance. Ramanathan and Rosales-Hain de-
scribe distributed algorithms that vary transmission power and attempt
to maintain connectedness [19]. Rodoplu and Meng give a distributed
algorithm to produce minimum-power routes by varying node transmis-
sion power [20]. Wattenhofer et al. [25] describe a topology maintenance
algorithm using similar underlying radio support, but their algorithm
guarantees global connectedness using directional information. Span
controls whether or not the receiver is powered on, rather than con-
trolling the transmit power level. It also pays close attention to overall
system capacity, in addition to maintaining connectivity.

An alternative approach is described by Heinzelman et al., whose
LEACH protocol selects rotating cluster-heads to collect local informa-
tion and transmit it to a base station in a wireless sensor network [10].
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Like LEACH, Intanagonwiwat et al.’s directed diffusion mechanism [11]
takes advantage of aspects of sensor networks, particularly the possi-
bility of aggregating and compressing data, that are not present in
general-purpose networks.

In general, the basic idea that a path with many short hops is some-
times more energy-efficient than one with a few long hops could be ap-
plied to any ad hoc network with variable-power radios and knowledge
of positions. This technique and Span’s are orthogonal, so their benefits
could potentially be combined.

3 Span design

Span adaptively elects “coordinators” from all nodes in the network.
Span coordinators stay awake continuously and perform multi-hop packet
routing within the ad hoc network, while other nodes remain in power-
saving mode and periodically check if they should wake up and become
a coordinator.

Span achieves four goals. First, it ensures that enough coordinators
are elected so that every node is in radio range of at least one coordina-
tor. Second, it rotates the coordinators in order to ensure that all nodes
share the task of providing global connectivity roughly equally. Third,
it attempts to minimize the number of nodes elected as coordinators,
thereby increasing network lifetime, but without suffering a significant
loss of capacity or an increase in latency. Fourth, it elects coordinators
using only local information in a decentralized manner—each node only
consults state stored in local routing tables during the election process.

Span is proactive: each node periodically broadcasts HELLO mes-
sages that contain the node’s status (i.e., whether or not the node is a
coordinator), its current coordinators, and its current neighbors. From
these HELLO messages, each node constructs a list of the node’s neigh-
bors and coordinators, and for each neighbor, a list of its neighbors and
coordinators.

As shown in Figure 3, Span runs above the link and MAC layers
and interacts with the routing protocol. This structuring allows Span
to take advantage of power-saving features of the link layer protocol,
while still being able to affect the routing process. For example, non-
coordinator nodes can periodically turn on their radios and listen (as in
the 802.11 power-saving mode [1]) or poll (as in LPMAC [15]) for their
packets. Span leverages a feature of modern power-saving MAC layers,
in which if a node has been asleep for a while, packets destined for it are
not lost but are buffered at a neighbor. When the node awakens, it can
retrieve these packets from the buffering node, typically a coordinator.
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Fig. 2: Span is a protocol that operates under the routing layer and above the

MAC and physical layers. The routing layer uses information Span provides, and

Span takes advantage of any power saving features of the underlying MAC layer.

Span also requires a modification to the route lookup process at each
node—at any time, only those entries in a node’s routing table that
correspond to currently active coordinators can be used as valid next-
hops (unless the next hop is the destination itself).

A Span node switches state from time to time between being a
coordinator and being a non-coordinator. A node includes its current
state in its HELLO messages. The following sections describe how a node
decides that it should announce that it is a coordinator, and how it
decides that it should withdraw from being a coordinator.

3.1 Coordinator announcement

Periodically, a non-coordinator node determines if it should become a
coordinator or not. The following coordinator eligibility rule in Span
ensures that the entire network is covered with enough coordinators:

Coordinator eligibility rule: A non-coordinator node should
become a coordinator if it discovers, using only information
gathered from local broadcast messages, that two of its neigh-
bors cannot reach each other either directly or via one or two
coordinators.

This election algorithm does not yield the minimum number of
coordinators required to merely maintain connectedness. However, it
roughly ensures that every populated radio range in the entire network
contains at least one coordinator. Because packets are routed through
coordinators, the resulting coordinator topology should yield good ca-
pacity.

Announcement contention occurs when multiple nodes discover the
lack of a coordinator at the same time, and all decide to become a co-
ordinator. Span resolves contention by delaying coordinator announce-
ments with a randomized backoff delay. Each node chooses a delay
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value, and delays the HELLO message that announces the node’s vol-
unteering as a coordinator for that amount of time. At the end of the
delay, the node reevaluates its eligibility based on HELLO messages re-
cently received, and makes its announcement if and only if the eligibility
rule still holds.

We consider a variety of factors in our derivation of the backoff delay.
Consider first the case when all nodes have roughly equal energy, which
implies that only topology should play a role in deciding which nodes
become coordinators. Let Ni be the number of neighbors for node i
and let Ci be the number of additional pairs of nodes among these
neighbors that would be connected if i were to become a coordinator
and forward packets. Clearly, 0 ≤ Ci ≤

(
Ni

2

)
. We call Ci

(Ni
2 ) the utility of

node i. If nodes with high Ci become coordinators, fewer coordinators
in total may be needed in order to make sure every node can talk to a
coordinator; thus a node with a high Ci should volunteer more quickly
than one with smaller Ci.

If there are multiple nodes within radio range that all have the
same utility, Span prevents too many of them becoming coordinators.
This is because such coordinators would be redundant—they would not
increase system capacity, but simply drain energy. If the potential co-
ordinators make their decisions simultaneously, they may all decide to
become coordinators. If, on the other hand, they decide one at a time,
only the first few will become coordinators, and the rest will notice that
there are already enough coordinators and go back to sleep. To handle
this, we use a randomized “slotting-and-damping” method reminiscent
of techniques to avoid multiple retransmissions of lost packets by mul-
ticast protocols, such as XTP [5], IGMP [8] and SRM [9]: the delay for
each node is randomly chosen over an interval proportional to Ni × T ,
where T is the round-trip delay for a small packet over the wireless
link.

Thus, when all nodes have roughly equal energy, the above discus-
sion suggests a backoff delay of the form:

delay =

((
1 − Ci(

Ni

2

)
)

+ R

)
× Ni × T (1)

The randomization is achieved by picking R uniformly at random from
the interval (0, 1].

Consider the case when nodes may have unequal energy left in their
batteries. We observe that what matters in a heterogeneous network is
not necessarily the absolute amount of energy available at the node, but
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the amount of energy scaled to the maximum amount of energy that
the node can have. Let Er denote the amount of energy (in Joules) at
a node that still remains, and Em be the maximum amount of energy
available at the same node. A reasonable (but not the only) notion of
fairness can be achieved by ensuring that a node with a larger value
of Er/Em is more likely to volunteer to become a coordinator more
quickly than one with a smaller ratio. Thus, we need to add a decreas-
ing function of Er/Em that reflects this, to Equation 1. There are an
infinite number of such functions, from which we choose a simple linear
one: 1 − Er/Em. In addition to its simplicity, this choice is attractive
because it ensures that the rate with which a node reduces its propen-
sity to advertise (as a function of the amount of energy it has left), is
constant. (We experimented with a few other functions, including an
exponentially decaying function of Er/Em and an inversely decaying
function of Er/Em; the simple linear one worked best.)

Combining this with Equation 1 yields the following equation for
the backoff delay in Span:

delay =

((
1 − Er

Em

)
+

(
1 − Ci(

Ni

2

)
)

+ R

)
× Ni × T (2)

Observe that the first term does not have a random component; thus if
a node is running low on energy, its propensity to become a volunteer
is guaranteed to diminish relative to other nodes in the neighborhood
with similar neighbors.

In a network with uniform density and energy, our election algo-
rithm rotates coordinators among all nodes of the network. It achieves
fairness because the likelihood of becoming a coordinator falls as a co-
ordinator uses up its battery. In practice, however, ad hoc networks are
rarely uniform. Our announcement rule adapts to non-uniform topol-
ogy: a node that connects network partitions together will always be
elected a coordinator. This property preserves capacity over the lifetime
of the network. Because of Span’s emphasis on capacity-preservation to
the extent possible, such critical nodes will unavoidably die before other
less-critical ones. However, in a mobile Span network, a given node is
rarely stuck in such a position, and this improves fairness dramatically.

3.2 Coordinator withdrawal

Each coordinator periodically checks if it should withdraw as a co-
ordinator. A node should withdraw if every pair of its neighbors can
reach each other either directly or via one or two other coordinators.
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In order to also rotate the coordinators among all nodes fairly, after
a node has been a coordinator for some period of time, it marks itself
as a tentative coordinator if every pair of neighbor nodes can reach
each other via one or two other neighbors, even if those neighbors are
not currently coordinators. A tentative coordinator can still be used
to forward packets. However, the coordinator announcement algorithm
described above treats a tentative coordinator as a non-coordinator.
Thus, by marking itself as tentative, a coordinator gives its neighbors
a chance to become coordinators. A coordinator stays tentative for WT

amount of time, where WT is the maximum value of Equation 2. That
is,

WT = 3 × Ni × T (3)

If a coordinator has not withdrawn after WT , it clears its tentative bit.
To prevent an unlucky low energy node from draining all of its energy
once it becomes a coordinator, the amount of time a node stays as a
coordinator before turning on its tentative bit is proportional to the
amount of energy it has (Er/Em).
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Fig. 3: A scenario with 100 nodes, 19 coordinators, and a radio range of 250

meters. The nodes marked “∗” are coordinators; the nodes marked “+” are non-

coordinator nodes. Solid lines connect coordinators that are within radio range

of each other.

While Span uses local HELLO messages to propagate topology in-
formation, it does not depend on them for correctness: when HELLO
messages are lost, Span elects more coordinators, but does not discon-
nect the backbone. Figure 3 shows the result of our election algorithm
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at a random point in time on a network of 100 nodes in a 1000 me-
ter × 1000 meter area, where each radio has an isotropic circular range
with a 250 meter radius. Solid lines connect coordinators that are within
radio range of each other.

4 Simulator implementation

This section describes our implementation of Span, geographic forward-
ing, the 802.11 power saving mode (with our own improvements), and
the energy model we used in our simulations. We ran our Span imple-
mentation in the ns-2 network simulator environment.

4.1 Span and geographic forwarding

Our implementation uses a geographic forwarding algorithm. We chose
to implement geographic forwarding primarily because of its simplicity;
Span can be used with other routing protocols as well.

Span’s election algorithm requires each node to advertise its coor-
dinators, its neighbors, and if it is a coordinator, a tentative coordina-
tor, or a non-coordinator. To reduce protocol overhead, we piggyback
Span HELLO information (see Section 3.1) onto the broadcast updates
required by geographic forwarding. See Table 1. Each node enters all
the information it receives in broadcast updates into a neighbor table.
Consequently, this neighbor table contains a list of neighbors and coor-
dinators, and for each neighbor, a list of its neighbors and coordinators.

Source ID
Node position
Is coordinator
Is tentative
Coordinator list
Neighbor List

Table 1: HELLO packet for Span and geographic forwarding. Italized fields are

Span specific information.

Geographic forwarding forwards packets using a greedy algorithm.
The source node annotates each packet with the geographic location of
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the destination node. Upon receiving a packet for a node not in radio
range, a coordinator forwards the packet to a neighboring coordina-
tor that is closest to the destination. If no such coordinator exists, the
packet is forwarded to a non-coordinator that is closer to the destina-
tion. Otherwise, we know that a packet has encountered a void, and so
it is dropped. (We did not implement an idea like GPSR [12], which
ameliorates the effects of voids.)

Our simulations do not use a location service. Instead, each sender
uses the GOD module of ns to obtain the geographic location of the
destination node. Hence, our simulation results may be better than
one might expect with a real location service, such as GLS [14].

Our geographic forwarding algorithm also implements MAC-layer
failure feedback and interface queue traversal [2, 12]. These mechanisms
allow the routing layer to readily remove unresponsive nodes from its
routing table and rescue packets using these nodes as the next hop.

4.2 Coordinator election

A node uses information from its neighbor table to determine if it
should announce or withdraw itself as a coordinator. Figure 4 shows
the coordinator announcement algorithm. A non-coordinator node pe-
riodically calls check-announce-coordinator to determine if it should
become a coordinator or not. check-announce-coordinator first com-
putes C, the number of additional neighbor pairs that would be con-
nected if the node becomes a coordinator, using connect-pair. If
C > 0, the node computes delay using Equation 2 and waits for
delay seconds before recomputing C. If C continues to be greater
than 0 after delay seconds, the node announces itself as a coordinator.
connect-pair calculates the number of would-be connected neighbor
pairs by iterating through the node’s neighbors in the neighbor table.
A similar routine exists for checking if every pair of neighbor nodes can
reach each other via one or two other neighbors. That routine is used
by the withdraw algorithm.

In addition to the coordinator election algorithm shown in Figure 4,
we implemented a special case for electing coordinators. The geographic
routing algorithm can readily detect that a coordinator has left the re-
gion through MAC layer failure feedback. However, the Span election
algorithm may not react fast enough to elect new coordinators. In the
worst case, nodes must wait until the old coordinator information has
expired in the neighbor table before a new coordinator can be elected.
Because geographic forwarding falls back to using non-coordinators to
route packets if coordinators do not exist, a non-coordinator node an-
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// a non-coordinator node periodically calls this routine to see if it should become a coordinator
check-announce-coordinator()

C = connect-pairs()
if C > 0 {

calculate delay using Equation 2, using C as Ci
wait delay
if connect-pairs() > 0 {

announce itself as a coordinator
}

}

// returns number of neighbor pairs a node can connect if it becomes a coordinator
connect-pairs()

n = 0
for each neighbor a in neighbor table {

for each neighbor b, b > a, in neighbor table {
if share-other-coordinators(a, b) == false {

n← n + 1
}

}
}
return n

// returns true if neighbors a and b are connected by one or two other coordinators
share-other-coordinators(a, b)

// coordinator lists are kept in the neighbor table
for each coordinator c a in a’s coordinator list {

if c a equals self {
continue

}
else if c a in b’s coordinator list {

return true
}
// try to see if we know a path from a to b via two coordinators
else if c a in neighbor table {

for each coordinator c c a in c a’s coordinator list {
if c c a equals self {

continue
}
else if c c a in b’s coordinator list {

return true
}

}
}

}
return false

Fig. 4: Coordinator announcement algorithm.

nounces itself as a coordinator if it has received a large number of
packets to route in the recent past. If this coordinator turns out to be
redundant, the coordinator withdraw algorithm will force the node to
withdraw itself as a coordinator soon after.

4.3 802.11 Ad Hoc power-saving mode

Span determines when to turn a node’s radio on or off, but depends
on the low level MAC layer to support power saving functions, such
as buffering packets for sleeping nodes. We have implemented Span on
top of the 802.11 MAC and physical layers with ad hoc power saving
support [1].
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802.11 ad hoc power-saving mode uses periodic beacons to synchro-
nize nodes in the network. Beacon packets contain timestamps that
synchronize nodes’ clocks. A beacon period starts with an ad hoc traffic
indication message window (ATIM window), during which all nodes are
listening, and pending traffic transmissions are advertised. A node that
receives and acknowledges an advertisement for unicast or broadcast
traffic directed to itself must stay on for the rest of the beacon period.
Otherwise, it can turn itself off at the end of the ATIM window, un-
til the beginning of the next beacon period. After the ATIM window,
advertised traffic is transmitted. Since traffic cannot be transmitted
during the ATIM window, the available channel capacity is reduced.

When the 802.11 MAC layer is asked to send a packet, it may or
may not be able to send it immediately, depending on which ATIM’s
have been sent and acknowledged in the immediately preceding or cur-
rent, ATIM window. If the packet arrives at the MAC during the ATIM
window, or if the advertisement for the packet has not been acknowl-
edged, it needs to be buffered. In our implementation, we buffer packets
for two beacon periods. Packets that have not been transmitted after
two beacon periods are dropped.

The beacon period and ATIM window size greatly affect routing
performance [21]. While using a small ATIM window may improve en-
ergy savings, there may not be enough time for all buffered packets to
be advertised. Using an ATIM window that is too large not only de-
creases available channel utilization, it may also not leave enough room
between the end of the ATIM window and the beginning of the next
beacon period to transmit all advertised traffic. We have experimen-
tally determined that a beacon period of 200 ms and an ATIM window
size of 40 ms result in good throughput and low loss rate.

Aside from decreased channel capacity, 802.11 power saving mode
(without Span) also suffers from long packet delivery latency: for each
hop that a packet traverses, the packet is expected to be delayed for
half a beacon period.

4.4 Improving 802.11 using Span

Using Span on top of 802.11 ad hoc power saving mode can improve
routing throughput and packet delivery latency. Because coordinators
do not operate in power saving mode, packets routed between coordina-
tors do not need to be advertised or delayed. To further take advantage
of the synergy between Span and 802.11 power saving mode, we have
made the following modifications to our simulation of 802.11 power
saving mode.
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– No advertisements for packets between coordinators. Pack-
ets routed between coordinators are marked by Span. While the
MAC layer still needs to buffer these packets if they arrive during
the ATIM window, it does not send traffic advertisements for them.
To ensure that Span does not provide incorrect information due to
topology changes, the MAC maintains a separate neighbor table.
The MAC layer uses a bit in the MAC header of each packet it sends
to notify neighbors of its power saving status. Since the MAC layer
can sniff the header of every packet, including RTS packets, this
neighbor table is likely to be correct. When a node withdraws as
a coordinator, advertisements for traffic to that node will be sent
during the next ATIM window. This optimization allows the ATIM
window to be reduced without hurting throughput.

– Individually advertise each broadcast message. With un-
modified 802.11 power saving mode, a node only needs to send one
broadcast advertisement even if it has more than one broadcast
message to send. This is because once a node hears an advertise-
ment for a broadcast message, it stays up for the entire duration of
the beacon period. Since most traffic to non-coordinator nodes in
our network would be broadcast messages sent by Span and the ge-
ographic routing protocol, we modified the MAC so each broadcast
message must be explicitly advertised. For example, if a node re-
ceives 5 broadcast advertisements, no unicast advertisements, and
then 5 broadcast messages after the ATIM window, it can safely
turn itself off.

– New advertised traffic window. With unmodified 802.11 power
saving mode, if a node receives a unicast advertisement, it must re-
main on for the rest of the beacon period. In a Span network, pack-
ets routed via non-coordinator nodes are rare. To take advantage
of this, we introduced a new advertised traffic window in the MAC.
The advertised traffic window is smaller than the beacon period. It
starts at the beginning of the beacon period, and extends beyond
the end of the ATIM window. Outside the ATIM window but in-
side the advertised traffic window, advertised packets and packets
to coordinators can be transmitted. Outside the advertised traffic
window, however, only packets between coordinators can be trans-
mitted. This allows a node in power saving mode to turn itself off
at the end of the advertised traffic window until the next beacon
period.

These three modifications allow each node to use a long beacon
period and a short ATIM window. The short ATIM window improves
channel utilization, while the long beacon period increases the fraction
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of time a non-coordinator node can remain asleep. In our simulations,
we used a beacon period of 300 ms, an ATIM window of 20 ms, and
an advertised traffic window of 100 ms. We set the propagation delay
T in Equation 2 to be the length of a beacon period.

Span does not require these modifications, but does better when
they are implemented. Section 5 compares performance of Span with
the modified 802.11 power saving mode, unmodified 802.11 in ad hoc
power saving mode, and unmodified 802.11 without power saving mode.

4.5 Energy model

To accurately model energy consumption, we took measurements of
the Cabletron Roamabout 802.11 DS High Rate network interface card
(NIC) operating at 2 Mbps in base station mode. To measure power
consumed by the card, we powered a portable computer solely with its
AC adapter (without the battery), and measured the voltage across a
resistor placed in series with the card on the computer to obtain the
instantaneous current through the NIC. The voltage across the NIC
remained constant at all times, thus from the instantaneous current
measurement, we calculated the instantaneous power consumed by the
card. We summarize the time-averaged results in Table 2, and note that
these closely match the results obtained by Feeney and Nilsson [7] for
similar 802.11 network interface cards in the ad hoc mode.

We obtained the “Rx” state measurement by putting the card into
non-power saving mode, and measuring the power required to listen for
a packet, decode it, and pass its contents up to the host. The “idle”
state measurement was obtained in the same manner, but measuring
only the power required to listen for a packet. In contrast, the “sleep”
state measurement was obtained by putting the card into power sav-
ing mode, and measuring the average (lower, and near-constant) power
consumption during the part of the power saving cycle where the card
was not listening for packets. The key point to note is the large differ-
ence between the power consumption of the idle and sleeping modes.
This suggests that putting the non-coordinator nodes that do not have
data to transmit in sleeping mode can be beneficial.

5 Performance evaluation

To measure the effectiveness of Span, we simulated Span, with geo-
graphic forwarding, on several static and mobile topologies. Simulation
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Tx Rx Idle Sleeping
1400 mW 1000 mW 830mW 130mW

Table 2: Power consumption of the Cabletron 802.11 network card in the Tx

(transmit), Rx (receive), Idle, and Sleeping modes.

results show that Span not only performs well by extending network
lifetime, it out-performs unmodified 802.11 power saving network in
handling heavy load, per-packet delivery latency, and network lifetime.

5.1 Simulation environment

We simulated Span in the ns-2 [17] network simulator using the CMU
wireless extensions [16]. The geographic forwarding algorithm, as de-
scribed in Section 4.1, routes packets from source to destination. Span
runs on top of the 802.11 MAC layer with power saving support and
modifications described in Section 4.3. In this section, we compare per-
formance of Span against both unmodified 802.11 MAC in power saving
mode and unmodified 802.11 MAC not in power saving mode. For con-
venience, we will refer to them as Span, 802.11 PSM, and 802.11.

To evaluate Span in different node densities, we simulate 120-node
networks in square regions of different sizes. Nodes in our simulations
use radios with a 2 Mbps bandwidth and 250 meters nominal radio
range. Twenty nodes send and receive traffic. Each of these nodes send
a CBR flow to another node, and each CBR flow sends 128 byte packets.
In Section 5.2 we vary the rate of the CBR traffic to measure perfor-
mance of Span under different traffic load. In other experiments, each
sender sends three packets per second, for a total of 60 Kbps of traffic.

To ensure that the packets of each CBR flow go through multiple
hops before reaching the destination node, 10 source and destination
nodes are placed, uniformly at random, on each of two 50 meter-wide,
full-height strips located at the left and right of the simulated region.
A source must send packets to a destination node on the other strip.
The initial positions of the remaining 100 nodes are chosen uniformly
at random in the entire simulated region. Thus, the square root of the
area of the simulated region and the number of hops needed by each
packet are approximately proportional.

Source and destination nodes never move. They stay awake at all
times so they can send and receive packets at higher throughputs.
However, they do not participate in coordinator elections. Thus, only
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100 nodes can become coordinators. In mobile experiments, the mo-
tion of the remaining 100 nodes follows the random waypoint model
[3]: initially, each node chooses a destination uniformly at random in
the simulated region, chooses a speed uniformly at random between 0
and 20 m/s, and moves there with the chosen speed. The node then
pauses for an adjustable period of time before repeating the same pro-
cess. The degree of mobility is reflected in the pause time. By default,
we used a pause time of 60 seconds.

For simplicity, we did not use a location service in our simulations.
Instead, a router obtains the location of the destination node from the
GOD module in ns. Since the location lookup is only required once per
flow at the sender, we believe the overhead produced by the location
service is not likely to change our results. Nevertheless, location services
such as GLS [14] can be used with Span.

All experimental results in this section are averages of five runs on
different randomly-chosen scenarios. We define node density (as used
in our graph axis labels) as the number of nodes that are not sources
or destinations per radio range, an area of 2502 × π square meters.

Span 802.11 PSM 802.11
Area Density Loss Lat (ms) Hops Loss Lat (ms) Hops Loss Lat (ms) Hops

500m×500m 78.5 0.0% 23.4 2.8 0.0% 423 2.4 0.0% 5.69 2.4
750m×750m 34.9 0.0% 30.7 4.5 0.0% 739 4.0 0.0% 11.2 4.0

1000m×1000m 19.6 0.4% 40.5 6.1 0.1% 1032 5.4 0.0% 16.9 5.4
1250m×1250m 12.6 1.9% 45.2 7.8 10.7% 1391 7.3 7.0% 20.6 7.3

Table 3: Performance of geographic forwarding with Span, 802.11 PSM, and

802.11 as node density and area of simulation region changes. Span delivers

packets using slightly more hops. Span’s packet delivery latency is higher than

802.11’s, but is significantly less than that of 802.11 PSM.

5.2 Capacity Preservation

One of Span’s goals is to preserve total network capacity, by making
sure that if there are non-conflicting paths in the underlying network,
there are similar non-conflicting paths in the coordinator backbone.
This section compares the capacity available in a Span network with
the capacity in an ordinary 802.11 network. We measure capacity by the
number of packets the network can successfully deliver per unit time;
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Fig. 5: Packet delivery rate as a function of per-CBR-flow bit rate. Each packet

traverses six hops. Under higher traffic load, Span delivers more packets than

802.11 PSM, but slightly less than 802.11.

capacity is inversely proportional to the network’s packet loss rate. Ad-
ditionally, we show that despite using fewer nodes to forward packets,
Span does not significantly increase delivery latency and number of
hops each packet traverses.

Figure 5 shows packet delivery rate as the bit rate of each CBR
flow increases. There is no motion in these simulations. The simulation
region has an area of 1000 meters × 1000 meters. On average, each
packet traverses 6 hops.

Unmodified 802.11 PSM drops significantly more packets than Span
when the CBR flow rate increases past 4 Kbps. Most of these packet
drops occur either because the ATIM window is not long enough to
allow all buffered unicast packets to be advertised, or because after
the ATIM window there is not enough time until the start of the next
beacon period for all advertised packets to be transmitted. After two
beacon periods of buffering, all packets are dropped by the MAC. Be-
cause Span does not need to advertise traffic between coordinators and
uses a shorter ATIM window and longer beacon period, Span delivers
more packets.

Span has higher loss rates than regular 802.11 when the bit rate
increases beyond 4.5 Kbps. This increase in loss rate is largely due to
the fact that Span uses a 20 ms ATIM window per 300 ms beacon
period, which reduces utilization by 6.7%. Additionally, using fewer
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nodes to forward packets may decrease potential channel utilization
even more: each time a node exponentially backs off to avoid collision,
there is a greater chance that the channel becomes unoccupied for a
longer period of time.

Table 3 shows the routing behavior and loss rates of Span, 802.11
PSM, and 802.11 with a 3 Kbps per CBR flow rate. We vary the simu-
lation area to change node density and the number of hops each packet
needs to traverse. There is no motion in these simulations. Despite us-
ing fewer nodes to forward packets, Span delivers packets using only a
slightly higher number of hops. Span’s packet delivery latency is higher
than that of 802.11, but significantly lower than that of 802.11 PSM.
With 802.11 PSM, each hop accounts for roughly 200 ms of latency,
which corresponds with the 200 ms beacon period used.

Span reduces the number of voids encountered by geographic rout-
ing: coordinators are elected to connect neighboring nodes, and are
therefore unlikely to occur at the edge of a void. Thus, Span has a
lower loss rate than both 802.11 and 802.11 PSM when the node den-
sity is low.

These results show that Span does not significantly degrade network
capacity, and can forward more packets than 802.11 PSM under high
load. Furthermore, Span increases packet latency only slightly, despite
using a fewer number of nodes to forward packets.

5.3 Effects of Mobility

Figure 6 shows the effects of mobility on packet loss rate. In these sim-
ulations an area of 1000 meters × 1000 meters is used. Each simulation
lasts 400 seconds. Nodes follow the random waypoint motion model,
and the length of the pause time reflects the degree of mobility.

The degree of mobility does not significantly affect routing with
Span coordinators. Span consistently performs better than both 802.11
PSM and 802.11. Most packet drops in these simulations are caused by
temporary voids created by mobility. Because geographic forwarding
with Span encounters fewer voids, its loss rate is lower.

5.4 Coordinator Election

Ideally, Span would choose just enough coordinators to preserve connec-
tivity and capacity, but no more; any coordinators above this minimum
just waste power. This section compares the number of coordinators
Span chooses with the number that would be required to form a hexag-
onal grid layout, shown in Figure 7; the hex grid layout of nodes, while
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Fig. 7: An approximation to an optimal layout of coordinators in a 1000 me-

ter × 1000 meter area. There are 14 coordinators in this layout.
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perhaps not optimal, produces a connected backbone in every direction
with very few coordinators.
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Fig. 8: Ideal and actual coordinator density as a function of node density. The

ideal curve represents an approximate lower bound on the number of coordinators

needed. Span elects more coordinators than the ideal case because of lower node

density, coordinator rotation, and announcement collision.

The hexagonal grid layout of coordinators place a coordinator at
each vertex of a hexagon. Every coordinator can communicate with
the three coordinators that it is connected to through an edge of a
hexagon, which is 250 meters long (the radio range). Each hexagon
has six coordinators, but each coordinator is shared by three hexagons.
Therefore each hexagon is only responsible for two coordinators. Each
hexagon has an area of 162,380 m2. Thus, given a simulation area of
d2 meters, the number of coordinators expected in this area, Cideal is

Cideal = 2 · d2

162380
(4)

Figure 8 shows coordinator density as a function of node density. For
each node density, coordinator density is computed from the average
number of coordinators elected by Span over 500 seconds of five mobile
simulations. Points on the “Ideal” curve in Figure 8 are computed using
the ideal number of coordinators predicted by Equation 4.

Span elects more coordinators than Equation 4 suggests. There are
two reasons for this. First, Equation 4 describes a layout in a network



Topology Maintenance in Ad Hoc Wireless Networks 227

that is dense enough such that there is a node at every corner of ev-
ery hexagon. When the node density is moderate, on the other hand,
more nodes are needed to provide connectivity between the hexagons.
Second, to rotate coordinators among all nodes, the optimal set of co-
ordinators may not always be selected.
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Fig. 9: Percent of time each node in a 20 node, 100 meter × 100 meter network

spent as a coordinator during 7200 seconds of simulation. In a), each node starts

with 10,000 J of energy. This graph shows that Span rotates coordinators equally

among all the nodes. In b), each node starts with 2000+400i J of energy, where

i is the node ID. This graph shows that Span is more likely to elect coordinators

with more energy.

Figure 9 shows the percent of time a node in a 20 node, 100 me-
ter × 100 meter network spent as a coordinator during 7200 seconds
of simulation. Because the entire network falls within a single radio
range, only one node is elected as a coordinator at any given time.
Consequently, if Span rotates the coordinator equally among all nodes
in the network, each node should spend 5% of the total simulation time
as a coordinator, as shown in Figure 9a. In this simulation, each node
starts with 10,000 J of energy, and spends roughly the same amount of
time as the coordinator. In Figure 9b, each node starts with 2000+400i
J of energy, where i is the node ID. For example, the first node starts
out with 2400 J, the second node starts out with 2800 J, and so on.
Figure 9b shows that the energy term in Equation 2 allows Span to
elect nodes with high amount of energy as coordinators.
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5.5 Energy Consumption

This section evaluates Span’s ability to save energy. The potential for
savings depends on node density, since the fraction of sleeping nodes
depends on the number of nodes per radio coverage area. The energy
savings also depends on a radio’s power consumption in sleep mode and
the amount of time that sleeping nodes must turn on their receivers to
listen for 802.11 beacons and Span HELLO messages.
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Fig. 10: Per-node power usage. Span provides significant amount of savings over

802.11 PSM and 802.11.

Figure 10 shows the per-node power usage in networks running
Span, 802.11 PSM, and 802.11. These numbers are calculated from the
initial energy and the energy remaining at each of the 100 mobile nodes
over 500 seconds. Each value is an average over 5 mobile simulations.
From these results, we find that Span provides a considerable amount
of energy savings over 802.11, while 802.11 PSM saves essentially no
power. This is because geographic forwarding needs to send broadcast
messages. With 802.11 PSM, each time a node receives a broadcast ad-
vertisement, it must stay up for the entire beacon period. This prevents
non-coordinators from going back to sleep. When the node density is
low, the number of broadcast messages in a radio range decreases, and
802.11 PSM yields a small amount of energy savings.

We also find that as density increases, a smaller fraction of the nodes
are elected coordinators. Consequently, we expect energy savings to
increase. In practice, however, energy savings do not increase as much.
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To understand why, we estimate the amount of energy used in a Span
system based on an estimate of the average fraction of time a node
must run its radio in idle mode. We call this fraction fidle:

fidle =
C

N
+
(

1 − C

N

)
· fup (5)

In Equation 5, N is the total number of nodes, C is the number of
coordinators elected, and fup is the fraction of the time a node in sleep
mode must wake up to listen for beacons and HELLO messages. Span
uses a 20 ms ATIM window per 300 ms of beacon period. Thus the
smallest value for fup is 0.067. In the worst case, fup can be as high
as 0.333, when a non-coordinator node must stay up for the entire
duration of the advertised traffic window (100 ms).

We define α as the ratio of the power consumption of the radio in
sleep mode to the power consumption of the radio in idle mode. Then,
using fidle, the amount of energy savings can be estimated as

1
fidle + α ∗ (1 − fidle)

(6)

Note that because fidle depends on C
N , and that the coordinator density

stays the same for different node densities, the gain in energy savings
also depends on the node density.

Figure 11 plots Equation 6 as a function of α, substituting Cideal

and 0 as values for C and fup. This figure shows that the amount of
energy saving increases rapidly, as the value of α decreases. Our energy
model uses α = 0.157 from measurements. Figure 12 plots Equation 6
as a function of fup, using Cideal and 0.157 as values for C and α. This
figure shows that as fup increases, the gain in energy savings decreases
as well. These two figures explain why in Figure 10, the gain in energy
savings is a sub-linear function of node density.

We can calculate the actual values of fup in our experiments us-
ing statistics gathered from the simulations, summarized in Table 4.
The numbers in the fup column are calculated using Equation 5, us-
ing values from the “Idle time” column as fidle. We substitute C/N
with numbers in the “Time as coordinator” column divided by 500
seconds. This column suggests that Span broadcast messages are ex-
pensive when density is high—the large number of broadcast messages
per radio range keeps nodes awake for a longer period of time.

The numbers in the “Power” column in Table 4 correspond to
the data points in Figure 10. The “Tx/Rx power” column shows the
amount of energy used to send and receive broadcast and data packets.
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Density Sleep time Idle time Time as coordinator Power Tx/Rx power fup

78.5 374 s 126 s 32.7 s 327 mW 21 mW 0.201
54.5 364 s 136 s 46.6 s 342 mW 22 mW 0.197
34.9 348 s 152 s 75.8 s 369 mW 26 mW 0.180
19.6 318 s 182 s 121.3 s 417 mW 32 mW 0.160

Table 4: Amount of time each node spends in sleep and idle mode, as a co-

ordinator, and the energy consumption of each node as node density changes.

The Tx/Rx power column shows the power used to transmit and receive data

and broadcast packets. It shows that the energy spent routing packets are not

significant. The fup column shows the fraction of each beacon period that a

node is awake. At higher densities, broadcast messages keep each node up for a

longer period of time.

Numbers in this column are calculated by subtracting from numbers
in the “Power” column the power used by the node in idle and sleep
modes, without sending or receiving packets. For example, when den-
sity is 78.5 nodes per radio rage, a node spends 374 of the 500 seconds
in sleep mode, and only 126 seconds in idle mode. Given that the node
uses 830 mW in idle mode and 130 mW in sleep mode (see Table 2),
if the node is not sending or receiving packets, its power consumption
should be 306 mW. The fact that the node’s actual power consump-
tion is 327 mW implies that sending and receiving packets use 21 mW.
Numbers in the “Tx/Rx power” column suggest that for the kind of ra-
dios we are using, sending and receiving packets do not consume much
energy in comparison.

Results in this section show that Span reduces per node power con-
sumption by a factor of 2 or more over 802.11 PSM and 802.11. How-
ever, the amount of energy savings does not increase significantly as
node density increases.

5.6 Node Lifetime

This section shows that Span distributes the costs of being a coordi-
nator in a way that extends the useful lifetime of every node in the
network. Figures 13 shows results from several mobile experiments.
In these experiments, the 20 source and destination nodes start with
2000 Joules of energy, and the remaining 100 forwarding nodes start
with 300 Joules of energy. The 802.11 and PSM curves represent simu-
lation results on a 500m×500m area. With 100 nodes routing packets,
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Fig. 13: Fraction of nodes remaining as a function of simulation time. With Span,

nodes remain alive for significantly longer periods of time.

the node density is 78.5 nodes per radio range. Results with other
node densities are similar. Span curves represent results over several
node densities. Without Span, nodes critical to multi-hop routing die
around the same time, 335 seconds into the simulation. With Span,
the first node failure occurs 505 seconds into the simulation when node
density is 19.6 nodes per radio range, 556 seconds into the simulation
when node density is 34.9, 574 seconds into the simulation when node
density is 54.5, and 692 seconds into the simulation when node density
is 78.5. The packet delivery rate does not drop below 90% until 681 sec-
onds into the simulation when node density is 19.6, 887 seconds into the
simulation when node density is 34.9, 912 seconds into the simulation
when node density is 54.5, and 962 seconds into the simulation when
node density is 78.5.

6 Conclusion

This paper presents Span, a distributed coordination technique for
multi-hop ad hoc wireless networks that reduces energy consumption
without significantly diminishing the capacity or connectivity of the
network. Span adaptively elects coordinators from all nodes in the net-
work, and rotates them in time. Span coordinators stay awake and
perform multi-hop packet routing within the ad hoc network, while
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other nodes remain in power-saving mode and periodically check if
they should awaken and become a coordinator.

With Span, each node uses a random backoff delay to decide whether
to become a coordinator. This delay is a function of the number of
other nodes in the neighborhood that can be bridged using this node,
and the amount of energy it has remaining. Our results show that
Span not only preserves network connectivity, it also preserves capacity,
decreases latency, and provides significant energy savings. For example,
for a practical range of node densities and a practical energy model,
our simulations show that the system lifetime with Span is more than
a factor of two better than without Span.

The amount of energy that Span saves increases only slightly as
density increases. This is largely due to the fact that the current imple-
mentation of Span uses the power saving features of 802.11, in which
nodes periodically wake up and listen for traffic advertisements. Sec-
tion 5.5 shows that this approach can be extremely expensive. This
warrants investigation into a more robust and efficient power saving
MAC layer, one that minimizes the amount of time each node in power
saving mode must stay up.
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The Cricket Location-Support System
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Abstract. This paper presents the design, implementation,
and evaluation of Cricket, a location-support system for in-
building, mobile, location-dependent applications. It allows ap-
plications running on mobile and static nodes to learn their
physical location by using listeners that hear and analyze infor-
mation from beacons spread throughout the building. Cricket is
the result of several design goals, including user privacy, decen-
tralized administration, network heterogeneity, and low cost.
Rather than explicitly tracking user location, Cricket helps de-
vices learn where they are and lets them decide whom to ad-
vertise this information to; it does not rely on any centralized
management or control and there is no explicit coordination
between beacons; it provides information to devices regardless
of their type of network connectivity; and each Cricket device
is made from off-the-shelf components and costs less than U.S.
$10. We describe the randomized algorithm used by beacons
to transmit information, the use of concurrent radio and ultra-
sonic signals to infer distance, the listener inference algorithms
to overcome multipath and interference, and practical beacon
configuration and positioning techniques that improve accu-
racy. Our experience with Cricket shows that several location-
dependent applications such as in-building active maps and
device control can be developed with little effort or manual
configuration.

1 Introduction

The emergence of network-enabled devices and the promise of ubiq-
uitous network connectivity has made the development of pervasive
� This research was supported in part by NTT Corporation, DARPA (Grant

No. MDA972-99-1-0014), and IBM.



238 Nissanka B. Priyantha, Anit Chakraborty and Hari Balakrishnan

computing environments an attractive research goal. A compelling set
of applications enabled by these technology trends are context-aware,
location-dependent ones, which adapt their behavior and user interface
to the current location in space, for which they need to know their
physical location with some degree of accuracy. We have started see-
ing the commercial deployment of such applications in outdoor settings
(e.g., Hertz’s NeverLost navigator on rental cars [12]), where location
information is obtained via wide-area technologies like the Global Po-
sitioning System (GPS) [10] or using the cellular infrastructure. We
believe that the widespread deployment of location-dependent appli-
cations inside office buildings and homes has the potential to funda-
mentally change the way we interact with our immediate environment,
where computing elements will be “ubiquitous” [20] or “pervasive” [8,
4]. In particular, our work will enable a new class of location-based
applications and user interactions in the context of Project Oxygen at
MIT [15].

The design and deployment of a system for obtaining location and
spatial information in an indoor environment is a challenging task for
several reasons, including the preservation of user privacy, adminis-
tration and management overheads, system scalability, and the harsh
nature of indoor wireless channels. The degree of privacy offered by the
system is an important deployment consideration, since people often
value their privacy highly. The administrative overhead to manage and
maintain the hardware and software infrastructure must be minimal
because of the potentially large number (possibly several thousands in
a building) of devices and networked services that would be part of the
system, and the communication protocols must be able to scale to a
high spatial density of devices. Finally, indoor environments often con-
tain substantial amounts of metal and other such reflective materials
that affect the propagation of radio frequency (RF) signals in non-
trivial ways, causing severe multipath effects, dead-spots, noise, and
interference.

Our goal is to develop a system that allows applications running
on user devices and service nodes to learn their physical location. Once
this information is obtained, services advertise themselves to a resource
discovery service such as the MIT Intentional Naming System (INS) [2],
IETF Service Location Protocol [17], Berkeley Service Discovery Ser-
vice [7], or Sun’s Jini discovery service [13]. User applications do not
advertise themselves unless they want to be discovered by others; they
learn about services in their vicinity via an active map that is sent
from a map server application, and interact with services by construct-
ing queries for services at a required location. By separating the pro-
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cesses of tracking services and obtaining location information, multi-
ple resource discovery systems can be handled. By not tracking users
and services, user-privacy concerns are adequately met. We emphasize
that our goal is a location-support system, rather than a conventional
location-tracking system that tracks and stores location information for
services and users in a centrally maintained database.

Over the past many months, we have designed and implemented
Cricket, a location-support system for building-wide deployment in the
context of Project Oxygen, and have conducted several experiments
with it. We have integrated it with INS for resource discovery, and an
active map application, which together enable location-dependent ap-
plications (and users) to discover and interact with services. This paper
describes our design goals (later in this section), system architecture
and algorithms (Section 2), implementation (Section 3), experimental
results (Section 4), applications (Section 5), and a detailed comparison
with previous location-tracking systems (Section 6).

The design of Cricket was driven by the following specific goals,
which followed from the nature of our applications and from deployment
considerations:

– User privacy. Whenever a system for providing location infor-
mation to clients has been deployed in the past, the issue of user
privacy has arisen. This is because many previous systems were
location tracking systems, where a database kept track of the loca-
tions of all the entities, including users in the system. To address
this concern, we designed a location support system, which allows
clients to learn their location without centralized tracking in order
to construct location-specific queries for resources.

– Decentralized administration. Our goal is widespread building-
wide deployment. We believe that it is not possible to deploy and
administer a system in a scalable way when all control and man-
agement functions are centralized. Our design is decentralized - the
“owner” of a space in a building (e.g.,the occupant of a room) con-
figures and installs a location beacon that announces the identity
of that space (some character string) and each beacon seamlessly
integrates with the rest of the system. Location receiver hardware,
called a listener, is attached to every device of interest to a user. Lis-
teners use an inference algorithm to determine the space in which
they are currently located by listening to beacon announcements.
And there is no need to keep track of individual components within
the system.

– Network heterogeneity. A wide variety of network technologies
exist in most building environments. In our own laboratory, de-
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vices and users connected over 10/100 Mbps Ethernet, three dif-
ferent types of indoor wireless LANs, cellular digital packet data
(CDPD), infrared, public telephone, and power-line using X10 [21].
Independent of which technology they use to serve or gain access
to information, many services and clients can benefit from learning
their location in an automatic way, and we would like to accommo-
date them. In our design, we achieve this by decoupling the Cricket
system from other data communication mechanisms.

– Cost. Achieving building-wide deployment requires cost-effective
components. We use commercial, off-the-shelf, inexpensive compo-
nents in Cricket, setting and meeting the goal of less than U.S. $10
per location beacon and listener. Our design involves no custom
hardware and is small enough to fit in one’s palm.

– Room-sized granularity. Our goal is a system where spatial re-
gions can be determined to within a few square feet, so as to distin-
guish portions of rooms. This requires the ability to demarcate and
determine boundaries between regions corresponding to different
beacons.

Cricket uses a combination of RF and ultrasound to provide a
location-support service to users and applications. Wall- and ceiling-
mounted beacons are spread through the building, publishing location
information on an RF signal. With each RF advertisement, the bea-
con transmits a concurrent ultrasonic pulse. The listeners receive these
RF and ultrasonic signals, correlate them to each other, and infer the
space they are currently in. We describe the details of the technolo-
gies, the system parameters and configuration, and the algorithms and
protocols used in Cricket. The beacons use a decentralized randomized
transmission algorithm to minimize collisions and interference amongst
each other. The listeners implement a decoding algorithm to overcome
the effects of ultrasound multipath and RF interference. We investigate
the performance of three decoding algorithms and find that picking the
location corresponding to the beacon with minimum statistical mode
performs the best, maximizing the likelihood of making the correct
choice. We also discuss some practical deployment considerations when
using ultrasound hardware, and some location-dependent applications
we have developed using Cricket.

2 System architecture

Cricket uses beacons to disseminate information about a geographic
space to listeners. A beacon is a small device attached to some location
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within the geographic space it advertises. Typically, it is obtained by
the “owner” of the location (e.g., the occupant of a room in an office or
home, or a building administrator) and placed at an unobtrusive loca-
tion like a ceiling or wall. Cricket does not attach any semantics to the
space advertised by the beacon; any short string can be disseminated,
such as the name of a server to contact to learn more about the space
or a name resolver for the space to discover resources. Cricket beacons
are inexpensive and more than one of them can be used in any space
for fault-tolerance and better coverage.

To obtain information about a space, every mobile and static node
has a listener attached to it. A listener is a small device that listens to
messages from beacons, and uses these messages to infer the space it is
currently in. The listener provides an API to programs running on the
node that allow them to learn where they are, so that they can use this
information to appropriately advertise themselves and their location to
a resource discovery service.

The listener can be attached to both static and mobile nodes. For
example, when a user attaches a new static service to the network (e.g.,
a printer), she does not need to configure it with a location or other
any attribute; all she does is attach a listener to it. Within a few sec-
onds, the listener infers its current location from the set of beacons it
hears, and informs the device software about this via the API. This
information can then be used in its own service advertisements. When
a mobile computer has a listener attached to it, the listener constantly
listens to beacons to infer its location. As the computer (e.g., a hand-
held computer carried by a person) moves in a building, the navigation
software running on it uses the listener API to update its current loca-
tion. Then, by sending this information securely to a map server (for
example), it can obtain updates to the map displayed to the user. Fur-
thermore, services appear as icons on the map that are a function of
the user’s current location. The services themselves learn their location
information using their own listener devices, avoiding the need for any
per-node configuration.

The only configuration required in Cricket is setting the string for a
space that is disseminated by a beacon. The specific string is a function
of the resource discovery protocol being used, and Cricket allows any
one of several possibilities (in Section 5 we describe our implementa-
tion platform and integration with INS). Cricket also provides a way
by which the owner of a room can securely set and change the space
identifier that is sent in the advertisements. This is done by sending a
special message over the same RF channel that is used for the adver-
tisements, after authenticating the user via a password. At this stage,



242 Nissanka B. Priyantha, Anit Chakraborty and Hari Balakrishnan

we have chosen to allow this change only from within physical proxim-
ity of the room or location where the beacon is located. This makes the
system somewhat more secure than if we allowed this to be done from
afar.

The boundaries between adjacent spaces can either be real, as in
a wall separating two rooms, or virtual, as in a non-physical partition
used to separate portions of a room. The precision of the system is
determined by how well the listener can detect the boundary between
two spaces, while the granularity of the system is the smallest possible
size for a geographic space such that boundaries can be detected with
a high degree of precision. A third metric, accuracy is used to calibrate
individual beacons and listeners; it is the degree to which the distance
from a beacon, estimated by a listener, matches the true distance. While
our experiments show that the distance accuracy of our hardware is
smaller than a few inches, what matters is the precision and granularity
of the system. These depend on the algorithms and the placement of
beacons across boundaries. Our goal is a system with a close-to-100%
precision with a granularity of a few feet (a portion of a room).

The rest of this section describes the design of Cricket, focusing on
three fundamental issues: (i) mechanism for determining the location
(the beacon-listener protocol), (ii) the listener algorithms and tech-
niques for handling beacon interference, and (iii) beacon configuration
and positioning.

2.1 Determining the location

At the beginning we were hopeful that a purely RF-based system could
be engineered and made to work well, providing location information at
the granularity of a room, and ideally, portions of rooms. Our approach
attempted to limit the coverage of an RF transmitter to define the gran-
ularity of a geographic-space, and using received signal strength to infer
best location. Despite many weeks of experimentation and significant
tuning, this did not yield satisfactory results [6]. This was mainly be-
cause RF propagation within buildings deviates heavily from empirical
mathematical models (e.g., see also [5]), and in our environment, the
corresponding signal behavior with our inexpensive, off-the-shelf radios
was not reproducible across time.

We therefore decided to use a combination of RF and ultrasound
hardware to enable a listener to determine the distance to beacons,
from which the closest beacon can be more unambiguously inferred.
We achieve this by measuring the one-way propagation time of the ul-
trasonic signals emitted by a beacon, taking advantage of the fact that
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the speed of sound in air (about 1.13 ft/ms at room temperature) is
much smaller than the speed of light (RF) in air. On each transmission,
a beacon concurrently sends information about the space over RF, to-
gether with an ultrasonic pulse. When the listener hears the RF signal,
it uses the first few bits as training information and then turns on its
ultrasonic receiver. It then listens for the ultrasonic pulse, which will
usually arrive a short time later. The listener uses the time difference
between the receipt of the first bit of RF information and the ultrasonic
signal to determine the distance to the beacon. Of course, the value of
the estimated distance is not as important as the decision of which the
closest beacon is.

The use of time-of-flight of signals to measure distance is not a new
concept. GPS uses the one-way delay of radio waves from satellites to
estimate distance, while radio-altimeters in aircrafts use the time for an
electromagnetic signal to reflect off the ground to determine altitude.
Collision avoidance mechanisms used in robotics [16] determine the
distance to obstacles by measuring the time-of-flight of an ultrasonic
signal being bounced off them.

It is also possible to measure the distance using the relative velocity
of two signals. It is common practice to use the time elapsed between
observing a lightning (electromagnetic waves) and accompanied thun-
der (sound) to estimate the distance to the lightning. The Bat system
(detailed in Section 6) uses this idea to determine a mobile transmit-
ter’s position in space, where an array of calibrated receivers measure
the time of flight of an ultrasonic signal emitted by a mobile transmitter
in response to an RF signal from a base station sent to the transmitter
and all the receivers.

2.2 Reducing interference

While Cricket has the attractive property that its decentralized bea-
con network is easy to configure and manage, it comes at the absence
of explicit coordination. There is no explicit scheduling or coordina-
tion between the transmissions of different beacons that may be in
close proximity, and listeners do not transmit any information to avoid
compromising privacy. This lack of coordination can cause RF trans-
missions from different beacons to collide, and may cause a listener to
wrongly correlate the RF data of one beacon with the ultrasonic signal
of another, yielding false results. Furthermore, ultrasonic reception suf-
fers from severe multipath effects caused by reflections from walls and
other objects, and these are orders of magnitude longer in time than
RF multipath because of the relatively long propagation time for sound
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waves in air. In fact, this is one of the reasons it is hard to modulate
data on the ultrasonic signal, which makes it a pure pulse. Thus, the
listener’s task is to gather various RF and ultrasound (US) samples,
deduce and correlate the {RF,US} pairs that were sent concurrently
by the different beacons, and choose the space identifier sent from the
pair with the closest distance.

We decided not to implement a full-fledged carrier-sense-style channel-
access protocol to avoid collisions in order to maintain simplicity and
reduce overall energy consumption. Instead, we handle the problem of
collisions using randomization. Rather than using a fixed or determin-
istic transmission schedule, beacon transmission times are chosen ran-
domly with a uniform distribution within an interval [R1, R2]ms. Thus,
the broadcasts of different beacons are statistically independent, which
avoids repeated synchronization and prevents persistent collisions. The
choice of random interval is governed by the number of beacons we typ-
ically expect will be within range of each other and the time it takes for
the transmitted information to reach the listeners, which depends on
the message size and link bandwidth. In our implementation, we use an
average frequency of four times per second distributed in [150, 350]ms.
A smaller frequency increases the amount of time before a statistically
significant location inference can be made, while a higher frequency in-
creases the probability of collisions. We plan to extend this technique
to include a listening component that will allow each beacon to infer
the number of beacons in its proximity and appropriately scale the
beaconing frequency.

We minimize errors due to RF and ultrasonic interference among
beacons by two methods: (i) proper selection of system parameters
to reduce the chance of false correlations, and (ii) listener inference
algorithms based on statistical analysis of correlated {RF,US} samples.

System parameters In addition to transmitting a string correspond-
ing to the space, each beacon transmits a unique identifier. The com-
bination of the location string and identifier is unique across the entire
system. This allows the listener to correlate the RF and ultrasonic bea-
con signals correctly.

The raw line-of-sight range of our ultrasonic transmitter-receiver
pair is around 50 feet, when both the transmitter and the receiver are
facing each other. However, by mounting the ultrasonic transmitters
carefully, as described in Section 3.3, we are able to reduce the effective
range to around 30 feet in the absence of any obstacles. The line-of-
sight range of the RF transmitter-receiver pair is about 80 feet, which
drops to about 40 feet when there is an obstacle (e.g., a wall). Since RF
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can travel farther than an ultrasonic transmission and can also travel
through certain obstacles, it is almost impossible for a listener to receive
an ultrasonic signal without receiving the corresponding RF signal.

We discovered that one way to reduce the occurrence of false corre-
lations is to use a relatively sluggish RF data transmission rate! Instead,
if we used a high-bandwidth RF channel, the data identifying a space
would reach a listener before the ultrasound pulse was detected. I.e.,
if S is the size in bits of the message sent over the RF channel with a
transmission rate of b bits/s, and τ is the maximum propagation time
for an ultrasonic signal in air between a beacon and a listener, a value
of b < S/τ would mean that the ultrasonic signal corresponding to a
given RF message would arrive while the S message bits are still being
received. Together with the fact that the range of our ultrasound is
smaller than our RF, this establishes that any potentially correlated
ultrasound pulse must arrive while an RF message is being received. In
the absence of interfering beacon transmissions, this check suffices to
do the correct correlation. The specific parameters used in our imple-
mentation are described in Section 3.

We now proceed to investigate the different interference scenarios
that are possible.

Interference scenarios To better understand the effects of interfer-
ence and multipath (due to reflected signals) on distance estimation,
we characterize the different RF and ultrasonic signals that a listener
can hear. Consider the RF and ultrasonic signals sent by a beacon A
and an interfering beacon I. The listener potentially hears the following
signals:

– RF-A. The RF signal from A.
– US-A. The direct ultrasonic signal from A.
– US-RA. The reflected ultrasonic signal from A.
– RF-I. The RF signal from I.
– US-I. The direct ultrasonic signal from I.
– US-RI. The reflected ultrasonic signal from I.

We only need to consider the cases when a US pulse arrives while
some RF signal is being received. The reception of the first ultrasonic
signal US-A, US-RA, US-I, or US-RI while RF-A is being received will
cause the listener to calculate the distance to A using the time interval
between the detection of RF-A and the particular ultrasonic signal.
This is because the listener, after receiving the RF signal from a beacon,
waits for the first occurrence of an ultrasonic pulse to determine the
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RF-A
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Fig. 1. RF-A:US-I interaction, with US-A arriving after US-I. The two RF
transmissions overlap in time at the listener.

distance. All subsequent ultrasonic receptions that arrive during this
RF message are ignored. Of course, if the direct signal US-A is the
first one to be received, the listener correctly estimates the distance to
A. However, the wrong correlation of any other ultrasonic signal with
RF-A could be problematic.

Case 1: RF-A:US-RA. This combination with the reflected ultra-
sonic signal from A causes the estimated distance to be larger than the
actual distance to A. This situation can occur only if the direct signal
US-A was never received by the listener. However, the problems caused
by this to the system can be reduced by properly aligned beacons (Sec-
tion 3.3), as well as using multiple independent beacons per geographic
space. In addition, in our experience, we have found that the ability of
the ultrasonic waves to bend around obstacle edges (diffraction) makes
this a relatively infrequent occurrence since the direct signal is usually
detected before the reflected one.

Case 2: RF-A:US-I. This is the combination of RF-A with the direct
ultrasonic signal from an interfering beacon I, which arrives before the
ultrasonic signal US-A. Since an ultrasonic pulse can only be received
by a listener while the corresponding RF data packet is being received,



The Cricket Location-Support System 247

RF-I should also be in transit to the listener. Hence RF-A and RF-I
should overlap at the listener as shown in Figure 1.

If RF-A and RF-I are comparable in signal strength, they will collide,
causing the listener to ignore this event because both RF messages
will be corrupted. On the other hand, if the signal strength of RF-I is
substantially larger than RF-A, the two may not collide and the listener
will end up calculating the correct distance to beacon I.

The only situation that leads to a wrong distance estimate is when
the signal strength of RF-I is much smaller than RF-A, causing the
listener to use the RF-A:US-I combination to determine the distance to
A. We reduce the chances of this event by using RF signals with longer
range than US signals. This generally ensures a strong RF reception
whenever the corresponding ultrasonic signal is received (hence the
receipt of US-I, in general ensures a strong RF-I).

Case 3. RF-A:US-RI. This occurs when a stray reflected signal from
an interfering beacon I appears before US-A. As before, this can lead
to wrong distance estimates as well.

Although cases 2 and 3 may lead to incorrect distance estimates,
our use of randomization reduces the repeated calculation of wrong
estimates. If there are a large number of beacons in close proximity
to each other, there can be a non-negligible number of wrong distance
estimates at the receivers. At this point, we have engineered our system
to ensure that there are not more than five or six beacons that are
within range of each other at any location.

In addition, listeners do not simply use the first sample pair they
get to infer their best location. Rather, they collect multiple samples
and use an inference algorithm for this.

Beacon position inference We develop and compare three simple
algorithms to determine which the closest beacon is, overcoming the
interference problems of the previous section: Majority, MinMean, and
MinMode. In our analysis of these algorithms, the distance estimate
is rounded to the nearest ten inches and the data put into different
bins according to how frequently they occur. This is done for each
beacon separately. Furthermore, isolated stray samples are eliminated
from the analysis; a small threshold number of consistent values (two,
in our implementation) are needed before the corresponding sample is
included for analysis.

– Majority. This is the simplest algorithm, which pays no attention to
the distance estimates and simply picks the beacon with the highest
frequency of occurrence in the data set. This algorithm does not
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Room A Room B

Beacon BBeacon A Listener

Fig. 2. The nearest beacon to a listener may not be in the same geographic
space.

use ultrasonic signals for determining the closest beacon, but as we
find in our experiments, this does not perform well. We investigate
this primarily for comparison with the other algorithms.

– MinMean. Here, the listener calculates the mean distance from each
unique beacon for the set of data points within the data set. Then, it
selects the beacon with the minimum mean as the closest one. The
advantage of this algorithm is that it can be computed with very lit-
tle state, since a new sample updates the mean in a straightforward
way. The problem with this algorithm is that it is not immune to
multipath effects that cause the distance estimates to display modal
behavior; where computing a statistic like the mean (or median) is
not reflective of any actual beacon position.

– MinMode. Since the distance estimates often show significant modal
behavior due to reflections, our approach to obtaining a highest-
likelihood estimate is to compute the per-beacon statistical modes
over the past n samples (or time window). For each beacon, the
listener then picks the distance corresponding to the mode of the
distribution, and uses the beacon that has the minimum distance
value from among all the modes. We find that this is robust to stray
signals and performs well in both static and mobile cases.

Section 4 discusses the results of our experiments. We note that
these are by no means the only possible algorithms, but these are repre-
sentative of the precision attainable with different degrees of processing
at the listeners.
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Fig. 3. Correct positioning of beacons.

2.3 Beacon positioning and configuration

The positioning of a beacon within a room or space plays a non-trivial
role in enabling listeners to make the correct choice of their location.
For example, consider the positioning shown in Figure 2. Although the
receiver is in Room A, the listener finds the beacon in Room B to be
closer and will end up using the space identifier advertised by the latter.

One way of overcoming this is to maintain a centralized repository of
the physical locations of each beacon and provide this data to listeners.
Systems like the Bat essentially use this type of approach, where the
central controller knows where each wall- or ceiling-mounted device is
located, but it suffers from two problems that make it unsuitable for
us. First, user-privacy is compromised because a listener now needs to
make active contact to learn where it is (observe that in Cricket, a
listener is completely passive). Second, it requires a centrally managed
service, which does not suit our autonomously managed environment
particularly well.

Fortunately, there is a simple engineering solution to this prob-
lem that preserves privacy and is decentralized. Whenever a beacon
is placed to demarcate a physical or virtual boundary corresponding
to a different space, it must be placed at a fixed distance away from
the boundary demarcating the two spaces. Figure 3 shows an exam-
ple of this in a setting with both real and virtual boundaries. Such
placement ensures that a listener rarely makes a wrong choice, unless
caught within a small distance (1 foot in our current implementation)
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from the boundary between two beacons advertising different spaces.
In this case, it is often equally valid to pick either beacon as the closest.

3 Implementation

In this section, we describe the implementation of Cricket. We describe
the system parameters and hardware configuration, the API provided
by the listener to applications running on the attached node, and some
deployment issues with ultrasonic hardware.

3.1 System parameters and hardware

The message size of a beacon RF transmission is 7 bytes long in our
implementation, and the RF transmission rate of our radios is 1200
bits/s. It therefore takes about 47 ms for the message to completely
reach a listener, during which time an ultrasonic pulse can travel at
most about 47 feet. The typical range of our RF radios is about 30 feet
in the building. No listener can therefore be farther away than this to
detect which space it is in.

Cricket is implemented using inexpensive, off-the-shelf, simple hard-
ware parts that cost less than U.S. $10 per beacon and listener. The
beacon consists of a PIC micro-controller running at 10MHz, with 68
bytes of RAM and 1024 words of program memory. It uses a low-power
SAW resonator-based RF transmitter and a single-chip RF receiver,
both operating in the 418 MHz unlicensed band [9] with amplitude
modulation. The final component is an ultrasonic transmitter operat-
ing at 40kHz. All of these are assembled on a small board and mounted
on a ceiling or high on a wall.

The listener is only slightly more complicated. It has an identical
micro-controller, a single-chip RF receiver, and an ultrasonic receiver
with a single-chip tone-detector circuit, instead of the corresponding
transmitters. It also has a TTL to RS-232 signal converter by which
it interfaces to the host device, e.g., a laptop, hand-held computer, or
any other service like a printer, camera, television, etc. This interface
uses the standard RS-232 protocol at 9600 bits/s.

We measured the power consumption of a beacon, since the periodic
transmission of an RF signal and ultrasonic pulse will eventually run
the battery down. Although we did not explicitly design the hardware
for low power consumption, we find that it is quite efficient, dissipating
15 mW of power during normal operation (when it sends an RF and
US signal every 250 ms on average). Currently, each Cricket beacon



The Cricket Location-Support System 251

uses a single 9 Volt re-chargeable battery. We plan to use a solar cell
with a backup re-chargeable battery in the future.

3.2 Listener API

A part of the software implemented for receiver nodes, called the Lo-
cationManager, runs on the host device that has the listener hardware
attached to the serial port. The LocationManager listens on the serial
port for any data coming from the listener hardware. In our implemen-
tation, the MinMode listener inference algorithm to analyze distance
estimates is also implemented within the LocationManager, since this
provides greater flexibility. The listener sends both the location infor-
mation and the measured distance to the corresponding beacon, to the
LocationManager for each valid RF reception.

Asynchronous to the reception of distance estimates and listener
computations, applications running on the host device connect to the
LocationManager and retrieve current location information using a
datagram socket (UDP) interface. In fact, this allows for the possi-
bility of obtaining this information from a remote node elsewhere on
the network, which might be useful for some applications. We have not
yet taken advantage of this facility in our applications.

3.3 Ultrasound deployment issues

As described in Section 2, ultrasonic interference at the receiver can
lead to incorrect distance measurements. It is therefore important to
reduce ultrasonic leakage to other locations while trying to provide full
coverage to the location served by a Cricket beacon. We achieve this
by proper alignment of the ultrasonic transmitters.

Figure 4 shows the radiation pattern of the ultrasonic transmitter
used in the Cricket beacons. This is shown in (r, θ) polar coordinates,
where r corresponds to the signal strength in dB; and θ corresponds to
the offset in degrees from the front of the ultrasonic transmitter. From
the radiation pattern, it can be seen that the direction the ultrasound
transmitter facing ( 0◦) has the maximum signal strength, while the
signal strength drops to 1% ( -20 dB) of the maximum value at ±50◦

away from the 0◦ direction.
We align the ultrasonic transmitter such that the direction of its

peak signal strength is at 45◦ to the horizontal. The beacon is mounted
such that the ultrasonic transmitter faces the location intended to be
covered by the beacon. This causes the amount of ultrasonic energy
transmitted towards distant locations to be small compared to where
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Fig. 4. The radiation pattern of an ultrasonic transmitter.

it is intended. This alignment is easily accomplished by positioning the
transmitter at an angle of 45◦ to the circuit board of the beacon and
mounting the board flat on the ceiling or wall of the room, as shown in
Figure 5.

We use the velocity of sound in air to measure distances from bea-
cons to receivers.The velocity of sound depends on environmental fac-
tors such as the ambient temperature and humidity. Within a building,
these properties can exhibit both temporal and spatial variations. Tem-
poral variations occur at different time-scales such as time of day and
season of the year. We avoid errors due to such temporal variations
using relative rather than absolute distances in determining location.

Spatial variations in temperature and humidity due to effects like
direct sunlight falling in different sections of a room, the presence of
heaters and air conditioners within a room, or the use of humidifiers
within a room can affect ultrasound-based distance measurements. We
reduce the errors caused by such spatial variations by positioning the
beacons and aiming for only coarse-grained (about 10 inches) location
information. For instance, supposing that beacons are always kept 2 feet
away from a boundary, the distance recorded from a transmitter in an
adjoining room has to decrease by ≈ 4 feet for a receiver to mistakenly
assume that the adjoining room is closer. This would require a large
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Fig. 5. Correct alignment of a Cricket ultrasonic transmitter.

variation of temperature and humidity along the path; which is highly
unlikely in normal circumstances (the temperature coefficient of the
velocity of sound in air is 2ft/sec per degree-Celsius).

4 Experiments

We conducted several experiments to investigate the performance of
Cricket. The first experiment examines the listener performance near
location boundaries, and shows that we can achieve a location granu-
larity of 4 × 4 feet. The second experiment is aimed at investigating
the robustness of the system to interference amongst beacons, and the
evaluates the performance of the three location inference algorithms
presented in Section 2.2 for static listeners. The third experiment exam-
ines the performance of the three decoding algorithms when a listener
is mobile.

4.1 Boundary performance

Figure 6 shows the setup for this experiment. The aim of this experi-
ment is to investigate the the ability of the listener to detect the bound-
ary, which determines the precision of the system.
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Fig. 6. Setup for experiment 1, evaluating boundary performance.

Two beacons, A and B, advertising different location strings were
placed 4 feet apart on the ceiling, giving rise to a virtual boundary in the
middle. Distance samples (in the form of ultrasonic pulse propagation
time) were taken at 0.5-feet intervals along the x direction as shown
in the figure, starting from the center. Figure 7 shows the results of
this experiment, plotting the average and the standard deviation of
the ultrasonic propagation times from the two beacons as a function
of the displacement from the boundary x. This shows that when the
listener is more than about 1 foot away from the boundary, the closest
beacon can be determined accurately from the estimated distances, thus
enabling the listener to determine its location accurately. Furthermore,
the difference of the two average distances increases as the listener
moves away from the boundary, which causes the probability of making
a wrong decision by the listener to decrease as it moves away from the
boundary.

This also shows that we can easily achieve a location granularity of
4×4 feet, by placing the beacons in a 4×4 feet grid. Which, effectively
divided the region in to 4 × 4 feet cells. In the future, we plan to
carry out more detailed experiments to measure the accuracy of our
hardware, and the precision and granularity of the system as the density
of beacons increases.
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Fig. 7. Average and standard deviation (the errorbars) of ultrasonic propa-
gation time as a function of the horizontal displacement of a listener from
the boundary of two beacon regions. When the displacement is over about 1
foot, the errorbars do not overlap.

4.2 Static performance

In the second experiment, we examine the robustness of Cricket against
interference amongst nearby beacons. It shows that it is indeed possible
to achieve good system performance, despite the absence of any explicit
coordination amongst the beacons. We also compare the performance
of the three listener inference algorithms presented in Section 2.2.

Figure 8 shows the setup for this experiment. Beacons B1 and B2
provide location information within room X . Beacons B3 and B4 pro-
vide location information for rooms Y and Z. All these beacons are
within the range of each others ultrasonic transmissions. To provide RF
interference with no corresponding ultrasonic signals (since the range
of RF exceeds that of ultrasound in Cricket), we use beacons I1 and
I2 that have their ultrasonic transmitters disabled.

All the beacons were attached to the ceiling with the ultrasonic
transmitters facing their respective spaces as described in Section 2.3.
We gathered distance samples at locations R1 and R2 for a static lis-
tener. Observe that R1 is closer to the interfering sources I1 and I2
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Fig. 8. Setup for experiment 2, evaluating the robustness of Cricket in the
presence of interfering beacons.

than to the legitimate beacons for the room, corresponding to the pres-
ence of severe RF interference. In contrast, R2 is only 1 foot away from
the boundary separating the rooms X and Y , showing the performance
close to a boundary.

First, we determined the degree of interference caused by I1 and
I2 by collecting 1000 samples of distance estimates at R1 and R2 and
counting the number of values corresponding to each RF source (beacon
or interferer). When the listener was at R1, somewhat farther from the
interfering sources, there were no distance samples corresponding to
the interfering RF sources. On the other hand, at R2 we received a
total of only 7 samples corresponding to both I1 and I2, despite the
fact that R2 is closer to I1 and I2 relative to the legitimate beacons.
Table 1 summarizes these results.
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Interference Source I1 I2

Interference at R1 0.0% 0.0%
Interference at R2 0.3% 0.4%
Table 1. Degree of interference at R1 and R2 caused by I1 and I2, showing
the effectiveness of the randomized beacon transmissions and system param-
eters.

Fig. 9. Error rates at Position 1.

The samples corresponding to I1 and I2 are due to the incorrect cor-
relation of these RF signals with ultrasonic pulses from other beacons
in the vicinity of the listener. However, the randomized transmission
schedule together with proper system parameters reduces the occur-
rence of such interference to a very small fraction of the total. This
validates our claims in Section 2.2 and our design.

We now investigate the performance of the three inference algo-
rithms, Majority, MinMean, and MinMode, when the listener is at R1
and R2. Here, we compute the error rate (in percent) in inferring the
location by these three inference algorithms, varying the number of dis-
tance samples used for inference. The results, shown in Figure 9 (for
position R1) and Figure 10 (for position R2), demonstrate that both
MinMean and MinMode perform very well even when the sample size
is small, even for the case when a listener (R1) is close to a boundary.

4.3 Mobile performance

This experiment is aimed at determining the system performance when
the listener is mobile. For a mobile listener, being able to obtain accu-
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Fig. 10. Error rates at Position 2.

rate location information within a short time is important. Figure 11
shows the configuration of the beacons and the path followed by the mo-
bile user while taking measurements. The listener was moved through
each boundary at approximately the same speed each time, emulat-
ing a user’s typical walking speed in a building. Each time the listener
crossed a boundary, a transition event and a timestamp was logged.
Once through the boundary, the listener remained stationary for a short
period of time to determine how long it takes to stabilize to the cor-
rect value, and then the experiment was repeated again through the
next boundary. When analyzing the data, we used the logged transi-
tion event to determine the user’s actual location with respect to the
location being reported by the listener. Note that in this experiment,
the listener is always located relatively close to the boundaries.

Figure 12 shows the location error-rate at the listener for the experi-
ment. The error-rate is calculated over the time period during which the
listener moves around a location, after crossing a boundary. The Min-
Mode performs the best among the three inference algorothms. From
the results, it is evident that larger time intervals provide better results
over smaller intervals, which is not surprising since a larger interval
gives the algorithm more samples samples to work with. Another in-
teresting point is that MinMean and MinMode both perform about the
same over small time windows. As the time interval gets smaller the
probability that a distance value sample containing only a single value
per beacon increases. A small number of samples causes both the mean
and the mode to be the roughly the same.
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Fig. 11. Setup for experiment 3, evaluating the mobile performance of
Cricket.

5 Applications

This section describes how user applications can obtain location in-
formation and use it to gain access to nearby services. As mentioned
earlier, there are a number of resource discovery systems that can be
used along side Cricket. We have implemented several applications us-
ing the resource discovery facility provided by the Intentional Naming
System (INS), which handles service and device mobility within the
naming system [1, 2].

5.1 Using virtual spaces in INS

INS uses the concept of a virtual space (vspace), which is a collection
of applications/services that can communicate with each other [14].
Each vspace has a set of name resolvers that resolve name requests
for entities in that vspace; each entity is described using an intentional
name, which is a hierarchical collection of application-defined attributes
and values.

The overhead for creating a vspace in INS is small. For our location-
dependent applications, we create a vspace for every location of interest
(e.g., a room or a floor of a building) and identify it by a string. Each
beacon advertises the name of the vspace of the corresponding location,
and each listener uses this name to bootstrap into its environment by
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Fig. 12. Error rates for a mobile Cricket listener.

contacting INS and learning about the other existing services in that
vspace.

Users and devices can also register their intentional names with the
vspace for that location, which enables other entities in that vspace to
detect their presence. This way the user can easily determine all the
services that are located in their vspace. A user does not necessarily
have to be limited to only one vspace at a time, and can select arbi-
trary services to use. For example, one vspace can correspond to the
set of printers in a building while another corresponds to the services
located on a specific floor. A user can determine the least loaded printer
by querying the printer vspace, or the physically-closest, least-loaded
printer by querying the vspace representing the particular floor of the
building.

Fig. 13. Floorplan map.
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5.2 Floorplan

The Floorplan is an active map navigation utility that uses Cricket
and a map server to present a location-dependent “active” map to the
user, highlighting her location on it as she moves. It also displays the
set of services that are located in the vicinity of the user, which are
dynamically updated as the user moves. Floorplan loads map images
from the map server, which also provides the values of (x, y) coordi-
nate on the map corresponding to the user’s current vspace position.
As the user moves around the building, the listener infers its location
and asks the map server to provide the location on the map. Floorplan
also learns about various services in the vspace, and contacts those ser-
vices and downloads a small icon representing each service. These icons
are displayed on the map; when the user clicks on an icon, Floorplan
uses INS to download a control script or program for the application
represented by that icon, and load the controls into a new window so
the user can control the application. Figure 13 shows an active map
displayed by Floorplan; we see that the user (represented by the dot)
is in room 503. It also displays four services it has found in the envi-
ronment (space) :an MP3 service (represented by the speaker icon) in
room 503, a TV service (represented by the TV icon) in room 504, and
two printers (represented by the printer icons) in room 517. Using this,
a user with no knowledge of her environment or software to control
services within it can bootstrap herself with no manual configuration.

6 Related work

There are various solutions available today for device tracking and lo-
cation discovery. For example, active and passive electromagnetic and
optical trackers are sometimes used for tracking and tagging objects.
Unfortunately, these tend to be expensive, and the performance of elec-
tromagnetic trackers is affected by the presence of metallic objects in
the environment. Furthermore, these products do not usually preserve
user privacy.

The rest of this section discusses three systems that influenced var-
ious aspects of Cricket, and compares their relative benefits and limi-
tations. Table 2 summarizes the following discussion.

6.1 The BAT system

In the BAT system, various objects within the system are tagged by
attaching small wireless transmitters. The location of these transmit-
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System Bat Active Badge RADAR Cricket

User privacy No No Possible, with Yes
user computa-
tion

Decentralized No No Centralized
RF signal
database

Yes

Heterogeneity of
networks

Yes Yes No Yes

Cost High High No extra
component
cost, but only
works with
one network

Low (U.S.
$10) compo-
nent cost

Ease of
deployment

Difficult;
requires a
matrix of
sensors

Difficult;
requires a
matrix of
sensors

RF mapping Easy

Table 2. Qualitative comparison of other location-tracking systems with
Cricket.

ters are tracked by the system to build a location database of these
objects [19, 11].

The system consists of a collection of mobile or fixed wireless trans-
mitters, a matrix of receiver elements, and a central RF base station.
The wireless transmitter consists of an RF transceiver, several ultra-
sonic transmitters, an FPGA, and a microprocessor, and has a unique
ID associated with it. The receiver elements consist of an RF receiver,
and an interface for a serial data network. The receiver elements are
placed on the ceiling of the building, and are connected together by a
serial wire network to form a matrix. This network is also connected
to a computer, which does all the data analysis for tracking the trans-
mitters.

The RF base station orchestrates the activity of transmitters by
periodically broadcasting messages addressed to each of them in turn.
A transmitter, upon hearing a message addressed to it, sends out an ul-
trasound pulse. The receiver elements, which also receive the initial RF
signal from the base station, determine the time interval between the
receipt of the RF signal and the receipt of the corresponding ultrasonic
signal, from which they estimate the distance to the transmitter. These
distances are then sent to the computer which performs the data anal-
ysis. By collecting enough distance readings, it is possible to determine
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the location of the transmitter with an accuracy of a few centimeters,
and these are keyed by transmitter address and stored in the location
database.

Bat derives its accuracy from a tightly controlled and centralized
architecture that tracks users and objects. In contrast, Cricket is highly
decentralized and there is no central control of any aspect of the system,
which preserves user privacy, is simpler, and reduces management cost.
The differences in design goals between Bat and Cricket lead to radical
differences in architecture, although the use of ultrasound and RF is
common to both systems.

6.2 The Active Badge system

The Active Badge1 system was a predecessor to the Bat system, and
tracks objects in an environment to store in a centralized location
database [18]. Objects are tracked by attaching a badge, which pe-
riodically transmits its unique ID using infrared transmitters. Fixed
infrared receivers pick up this information and relay it over a wired
network. The walls of the room act as a natural boundary to infrared
signals, thus enabling a receiver to identify badges within its room. A
particular badge is associated with the fixed location of the receiver
that hears it.

Like the Bat system, the object tracking nature of Active Badge
system may introduce privacy concerns among users. Infrared also suf-
fers from dead-spots, which Cricket and Bat are relatively immune to
because they use ultrasound.

6.3 RADAR

The RADAR system implements a location service utilizing the infor-
mation obtained from an already existing RF data network [3]. It uses
the RF signal strength as an indicator of the distance between a trans-
mitter and a receiver. This distance information is then used to locate
a user by triangulation.

During an off-line phase; the system builds a data base of RF signal
strength at a set of fixed receivers, for known transmitter positions.
During the normal operation, the RF signal strength of a transmitter
as measured by the set of fixed receivers, is sent to a central computer,
which examines the signal-strength database to obtain the best fit for
the current transmitter position.
1 Active Badge is a registered trademark of Ing. C. Olivetti & C., S.p.A.
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In contrast to these three projects, Cricket has different design goals:
it has to handle network heterogeneity and privacy concerns, and have
low management cost. It eliminates all central repositories of control
or information, leading to an autonomously administered building-wide
service via delegation. The beacons advertising location information are
self-contained and do not need any infrastructure for communication
amongst themselves. Together with the use of inexpensive, off-the-shelf
hardware, this makes deployment easy and cost-effective. In summary,
Cricket is a location-support service, not a location-tracking one.

7 Conclusion

In this paper, we presented the design, implementation, and evaluation
of Cricket, a location-support system for mobile, location-dependent
applications. Cricket is the result of five design goals: user privacy, de-
centralized administration, network heterogeneity, low cost, and portion-
of-a-room granularity. Its innovative aspects include the use of beacons
with combined RF and ultrasound signals in a decentralized, unco-
ordinated architecture. It uses independent, randomized transmission
schedules for its beacons and a receiver decoding algorithm that uses
the minimum of modes from different beacons to compute a maxi-
mum likelihood estimate of location. We described some deployment
considerations based on our preliminary experience with Cricket and
presented a comparison with three important past systems, showing
that our design goals led to a different design and properties from past
systems.

We are encouraged by our experience with Cricket to date and the
ease with which location-dependent applications like active map and
location-based services can be implemented. We have demonstrated
that it is possible to implement a location-support system that main-
tains user privacy and has no centralized control.
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Abstract. The ability to determine the orientation of a device
is of fundamental importance in context-aware and location-
dependent mobile computing. By analogy to a traditional com-
pass, knowledge of orientation through the Cricket compass
attached to a mobile device enhances various applications, in-
cluding efficient way-finding and navigation, directional service
discovery, and “augmented-reality” displays. Our compass in-
frastructure enhances the spatial inference capability of the
Cricket indoor location system [20], and enables new pervasive
computing applications.
Using fixed active beacons and carefully placed passive ul-
trasonic sensors, we show how to estimate the orientation of
a mobile device to within a few degrees, using precise, sub-
centimeter differences in distance estimates from a beacon to
each sensor on the compass. Then, given a set of fixed, active
position beacons whose locations are known, we describe an
algorithm that combines several carrier arrival times to pro-
duce a robust estimate of the rigid orientation of the mobile
compass.
The hardware of the Cricket compass is small enough to be
integrated with a handheld mobile device. It includes five pas-
sive ultrasonic receivers, each 0.8cm in diameter, arrayed in a
“V” shape a few centimeters across. Cricket beacons deployed
throughout a building broadcast coupled 418MHz RF packet
data and a 40KHz ultrasound carrier, which are processed by
the compass software to obtain differential distance and po-
sition estimates. Our experimental results show that our pro-
totype implementation can determine compass orientation to
within 3 degrees when the true angle lies between ±30 degrees,
and to within 5 degrees when the true angle lies between ±40
degrees, with respect to a fixed beacon.
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1 Introduction

Context-aware applications, which adapt their behavior to environmen-
tal context such as physical location, are an important class of appli-
cations in emerging pervasive computing environments [17]. Examples
include location-aware applications that enable users to discover re-
sources in their physical proximity [14, 20], active maps that automati-
cally change as a user moves [22], and applications whose user interfaces
adapt to the user’s location. A significant amount of previous work has
focused on providing device position capability indoors, including the
Active Badge [26], Bat [14], RADAR [5], and Cricket [20] systems.

An important aspect of context, which is related to physical posi-
tion, is the orientation of a device (or user) with respect to one or more
landmarks in a region. A pervasive computing application can benefit
from knowing this information, for instance by providing the ability
to adapt a user interface to the direction in which a user is standing
or pointing. Our first motivating application is called the Wayfinder.
We envision this application to run on a handheld computer and help
sighted or blind people navigate toward a destination in an unfamiliar
setting. For example, the Wayfinder might lead a visitor from the en-
try lobby of a building to the office of the person hosting the visitor,
or to a seminar room. The Wayfinder gives incremental directions to
the user on dynamically retrieved (“active”) maps [22, 20], using the
user’s position and orientation with respect to a fixed set of wireless
beacons placed throughout the building. The second motivating appli-
cation is called the Viewfinder. The user can point it in any direction,
and specify a “sweep angle” and maximum distance. Using an active
map integrated with a resource discovery system (e.g., the Intentional
Naming System, INS [1]), the Viewfinder then retrieves and displays a
representation of the set of devices and services lying inside the sector
of interest specified by the user and allows the user to interact with
these services via the representation on the map. A third motivating
application is in the design of “augmented-reality” displays, where the
user’s view of the environment is overlaid with information about other
objects present within that environment, and adapts to the direction
that the user is looking toward [4, 25].

The underlying capability required for these applications is akin to a
“software compass,” which, endowed with a semantic map of its context
and accurate knowledge of its own position and orientation, can inform
the user of interesting resources and how to get to those resources. This
paper describes the design and implementation of the Cricket compass
system, consisting of a set of active beacons, passive hardware sensors,
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and associated software algorithms. This system enables a robust soft-
ware compass capability for a handheld device moving about inside a
building.

The operating environment in the Cricket architecture is instru-
mented with active beacons, each of which broadcasts its own known
position over an RF channel together with an ultrasonic pulse [20].
One RF receiver and several passive ultrasonic position receivers are
precisely placed on a compass board. Software running on-board uses
the differentials in distances reported by the ultrasonic receivers to in-
fer the orientation (or “heading”) of the device. The Cricket compass
reports position and orientation indoors for a handheld, mobile device,
and informs an application running on the device of the position and
orientation in a local coordinate system established by the fixed set of
beacons.

The first challenge in deriving orientation for a small device arises
from the need for very accurate differential distance estimates: esti-
mating orientation to within a few degrees of the correct value requires
differential distance estimates to be of sub-centimeter accuracy, which
is at least an order of magnitude smaller than the currently best avail-
able linear distance estimation technologies. We show how to do this
using multiple carefully placed receivers. The second challenge arises
due to variation in the speed of sound due to temperature and hu-
midity, which affects the accuracy of position estimates. Rather than
explicitly measuring this parameter with climate sensors, we calculate
it directly from observed propagation times.

The Cricket compass system proposed in this paper addresses sev-
eral problems with existing methods for orientation estimation. A tra-
ditional magnetic compass can estimate orientation, but exhibits enor-
mous errors when near magnetic or time-varying electric fields, both
of which are rather common in most modern buildings with computers
and other equipment. Orientation can be inferred from a moving posi-
tion sensor, but this usually requires large or fast user motions, which
is undesirable in several applications. Active sensors on user devices
typically lead to systems that track users [14, 26], which suffer from
potential compromises to user privacy [19, 20]. In contrast, Cricket re-
quires a small number of beacons at known positions in each room
to instrument a building, but enables location and orientation for a
passive handheld device without requiring any user motion. We have
built several prototype beacons and a receiver compass configuration,
and report experimental data that show that our software compass cor-
rectly estimates orientation to within a few degrees. We also describe
a Viewfinder application developed using this capability. The Cricket
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Heading relative to B
on horizontal planeUser device

parallel to ground
on horizontal plane

Beacons on
ceiling

θ

B

Compass hardware

Fig. 1. Setup of beacons on the ceiling of a room and a user device with
attached compass hardware. The Cricket compass solves the problem of ob-
taining the precise position and orientation of the user device relative to a
coordinate system defined by the beacons.

system is being used in MIT’s Project Oxygen in a variety of pervasive
computing scenarios [17].

The rest of this paper is organized as follows. Section 2 details the
design of the Cricket compass, describing its theory of operation, dif-
ferential distance estimation, and coordinate determination algorithms.
Section 3 discusses our implementation and Section 4 presents exper-
imental results and an error analysis. Section 5 discusses some im-
provements based on our experimental results. Section 6 describes the
Viewfinder application. We compare our system to previous work in
Section 7 and conclude in Section 8.

2 Design of the Cricket Compass

Figure 1 shows a user device with attached compass hardware in a room
with beacons placed on the ceiling. When the device is held parallel to
the horizontal plane, θ is the angle formed by the heading direction
shown, with the point where the perpendicular from beacon B inter-
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sects the horizontal plane. We are interested in precisely estimating
θ.

The basic idea is to use one RF receiver to receive coordinate in-
formation from the beacons, and multiple, carefully placed, ultrasonic
receivers on the compass attached to the device to obtain the differ-
ential distance estimates of a beacon to each ultrasonic receiver. θ is a
function of the differential distance of the linear distance of the compass
from the beacon, and of the height of the beacon (ceiling) above the
plane of the compass. We obtain per-beacon linear distance estimates
by differencing the arrival times of coupled RF and ultrasonic signals
sent from each beacon [20]. To obtain the height of the beacon from
the compass, we estimate the position coordinates of the compass from
the position coordinates disseminated by multiple nearby beacons.

The rest of this section describes how this idea can be realized in
practice. We start by describing how directional information can be
obtained using differences in distance between a beacon and different
receivers. We describe a technique to achieve the required precision
of differential distance estimates, using differential phase information
of the ultrasonic waves reaching the receivers. Finally, we show how to
obtain accurate position coordinate information without explicit knowl-
edge of the speed of sound, compensating for its variation with physical
conditions.

2.1 Theory of operation

Figure 2 shows a beacon B, and a compass with two ultrasonic receivers,
R1 and R2, which are located at a distance L apart from each other.
The angle of rotation of the compass, θ, with respect to the beacon
B, is related to the difference in distances d1 and d2, where d1 and
d2 are the distances of receivers R1 and R2 from B. The vertical and
horizontal distances from the center of the compass to B are denoted
by z and x, respectively.

Figure 3 shows the beacon B from Figure 2 projected on to the
horizontal plane along which the compass is aligned. In this figure, x1

and x2 are the projections of distances d1 and d2 on to the horizontal
plane. We assume that the compass is held parallel to the horizontal
plane.

From Figure 2:
x2

1 = d2
1 − z2 (1)

x2
2 = d2

2 − z2 (2)

x =
√

d̄2 − z2
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d1 d2 z

L
θHeading

Beacon B (on ceiling)

Horizontal plane
x

R1

R2

Fig. 2. Determining the angle of orientation along the horizontal plane, θ,
using distance estimates. Observe that the heading is perpendicular to the
line joining the ultrasonic compass receivers, R1 and R2, which are placed at
a distance L from each other.

where d̄ ≈ d1+d2
2 when d1, d2 � L.

From Figure 3:

x2
1 = (

L

2
cos θ)2 + (x − L

2
sin θ)2

and
x2

2 = (
L

2
cos θ)2 + (x +

L

2
sin θ)2

⇒ x2
2 − x2

1 = 2Lx sin θ

Substituting for x2
1 and x2

2 from Equations (1) and (2), we get:

sin θ =
d2 + d1

2Lx
· (d2 − d1) (3)

This may be rewritten as:

sin θ =
d2 − d1

L
√

1 − ( z
d̄
)2

(4)

Equation (4) implies that it suffices to estimate two quantities in
order to determine the orientation of the compass with respect to a
beacon: (i) (d2 − d1), the difference in distances of the two receivers
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θ

θ

x1 x x2

L/2

L/2

Fig. 3. A rotated compass leads to a difference in distances between the
beacon and each of the receivers. This figure is the result of projecting the
beacon onto the horizontal plane of the compass.

from the beacon, and (ii) z/d̄, the ratio of the height of the beacon from
the horizontal plane on which the compass is placed to the distance
of the beacon from the center of the compass. In practice, however,
no measurements are perfect. Our goal is to estimate each of these
quantities with high precision, so as to produce a sufficiently accurate
estimate of θ.

One way of precisely estimating (d2−d1) would be to precisely mea-
sure d1 and d2 separately, but that is easier said than done. Consider,
for example, a situation where L = 5cm, and θ = 10◦, with a beacon at
a distance of 2 meters and a height of 1 meter from the receivers. From
Equation (4), the value of (d2 − d1) in this case is only ≈ 0.6cm, which
is about an order of magnitude smaller than what current technologies
can achieve in terms of linear distance estimates [14, 20]1. Since our goal
is to devise a compass with physically small dimensions, comparable in

1 The worst-case error in (d2 − d1) is equal to the sum of the errors in d1

and d2.
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size to handheld PDAs, and still achieve high directional accuracy, we
need an alternative method to estimate this differential distance.

Our solution to this problem tracks the phase difference between
the ultrasonic signals at two different receivers and processes this in-
formation. We find that this approach allows us to obtain differential
distance estimates with sub-centimeter accuracy. This is described in
Section 2.2.

The second quantity, z/d̄, is estimated by determining the (x, y, z)
coordinates of the compass with respect to the plane formed by the bea-
cons (the xy plane). We do this by placing multiple beacons in a room
and estimating the time it takes for the ultrasonic signal to propagate
between them and the compass. However, because the speed of sound
varies with ambient temperature and humidity, we must estimate this
quantity as well. This is described in Section 2.3.

2.2 Estimating differential distance

Consider two ultrasonic receivers R1 and R2 located a distance L apart,
as shown in Figure 4. Let d1 and d2 be the distances to receivers R1 and
R2 from beacon B. Let δd = d1−d2 and let W1 and W2 be the ultrasonic
waveforms received by R1 and R2 from B. The phase difference between
the waveforms at the two receivers, φ, depends on the difference in
distances traversed from B to the receivers by the ultrasonic signal and
the wavelength λ of the signal, and may be expressed as:

φ =
(δd)
λ

· 2π (5)

We call this the actual phase difference between the two signals and
denote it by φ.

Because it is difficult to correctly determine the start of periodic
waveforms, we can only obtain estimates for a waveform’s phase in the
range (−π, π) from repeated low-to-high transitions of the signal. Un-
fortunately, a given observed phase difference between two waveforms,
α, can correspond to an infinite number of actual phase differences, all
separated by 2π. This in turn leads to multiple possibilities for δd.

One way to solve this problem is to observe from Equation (5) that
as long as δd < λ/2, φ = α, and there is no ambiguity. Since d1, d2,
and L are three sides of a triangle, L ≥ |d1 − d2| = |δd|, and we can
therefore place the receivers at a distance L < λ/2 to unambiguously
determine φ and therefore uniquely estimate (d1 − d2).

For a 40 KHz ultrasonic waveform at a temperature of 25◦C and
50% humidity, λ/2 = 4.35 mm. This is smaller than the size of most
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From beacon

L

d1−d2

d1 d2

Fig. 4. Receivers R1 and R2 can measure the differential distance from a
far-away beacon.

available ultrasonic signal receivers, which are typically on the order
of about 1 cm. Lowering the carrier frequency is not an option, since
this would make it audible to humans. We therefore need a nice gen-
eral method to place receivers to unambiguously determine the phase
difference.

One way of tackling this is to carefully place three receivers along a
line, as shown in Figure 5, and use a pair of observed phase differences
to estimate an actual difference. The intuition is that if the two inter-
receiver distances, L12 and L23 are chosen carefully, then the actual
phase difference between receivers 1 and 2 (say) can be disambiguated
by using the phase difference between receivers 2 and 3, since the two
phase differences are not independent.

Let φ12 and φ23 be the actual phase differences of a beacon’s wave-
form between receivers 1 and 2 and receivers 2 and 3, respectively.
Then,

φij = 2nijπ + αij

for each pair of receivers (i, j), where nij are integers and −π < αij ≤ π.
Because the actual phase difference between two receivers is propor-
tional to the distance traversed by the signal from the beacon to each of
the receivers, φ23/φ12 = (d2 − d3)/(d1 − d2) ≈ L23/L12 when di � Lij .
This is shown in Figure 5.
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From far-away beacon

L12 L23R1 R2 R3

d 1
-d 2

d 2
-d 3

Fig. 5. Using three receivers to measure (d1 − d2).

What we will show is that it is possible to pick L12 and L23 such
that one can use two sets of observed phase differences α12, α23 to
unambiguously estimate the actual phase difference φ12. In particular,
we show the following result:
If L12 and L23 are relatively prime multiples of λ/2, then it is possible
to use α12 and α23 to unambiguously obtain the actual phase differences
φ12 and φ23.

We argue this by contradiction. Suppose in fact there are two pos-
sible actual phase differences corresponding to a given observed phase
difference for each receiver. For pair (i, j), call these differences φ′

ij and
φ′′

ij . Then, the following sets of equations hold:

φ′
ij = 2n′

ijπ + αij

φ′′
ij = 2n′′

ijπ + αij

Since each observed φ12 is related to the corresponding φ23 by the
ratio L23/L12, the above equations can be rewritten as:

2n′
23π + α23 = (L23/L12)(2n′

12 + α12) (6)

2n′′
23π + α23 = (L23/L12)(2n′′

12 + α12) (7)
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Subtracting Equation (7) from Equation (6) and rearranging, we get:

L12(n′
23 − n′′

23) = L23(n′
12 − n′′

12) (8)

Let us express Lij as lijλ/2, which expresses the separation between
receivers as an integral multiple of λ/2. Equation (8) is then equivalent
to:

l12(n′
23 − n′′

23) = l23(n′
12 − n′′

12) (9)

where each of the lij and nij are integers.
Notice that |nij |λ ≤ δd, the separation in distance between the

carrier waveforms at receiver i and receiver j, and δd ≤ Lij = lijλ/2,
for each pair (i, j) = (1, 2), (2, 3). This means that |(n′

ij − n′′
ij)λ| <

2Lij = lijλ. (In fact, |(n′
ij −n′′

ij)λ| may be equal to 2Lij , but only if the
beacon lies on the same horizontal plane as the compass. This situation
is unlikely in practice, and detectable if it does occur.) Therefore, |n′

ij−
n′′

ij | < lij . Thus, if Equation (9) is to be satisfied, l12 and l23 cannot be
relatively prime.

Hence, it is possible to unambiguously derive an actual phase differ-
ence (φij) in the range of [0, Lij ] from an observed one (αij) by picking
L12 and L23 to be relatively prime integral multiples of λ/2. For exam-
ple, we can pick L12 = 2λ and L23 = 1.5λ. Thus, knowing φ, we get
the exact δd needed for estimating θ in Equation (4).

Disambiguating θ Using Equation (4) and the techniques discussed
thus far, we can determine sin θ between the compass and a particular
beacon B. But as Figure 6 shows, in general, there are two locations
B1, B2 for a beacon B that result in the same θ at the compass. This
is due to symmetry of the system about the line X–X . An analytical
way of understanding this is to observe that there are two values of
θ in the range [0, 2π) for a given value of sin θ. This ambiguity in the
location of the beacon prevents us from determining a unique value for
the heading.

We solve this by using two sets of non-collinear receiver-triplets to
break the symmetry. We place the two sets of receiver-triplets perpen-
dicular to each other as shown in Figure 7, and there can be now be
only one position for the beacon B. We are now given an angle θ1 rela-
tive to X-X and θ2 relative to Y -Y , which means that sin θ1 and sin θ2

are known. It is easy to see that there can only be a unique solution for
this configuration. These two perpendicular sets of receiver-triplets are
configured using five receivers on the compass, as shown in Figure 8.
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R1

R2

B1

B2

θ

θ
X

X

Y

Y

Fig. 6. θ is ambiguous—the beacon can be at either B1 or B2.

θ

θ
X

X

Y

Y

β

β

B

Fig. 7. Two sets of receivers can break the symmetry. One set of receiver
triplets lies on the X-X line and the second set lies on the Y -Y line.
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1

2

3

4

5

Fig. 8. Five receivers on a compass forming two perpendicular receiver-
triplets, which are used to unambiguously infer the heading with respect
to a beacon.

2.3 Determining compass coordinates

In the previous discussion we assumed that the receiver can determine
the ratio of height to distance, z/d̄, to a particular beacon. To enable
the receiver to gather this information, we implement a coordinate sys-
tem using a number of active beacons instrumented with known posi-
tions within the space. The compass determines its mean position as
an (x,y,z) tuple by listening to beacon transmissions. This mechanism
also enables us to determine the speed of sound in the vicinity of the
compass.

Both the Bat and the Cricket systems use a combination of RF and
ultrasound signals to measure distances, using the relative speeds be-
tween these two signals. However, to determine the distance accurately,
it is necessary to know the speeds of both signals. The speed of RF is
essentially infinite in our setting, but the speed of ultrasound depends
on environmental factors such as temperature and humidity. The Bat
system compensates for this variation by measuring environmental fac-
tors. The Cricket system is robust against such variation by virtue of
its dependence only on relative distances.

We present a technique that enables us to determine the position in
terms of (x,y,z) coordinates using 4 beacons without knowledge of the
speed of sound or requiring additional environmental sensors. We use
the measured propagation time t̂i to each beacon, which is proportional
to the actual distance di.

We implement a coordinate system within the room assuming the
ceiling to be the x-y plane and z to be positive inside the room (down-
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Beacons on
ceiling

B

y

x z

(xi, yi, 0)

(x, y, z)
Compass
coordinates

Fig. 9. The coordinate system used in Cricket; the beacons are configured
with their coordinates and disseminate this information on the RF channel.

wards), as shown in Figure 9. Consider four beacons B0, B1, B2, and
B3 attached to the ceiling of a room. Each beacon Bi broadcasts its co-
ordinates (xi, yi, 0) on the RF channel, which is sensed by the receivers
on the compass. At the same time, it also broadcasts an ultrasonic
pulse. A receiver, which is at an unknown coordinate (x,y,z), measures
the time difference t̂i between the arrival of these two signals to beacon
Bi. The actual distance from the receiver to Bi is therefore equal to
vt̂i, where v is the (unknown) speed of sound.

We can then write the following family of four equations for the
unknowns (x, y, z, v). Recall that we are interested in the value of z/d̄ =
z/

√
x2 + y2 + z2.

(x − xi)2 + (y − yi)2 + z2 = v2 t̂2i , 0 ≤ i ≤ 3 (10)

We can eliminate z2 from these equations by subtracting each equa-
tion from the previous one, to obtain the following three linear equa-
tions in the three variables, x, y and v2:

A ×

 x

y
v2


 =


x2

1 − x2
0 + y2

1 − y2
0

x2
2 − x2

1 + y2
2 − y2

1

x2
3 − x2

2 + y2
3 − y2

2


 (11)
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where the matrix A is given by

A =


2(x1 − x0) 2(y1 − y0) (t̂21 − t̂20)

2(x2 − x1) 2(y2 − y1) (t̂22 − t̂21)
2(x3 − x2) 2(y3 − y2) (t̂23 − t̂22)




If the determinant of A is non-zero, then Equation (11) can be solved
to determine unique values for x, y, and v2. Substituting these values
into Equation (10) then yields a value for z2, whose positive square root
yields z. Furthermore, we can use this estimate of v, to further improve
the accuracy of the d2−d1 estimation by using a better estimate of the
wavelength of the ultrasonic carrier.

However, the ability to determine x, y, z, and v2 uniquely from
above set of equations depends on the values (xi, yi) for 0 ≤ i ≤ 3.
Specifically, one can show that if the beacons B0,B1,B2, and B3 are
placed such that they do not all lie on the same straight line or circle,
then there is always a unique solution to the above set of equations.
In practice, this placement can be done easily by placing 4 beacons on
the corners of a rectangle and then by moving one of the beacons some
distance along the diagonal of the rectangle. An example placement of
the beacons is shown in Figure 9.

Superficially, the equations above are similar to those used by GPS
receivers to determine receiver position. In GPS, the beacons are satel-
lites with precise clocks; latency from satellite to receiver is
non-negligible; the propagation velocity is known (to first order) as
the speed of light; and a system of equations is solved at the receiver
to recover the receiver’s absolute position and time [15]. In contrast,
in Cricket, propagation time (for RF) is negligible; the beacons have
no clocks; and the propagation speed (for ultrasound) is unknown. Our
system also solves for four unknowns, three of position and one for the
speed of sound in the local medium.

3 Implementation

We have implemented prototypes of the beacon and compass hardware
described in Section 2. Each beacon is configured with its position in
a coordinate system, which it broadcasts on a 418 MHz RF channel.
Concurrent with each periodic RF broadcast, it sends a 500 µs ultra-
sonic pulse at 40 KHz, which are received at the compass ultrasonic
receivers. Each beacon and compass has an on-board PIC microcon-
troller that implements the communication protocol and processes in-
formation. The rest of this section describes the details of the com-
munication protocol between the beacons and compass, and how the
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compass processes the observed differential distance estimates to de-
duce the actual differential distances.

3.1 Protocol details

The beacons in Cricket operate in an autonomous manner, without
any centralized control of when they transmit information [20]. To re-
duce inter-beacon interference at the receivers, each beacon senses the
RF carrier before transmitting a locally unique ID and its known posi-
tion coordinates. In addition, each subsequent transmission is sent at a
uniformly chosen random time after the previous one. In our implemen-
tation, the average amount of time between successive transmissions is
250 ms. The packet format of the beacon includes information about
the geographic space (e.g., an intentional name for resource discovery in
INS [1], a URL as in CoolTown [8], etc.). Each packet is protected using
a block-parity code. The compass detects collision on the RF channel
and discards samples that do not pass a block-parity check, which helps
it disambiguate between potentially interleaved RF/ultrasound combi-
nations sent of separate beacons.

The processing of ultrasonic signals is more involved. The com-
pass hardware does analog-to-digital oversampling to detect low-to-high
transitions from each ultrasonic receiver. In addition to processing RF
information, the on-board PIC microcontroller handles the ultrasonic
signals received by the several ultrasonic receivers on the compass to
obtain phase difference estimates, and passes these to the software run-
ning on the attached device.

This software processes the raw data to obtain observed differential
distance estimates, and then convert them to actual differential dis-
tance estimates. It also infers the coordinates of the compass relative
to the coordinate system defined by the beacons, and computes the
orientation unit vector in that system. It calculates the angle relative
to each beacon and uses the smallest angle to derive the orientation
vector. The reason for this will be clear from Section 4, which shows
that the accuracy of our system worsens at large angles (greater than
about 45 degrees). This also means that the system works best when
it finds at least one beacon at an angle smaller than 45 degrees—since
there are at least four beacons per space on each ceiling of interest, it
is relatively straightforward to place, and find, at least one beacon in
standard rectangular rooms.
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3.2 Differential distance estimation algorithm

In our prototype, the ultrasonic receivers are set up according to Fig-
ure 8, where L12 = L14 = 2λ, and L23 = L45 = 1.5λ. An interesting
aspect of our implementation is the method used to determine the
unique actual differential distance from the observed differential dis-
tance. The method uses the intuition developed in Section 2.2, where
an “existence” argument was made for how to configure receivers to
unambiguously resolve the actual phase difference. Although the argu-
ment was made in the “phase domain,” the results hold equivalently
in the “wavelength domain,” where the measured values are the differ-
ential distances in terms of λ. However, the argument in Section 2.2 is
not prescriptive, so we outline our implemented algorithm below.
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Fig. 10. Finding the actual differential distance between R1 and R2 by using
the observed differential distances from (R1, R2) and (R2, R3).

Consider Figure 10, which plots the variation of observed differential
difference δd′ as a function of the actual differential difference δd for
two pairs of receivers. One of the curves (the solid line segments) shows
the δd′12 variation for the receiver pair (R1, R2), which are separated
by a distance L12 = 2λ. The other curve (the dashed line segments)
shows the variation δd′23 for the receiver pair (R2, R3) separated by
L23 = 1.5λ. We normalized the curves to show the observed variations
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of δd′12 and δd′23 as a function of δd12; i.e., δd′12 varies in the range [0, λ]
as δd12 varies in [−2λ, 2λ].

Each curve is periodic with discontinuities. The observed value δd′

varies in the range [0, λ] because that is the range of measurable dis-
tance between two (time-shifted) waveforms whose starting times are
not known. The discontinuities are due to the fact that the observable
differential distances follow the periodicity of the observed phase dif-
ferences. The actual differential distances vary in the range [−L12, L12]
for δd12, and in the range [−L23, L23] for δd23. But because we have
normalized the curves as a function of δd12, the observed phase dif-
ferential curve for the receiver pair (R2, R3) shown in Figure 10 also
varies in the range [−L23 ·L12/L23, L23 ·L12/L23] = [−L12, L12] in the
plot. The slope of each line segment is proportional to the normalized
separation distance for that pair of receivers. Hence, the normalized
curve for (R1, R2) has a slope of 1, while the curve for (R2, R3) has a
slope of L23/L12 = 3/4.

Note that because L12 and L23 are relatively prime multiples of
λ/2, the periods (and discontinuities) for the two curves always differ,
and the cycle of each curve (i.e., the discontinuities) do not overlap
each other more than once. Consequently, the two curves do not have a
repeating pattern within the interested range [−L12, L12]. Hence, we get
a unique solution for the actual δd value for any given pair of observed
δd′12 and δd′23 values.

Recall that the range of observable differential distances is [0, λ].
From Figure 10, we see that any observed value within this range can
be mapped to four possible solutions for the actual δd12. Let Aδd′

12

be the set of possible solutions derived from the observed value δd′12.
Graphically, these are the values on the horizontal axis extrapolated
from the four intersections between the y = δd′12 line and the observable
differential distance curve for the receiver (R1, R2). Then, given an
observed δd′12, our task is to identify the actual differential distance
from the set Aδd′

12 .

By following the arguments presented in Section 2.2, we can use the
observed δd′23 to help us identify the correct solution. From Figure 10,
the observed δd′23 can be mapped to three possible solutions for the
actual δd12. Again, let Aδd′

23 be the set of possible solutions using the
observed value δd′23. Since we are guarenteed a unique solution for
any given pair of observed values δd′12 and δd′23, we will find exactly
one matching solution that exists in both Aδd′

12 and Aδd′
23 . Thus, the

final answer for the actual differential distance δd12 is a if and only if
a ∈ Aδd′

12 and a ∈ Aδd′
23 .
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For example, Figure 10 shows that for the observed δd′12 = 0.547 and
δd′23 = 0.41025, Aδd′

12 = {−1.453,−0.453, 0.547, 1.547} and Aδd′
23 =

{−0.786, 0.547, 1.880}. Hence, the final solution is δd12 = 0.547 because
this value exists in both Aδd′

12 and Aδd′
23 .

One caveat about this algorithm for finding the actual phase differ-
ential distance is that measurement errors may produce no matching
solution that exists in both Aδd′

12 and an Aδd′
23 . In such a situation,

we find the closest matching solution by choosing an a12 ∈ Aδd′
12 and

a23 ∈ Aδd′
23 such that |a12 − a23| is minimum. Then, we report the

actual differential distance to be a12+a23
2 .

4 Experiments

In this section, we report on several performance experiments con-
ducted with our Cricket compass implementation. In Section 5, we
outline a few improvements that we intend to implement in the future,
based on what we have learned from these experiments.

We describe two distinct sets of experiments. First, we evaluate the
efficacy of our differential distance estimation technique as a function of
the angle θ between the compass and one fixed beacon using the tech-
niques of Section 2.2. Then, we attach multiple beacons at different
places on a ceiling and measure the accuracy of coordinate estimation
using the techniques of Section 2.3. Finally, we combine the results of
these experiments to perform an analytic error analysis of Equation (4)
to derive an upper bound on the end-to-end errors one might expect
in practice. We do this because our current prototype hardware does
not allow us to obtain the average and differential beacon distances
simultaneously; while we are building this combined hardware, we do
want to get a sense of how accurate our system is likely to be. The fol-
lowing sections demonstrate that our differential distance and position
estimation methods work well.

4.1 Differential Distance Estimation

In this set of experiments, we use the setup shown in Figure 2 to mea-
sure the accuracy of the differential distance values, d2−d1, at different
values of θ. We place the beacon such that it is at a height z = 1.5m,
a horizontal distance of x = 2.0m away from the receivers, and an
angle θ with respect to the line joining the beacon and the receiver.
The receivers are configured according to Figure 5, where L12 = 2λ,
L23 = 1.5λ.
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For each measurement at the specified θ, we take the mode of the
differential distance samples to reduce the error caused by ultrasound
reflections and noise. The entire experiment was repeated for three
trials.

The results are shown in Figure 11, which shows the average angle
estimates derived from the measured d2−d1 values. That is, the average
angle estimates were calculated by applying Equation (4) on the known
values of z, x, and the average measured d2−d1 values at each θ. From
Figure 11, we see that the measured d2 − d1 values can estimate the
true angle with reasonable accuracy.
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Fig. 11. Average angle estimates versus true angle values. The error bars
indicate the absolute angle errors for all three trials. The line y = x plots the
ideal relationship between the true and estimated angle values.
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Table 1 shows the average differential distance in terms of λ, the
average percentage error of the differential distance for every 10◦ angle
−90◦ ≤ θ ≤ 90◦, and the derived angle estimates.

θ◦ Actual Measured Error of Derived θ
d2 − d1 (λ) d2 − d1 (λ) d2 − d1(%) Estimates (θ◦)

-90 -1.600 -1.552 3.000 -76.021

-80 -1.576 -1.544 2.011 -74.901

-70 -1.504 -1.504 -0.033 -70.350

-60 -1.386 -1.392 -0.459 -60.482

-50 -1.226 -1.213 1.007 -49.319

-40 -1.028 -0.985 4.193 -38.021

-30 -0.800 -0.843 -5.333 -31.786

-20 -0.547 -0.516 5.707 -18.894

-10 -0.278 -0.245 11.699 -8.821

0 0 0.021 — 0.57

10 0.278 0.200 -28.015 7.184

20 0.547 0.477 -12.773 17.359

30 0.800 0.749 -6.333 27.929

40 1.028 0.931 -9.509 35.573

50 1.226 1.075 -12.320 42.202

60 1.386 1.256 -9.356 51.755

70 1.504 1.389 -7.594 60.317

80 1.576 1.459 -7.427 65.794

90 1.600 1.485 -7.167 68.196

Table 1. Differential distances (measurements averaged over 3 trials), per-
centage error and the derived angle estimates at each value of θ

We make three observations from these results. First, we are able to
accurately estimate angles to within ±3 degrees in the range from -70
to 30 degrees, and to within ±8 degrees for angles up to 50 degrees. Sec-
ond, in terms of percentage error2 all estimated differential distances
(and hence, angles for this set of experiments) have less than 13% error
with the exception of θ = 10◦. Third, the estimates of the positive θ
values consistently show a higher percentage error than those for neg-
ative θ. Moreover, they all report a value that is less than the true
value. Our current hypothesis, still under active investigation, is that
the causes of these errors are imperfect calibrations of the distances
2 For angle estimation, the percentage error is not as interesting to most

applications as absolute errors.
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between the ultrasonic receivers (which a better mounting process will
fix) and timing delay issues related to interrupt handlers in the PIC
microprocessor on the compass. Despite these caveats, we find the abil-
ity to estimate angles to within 3-to-5 degrees for a practical range of
angles promising and useful for many context-aware applications.

4.2 Distance and Position Estimation

Beacon (x, y, z)

H 0, 121, 0

I 117, 121, 0

J 0, 0, 0

K 117, 0, 0

Table 2. Beacon coordinates (in centimeters).

For our second set of experiments, we placed four beacons on the
ceiling of a room at known coordinates as shown in Table 2. Each
beacon broadcasts a unique identifier, which is mapped to its known
coordinates by the receiver. The receiver is placed at a specific location
and collects up to 25 distinct distance samples from each of the four
beacons. Because the noise and reflections of ultrasound in the envi-
ronment can affect the sampled distances, we take the mode of each
distance distribution for each beacon as the actual distance estimate to
each beacon. We configured the compass as in the previous experiment,
taking measurements at four different compass locations as shown in
Table 3. At each location, we collected data across four independent
trials.

Table 3 shows the coordinate estimates at each locations. We find
that our position estimates can be accurate to within 5-6 centime-
ters, and in the worst case, to within 25 centimeters of the true value.
We conducted a further investigation into the worst case situation—
although it was good to less than a foot, we were interested in the
underlying reasons for this behavior. We found that consistently the
worst case happened when the receiver was near a wall, or when the
beacon was attached close to a wall, while it was possible to obtain
centimeter-level accuracy a few feet away from walls. We have since
been developing techniques to handle reflections from walls, which we
outline in Section 5.
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Receiver Actual Receiver Estimated Receiver Error
Location Location (x, y, z) Location (x, y, z) (cm)

A 0.0, 121.0, 178.0 -13.8, 134.9, 193.8 25.12
B 117.0, 121.0, 178.0 123.3, 129.1, 190.3 16.05
C 0.0, 0.0, 178.0 -0.7, -5.5, 176.8 5.65
D 117.0, 0.0, 178.0 120.4, -3.0, 173.1 6.63

Table 3. Coordinate estimates at four different receiver locations.

From the coordinate estimates, we also derive a set of z/d̄ values
that are used in Equation (4). Table 4 reports the percentage error
of the z/d̄ derived from our coordinate estimates. The results indicate
that the error in z/d̄ is at most 2.6%, even when near a wall, and
substantially better further away. We use this worst-case measured data
in the next section to understand the theoretical error bound on overall
orientation estimation using our compass.

Receiver Percentage Error of z/d̄
Location with Respect to Beacon

H I J K

A -0.50 -0.98 -0.92 0.03

B 0.38 -0.15 0.38 1.26

C -1.65 -1.57 -0.05 -0.58

D -2.59 -1.71 -1.75 0.28

Table 4. Percentage error of z/d̄ with respect to each beacon for each coor-
dinate estimation trial.
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4.3 Error Analysis

We now give a simple error analysis of the angle estimation method,
obtaining an expression for how it depends on the errors in the mea-
sured quantities. We use our experimental results from the previous
sections that bound the accuracy with which our techniques and im-
plementation estimate (d2 − d1) and z/d̄.

If V (v1, v2) is a function of two independently-measured variables v1

and v2, then the error in V , ∆V , can be expressed as [6, 23]:

(∆V )2 = (
∂V

∂v1
)2(∆v1)2 + (

∂V

∂v2
)2(∆v2)2 (12)

Applying this to the angle estimate θ, we get the following expres-
sion for the fractional error in θ, ∆θ, as a function of v1 = d2 − d1 and
v2 = z/d̄:

∆θ

θ
=

tan θ

θ
×

√
(
∆v1

v1
)2 + (

∆v2

v2
)2

v4
2

(1 − v2
2)

(13)

Note that because d2−d1 is estimated using the phase difference of the
ultrasonic waveforms, and z/d̄ is estimated using a different method
combining the RF and ultrasonic signal arrival times, v1 and v2 satisfy
the independent-measurement considerations of Equation (12).

Equation (13) shows that the error might grow to be rather large,
especially for values of θ close to π/2. The physical reason for this is
apparent from Figure 3, which shows that at large values of θ, small
changes in x2 produce large changes in θ. Equation (13) also shows that
the error might grow large when the z/d̄ value is small. The physical
reason is clear from Figure 2, which shows that as the receiver moves
closer to the beacon, a small change (or error) in the differential distance
produces a large change in θ.

We now apply Equation (13) to the average error values from our
experimental measurements to obtain an upper bound on the expected
error. For x = 2.0m and z = 1.5m, we get v2 = z/d̄ = 0.6. We then
set ∆v2

v2
= 0.0259, which is the worse average case error for z/d̄ from

Table 4. We then substitute the θ and ∆v1
v1

values from Table 1. The
projected theoretical upper error bound at each θ is listed in Table 5.

We find that the theoretical upper bound on error is less than five
degrees when θ is between ±40 degrees. We emphasize that this is what
the theory predicts as an upper bound for each θ, and that in practice
things may well be better (and are in fact better in some cases, as our
reported experiments showed).
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θ tan θ/θ dv1/v1 (%) ∆θ/θ (%) ∆θ◦

-90 ∞ 3.00 ∞ ∞
-80 4.06 2.01 9.44 7.55

-70 2.25 0.03 2.62 1.84

-60 1.65 0.46 2.07 1.24

-50 1.37 1.01 2.10 1.05

-40 1.20 4.19 5.23 2.09

-30 1.10 5.33 6.02 1.81

-20 1.04 5.71 6.07 1.21

-10 1.01 11.70 11.88 1.19

0 1.00 — — —

10 1.01 28.02 28.33 2.83

20 1.04 12.77 13.37 2.67

30 1.10 6.33 7.10 2.13

40 1.20 9.51 11.51 4.61

50 1.37 12.32 16.90 8.45

60 1.65 9.36 15.59 9.36

70 2.25 7.59 17.28 12.09

80 4.06 7.43 30.54 24.43

90 ∞ 7.17 ∞ ∞

Table 5. Projected error bounds for angle estimations at each θ. The pa-
rameters are v2 = 0.6 and ∆v2

v2
= 0.0259.

4.4 Effect of Motion

The experiments mentioned above were conducted by placing the com-
pass on a stable platform (i.e., the linear velocity of the compass is
zero). In practice, we expect the Cricket compass to be attached to
mobile devices, and are interested in measuring its performance when
a user walks or moves the device in their hand. We model such move-
ment as a linear velocity and calculate the Doppler effect to examine
the performance impact of such movement on the Cricket compass.

Let λ′ be the observed wavelength of ultrasound due to motion, λ
be the true wavelength of ultrasound from the beacon, f be the true
frequency of ultrasound, and vr be the linear velocity of the receivers in
the direction towards the beacon. Then, because of the Doppler effect,
we get:

λ′ = λ − ∆λ = λ − vr/f
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We use Equation (5) to derive the error ∆(δd) caused by the Doppler
effect: z

∆(δd) =
φ

2π
· ∆λ ; ∆λ =

vr

vs
· λ

where vs is the velocity of sound. Hence, at a pedestrian walking speed
of vr = 2.0m/s and vs = 330m/s, ∆λ = 0.006λ. In our implementation
of the software compass, φ = 0.556π at θ = 10◦, so the error with
respect to the true δd is about 1.2%. At θ = 40◦, the error is less than
1%.

5 Improvements

The preliminary experiments reported in the previous section show
great promise, and we believe that this augurs well for the utility of
our system. However, our results also raise some important issues that
need to be addressed in implementation before a production system
can be realized. This section describes some of these issues and our
proposals to address them.

5.1 Handling Reflections

Four appropriately placed beacons can accurately estimate the position
coordinates of a receiver, but our results show that the accuracy de-
grades when a beacon is within a few inches from a wall. This is because
ultrasound reflections can cause the measured distances to be inaccu-
rate. If there is a line-of-sight path between the beacon and the receiver,
we will have a single correct3 distance among the set of distances; if
not, then several of the readings will be incorrect.

We can solve the ambiguity caused by multiple distances and errors
due to incorrect distances by using five beacons instead of four. With
five beacons, the receiver will have a set of readings containing multiple
measured distances to each beacon. Now, from this set, the receiver
can select four beacon values at a time, each value corresponding to a
different beacon, and run the algorithm of Section 2.3 to determine its
coordinate position. If the coordinates determined from two or more
distinct sets of beacons are close to each other, we can select that as
the correct coordinate. Otherwise, we cannot have much confidence in
the correctness of the estimated coordinates (although they will likely
be correct to a few inches).
3 Here “correct” refers to a distance that is proportional to the actual dis-

tance.
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Here, we essentially use the fifth beacon to validate the coordinates
obtained using the other four; the robustness of this scheme is based on
the assumption that the probability of two incorrect readings d̂1 and d̂2

giving rise to answers that coincide is negligible. An analogy might help
understand why this is reasonable: Consider a line segment of length
l joining two points, P1 and P2. We are told that a point in between
them is at d1 and d2 away from P1 and P2 respectively. If both d̂1 and
d̂2 are independent (and incorrect) estimates of d1 and d2, it is highly
unlikely that the errored values will correspond to the same identical
point!

5.2 Handling Diffractions

Another potential cause of error is the diffraction (bending at edges) of
sound waves around obstacles. Such obstacles may not block the entire
path but cause the signal to bend. If the signal arriving at the receiver
is bent, then the measure angle to the beacon will have a corresponding
error. The difference in distance due to bending could be on the order of
millimeters, which will not be detected by the method described above
since the error in the distance would be the same order of magnitude
(or even less) than the accuracy of distance measurement itself.

However, the receiver can determine its orientation with respect to a
fixed origin using each of the beacons it can hear from, and use values
that coincide to be the right one. We intend to modify our current
method of using the smallest angle and replace it with this “plurality”
scheme.

5.3 Beacon and Compass Placement

One of the issues that a production-style deployment of the compass
infrastructure must pay close attention to is beacon placement. From
Equation 12, it is clear that the error is large when θ is large, and
also when z is close to d̄. What we would like is to ensure that, for
every compass location, there is at least one beacon whose θ from that
location is smaller than 45 degrees. In addition, we would also like to
ensure that there is at least one visible beacon whose z/d̄ is not bigger
than some threshold value, say 0.5. This second condition means that
there should be at least one beacon whose height does not “dominate”
the distance to the compass, i.e., the compass should not be “directly
under” all visible beacons.

For most rectangular rooms, these conditions are rather straightfor-
ward to meet without requiring a large number of beacons. In general,
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however, a more formal approach will be valuable to tackle this place-
ment problem using ideas from the classical “art-gallery” problems and
more recent “searchlight” problems in computational geometry. To our
knowledge, constraints similar to our compass system have not been
studied in the literature, and this area is open to interesting algorithm
development, especially for non-rectangular rooms.

Some of the discussion in this paper assumes (perhaps tacitly) that
the compass is held flat and parallel to the ground. This is not a fun-
damental requirement—with this requirement, all we need is the orien-
tation with respect to one beacon, while otherwise we need the orien-
tation with respect to at least three beacons to uniquely determine the
orientation vector. Since we have at least four beacons for coordinate
determination, this is not hard to accomplish.

6 The Viewfinder

We have developed the Viewfinder application to demonstrate the use
of the location and orientation information provided by the software
compass. The user defines a sweep angle β and a distance R and points
a device running the Viewfinder in the desired direction. The Viewfinder
then highlights the services discovered within the swept sector.

To enable this functionality, the Viewfinder application queries a re-
source discovery server, such as those proposed in [1, 9, 13], to obtain
the global coordinates of the available services. To facilitate the boot-
strapping process, the name of the server for the space is advertised on
the RF channel by the beacons. We also assume that individual services
use their own software compass to obtain their coordinate information,
and that they advertise this information to the resource discovery sys-
tem. Otherwise, a system administrator can assign global coordinates
to each individual (static) service.

The Viewfinder queries the software compass for current values of
the relative angle θ with respect to the beacon B, the coordinates of
B, and the coordinates of the device’s current location O. Then, to
test whether a service S is within the user-specified sweep angle, the
Viewfinder extends two vectors originating from the device’s coordi-
nates: one to B and one to S. From these vectors, the Viewfinder in-
vokes the cosine law to find a unique solution θS = � SOB, which is
the angle of the service S with respect to the anchor beacon. Then the
Viewfinder simply performs a series of comparisons between the rela-
tive angle values θS , θ, and φS to test whether S lies within the current
sweep angle, and at a distance smaller than the user-specified distance.
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Fig. 12. Screen capture of the Viewfinder application. Note that the origin
is at the upper left corner of the map and the angle is reported in radians,
where the angle value starts at zero due east and increases counterclockwise.
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Figure 12 shows a screen capture of the prototype Viewfinder appli-
cation. A map of the service and beacon locations is displayed on the
left panel. The tip and the body of the pie-shape figure marks the device
location and its current sweep angle. Services that are within the cur-
rent sweep angle appear on the right panel. The bottom panel displays
the coordinate and angle values reported by the software compass.

7 Related Work

Want et al.’s Active Badge system, developed using infrared links, was
one of the earliest indoor systems for position inference [26]. Its ar-
chitecture inspired future generations including the Bat system [27]
and PinPoint’s local positioning system [18, 29]. In these architectures,
the hardware tag attached to mobile devices is active, and responds to
queries from a central controller and location database about its where-
abouts. While the Bat system uses a combination of RF and ultrasound
to estimate distance [14, 27], PinPoint uses spread-spectrum radio sig-
nals and multiple antennae at the controller to process messages from
a tag. One of the problems with these architectures is that they track
users, and lead to significant privacy concerns [19].

Bahl and Padmanabhan describe RADAR [5], an indoor RF-based
location system that uses an already-existing data network to estimate
position. Here, the RF signal strength is used as a measure of distance
between RF transmitter and a receiver. This information is then used to
locate a user using triangulation, typically using an RF signal strength
map obtained by a prior instrumentation process.

Our compass system enhances the capabilities of the Cricket lo-
cation system, which uses a combination of passive receivers (called
“listeners”) and active beacons, which provide information about a
space [20]. Like the Bat system, it uses a combination of RF and ul-
trasound to estimate position, but uses multiple ultrasonic receivers
located close to each other to infer orientation on a mobile handheld
device.

The best-known system for outdoor use is the satellite-based Global
Positioning System (GPS) [12, 15], which is increasingly being used in
civilian applications in addition to its traditional military use. GPS
does not provide the degree of precision required for mobile applications
indoors because of the low RF signal strength, high RF noise, and the
reflections of RF signals due to the presence of metallic objects. Bulusu
et al. describe a low-cost location system for outdoor use [7], where the
environment is instrumented with a number of fixed RF stations that
periodically transmit their unique ID and position. The receivers use
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RF connectivity to estimate their position relative to the known fixed
RF stations.

Doherty et al. model the position estimation problem in ad hoc
sensor networks as a convex optimization problem, showing that under
some conditions it is possible for the nodes to discover their positions
relative to one another [10]. Savvides et al. describe another approach
to this problem that resembles our coordinate estimation scheme of Sec-
tion 2.3. We expect variants of these approaches to be a good starting
point for instrumenting beacons in our environment without having to
program each beacon with its location, but programming only some of
them and having the others discover their coordinates from the other
beacons in their vicinity.

The Constellation system uses a combination of accelerometers, gy-
ros, and ultrasonic sensors to estimate position and orientation [11].
Like Cricket, the Constellation relies on an active set of ultrasonic bea-
cons to determine the initial tracking position of the device and then
recursively refines the orientation estimation using information gath-
ered by the inertial sensors. However, the tight coordination that is
required between the receivers and transmitters of this system makes
it unsuitable for large-scale indoor deployment. It is also unclear that
this can be implemented in a handheld-like form factor.

The HiBall system uses opto-electronic tracking of hundreds or
thousands of infra-red LEDs mounted in special ceiling panels [28].
It provides rapid updates of receiver position and orientation, but re-
quires the installation of large arrays of LEDs in the ceiling and care-
fully machined camera at the client, which will significantly increase
deployment costs.

Commerical magnetic motion trackers have been used in virtual re-
ality and simulation applications such as head-mounted displays and
biomechanic motion capture: Ascension [2], Startrak [24], and Aurora [3]
are three products available today. They provide reasonably accurate
estimates of the position and orientation of the target object by sending
magnetic pulses and detecting the change of field strength along three
orthogonal axes. These systems usually requires a centralized coordi-
nation between the magnetic transmitters and receivers and are sus-
ceptible to magnetic interference from the presence of metals or other
conductive materials in the environment [16], which causes problems in
many indoor environments.

Roumeliotis et al. describe the implementation of an orientation sen-
sor that uses a Kalman filter to combine a compass and robot odometry
with a absolute orientation signal from a “sun sensor” [21]. This system
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works under kinematic conditions, and its approach may be combined
with Cricket to improve our system.

8 Conclusion

The Cricket compass system described in this paper reports position
and orientation indoors, for a handheld, mobile device, and informs an
application running on the device of the position and orientation in a
local coordinate system established by the fixed set of beacons. To our
knowledge, this is the first handheld-integrated system that provides
a combination of orientation and position information to within a few
degrees of the true value indoors, making it an attractive technology
for various context-aware pervasive computing applications. It does not
require large or fast user motions and works even when a traditional
magnetic compass fails. The hardware configuration consists of a mi-
crocontroller, one RF receiver, and five ultrasonic receivers placed in a
“V” shape a few centimeters across, processing 418 MHz RF data and
40 KHz ultrasonic signals sent from active beacons.

The challenges in deriving orientation for a small device arise from
the need for sub-centimeter differential distance estimates, and from
the need for accurate position estimation. We solved the first problem
using multiple carefully placed receivers, deriving the mathematical
conditions for placement. We solved the second problem by developing
a position estimation technique that compensates for the unknown ve-
locity of sound in an environment by observing propagation times and
explicitly calculating it. Our experimental results show that we can ob-
tain angles to within about 3 degrees of the true value in most practical
settings.
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Abstract. We describe a resource discovery and communi-
cation system designed for security and privacy. All objects in
the system, e.g., appliances, wearable gadgets, software agents,
and users have associated trusted software proxies that ei-
ther run on the appliance hardware or on a trusted computer.
We describe how security and privacy are enforced using two
separate protocols: a protocol for secure device-to-proxy com-
munication, and a protocol for secure proxy-to-proxy com-
munication. Using two separate protocols allows us to run a
computationally-inexpensive protocol on impoverished devices,
and a sophisticated protocol for resource authentication and
communication on more powerful devices.

We detail the device-to-proxy protocol for lightweight wire-
less devices and the proxy-to-proxy protocol which is based on
SPKI/SDSI (Simple Public Key Infrastructure / Simple Dis-
tributed Security Infrastructure). A prototype system has been
constructed, which allows for secure, yet efficient, access to net-
worked, mobile devices. We present a quantitative evaluation
of this system using various metrics.

1 Introduction

Attaining the goals of ubiquitous and pervasive computing [6, 2] is be-
coming more and more feasible as the number of computing devices
� This work was funded by Acer Inc., Delta Electronics Inc., HP Corp., NTT

Inc., Nokia Research Center, and Philips Research under the MIT Project
Oxygen partnership, and by DARPA through the Office of Naval Research
under contract number N66001-99-2-891702.
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in the world increases rapidly. However, there are still significant hur-
dles to overcome when integrating wearable and embedded devices into
a ubiquitous computing environment. These hurdles include designing
devices smart enough to collaborate with each other, increasing ease-of-
use, and enabling enhanced connectivity between the different devices.

When connectivity is high, the security of the system is a key factor.
Devices must only allow access to authorized users and must also keep
the communication secure when transmitting or receiving personal or
private information.

Implementing typical forms of secure, private communication using
a public-key infrastructure on all devices is difficult because the nec-
essary cryptographic algorithms are CPU-intensive. A common public-
key cryptographic algorithm such as RSA using 1024-bit keys takes
43ms to sign and 0.6ms to verify on a 200MHz Intel Pentium Pro (a
32-bit processor) [30]. Some devices may have 8-bit micro-controllers
running at 1-4 MHz, so public-key cryptography on the device itself
may not be an option. Nevertheless, public-key based communication
between devices over a network is still desirable.

This paper presents our approach to addressing these issues. We
describe the architecture of our resource discovery and communication
system in Section 2. The device-to-proxy security protocol is described
in Section 3. We review SPKI/SDSI and present the proxy-to-proxy
protocol that uses SPKI/SDSI in Section 4. Related work is discussed
in Section 5. The system is evaluated in Section 6.

1.1 Our approach

To allow the architecture to use a public-key security model on the
network while keeping the devices themselves simple, we create a soft-
ware proxy for each device. All objects in the system, e.g., appliances,
wearable gadgets, software agents, and users have associated trusted
software proxies that either run on an embedded processor on the ap-
pliance, or on a trusted computer. In the case of the proxy running on an
embedded processor on the appliance, we assume that device to proxy
communication is inherently secure.1 If the device has minimal com-
putational power,2 and communicates to its proxy through a wired or

1 For example, in a video camera, the software that controls various actua-
tors runs on a powerful processor, and the proxy for the camera can also
run on the embedded processor.

2 This is typically the case for lightweight devices, e.g., remote controls,
active badges, etc.
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wireless network, we force the communication to adhere to a device-to-
proxy protocol (cf. Section 3). Proxies communicate with each other us-
ing a secure proxy-to-proxy protocol based on SPKI/SDSI (Simple Pub-
lic Key Infrastructure / Simple Distributed Security Infrastructure).
Having two different protocols allows us to run a computationally-
inexpensive security protocol on impoverished devices, and a sophisti-
cated protocol for resource authentication and communication on more
powerful devices. We describe both protocols in this paper.

1.2 Prototype automation system

Using the ideas described above, we have constructed a prototype au-
tomation system which allows for secure, yet efficient, access to net-
worked, mobile devices. In this system, each user wears a badge called
a K21 which identifies the user and is location-aware: it “knows” the
wearer’s location within a building. User identity and location infor-
mation is securely transmitted to the user’s software proxy using the
device-to-proxy protocol.

Devices themselves may be mobile and may change locations. At-
tribute search over all controllable devices can be performed to find the
nearest device, or the most appropriate device under some metric.3

By exploiting SPKI/SDSI, security is not compromised as new users
and devices enter the system, or when users and devices leave the sys-
tem. We believe that the use of two different protocols, and the use of
the SPKI/SDSI framework in the proxy-to-proxy protocol has resulted
in a secure, scalable, efficient, and easy-to-maintain automation system.

2 System architecture

The system has three primary component types: devices, proxies and
servers. A device refers to any type of shared network resource, either
hardware or software. It could be a printer, a wireless security camera,
a lamp, or a software agent. Since communication protocols and band-
width between devices can vary widely, each device has a unique proxy
to unify its interface with other devices. The servers provide naming
and discovery facilities to the various devices.

We assume a one-to-one correspondence between devices and prox-
ies. We also assume that all users are equipped with K21s, whose prox-
ies run on trusted computers. Thus our system only needs to deal with
devices, proxies and the server network.
3 For example, a user may wish to print to the nearest printer that he/she

has access to.
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Fig. 1. System Overview

The system we describe is illustrated in Figure 1.

2.1 Devices

Each device, hardware or software, has an associated trusted software
proxy. In the case of a hardware device, the proxy may run on an
embedded processor within the device, or on a trusted computer net-
worked with the device. In the case of a software device, the device can
incorporate the proxy software itself.

Each device communicates with its own proxy over the appropriate
protocol for that particular device. A printer wired into an Ethernet can
communicate with its proxy using TCP/IP. A wireless camera uses a
wireless protocol for the same purpose. The K21 (a simple device with a
lightweight processor) communicates with its proxy using the particular
device-to-proxy protocol described in Section 3. Thus, the device-side
portion of the proxy must be customized for each particular device.
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2.2 Proxy

The proxy is software that runs on a network-visible computer. The
proxy’s primary function is to make access-control decisions on behalf
of the device it represents. It may also perform secondary functions
such as running scripted actions on behalf of the device and interfacing
with a directory service.

The proxy provides a very simple API to the device. The sendTo-
Proxy() method is called by the device to send messages to the proxy.
The sendToDevice() method is a called by the proxy to send messages
to the device. When a proxy receives a message from another proxy,
depending on the message, the proxy may translate it into a form that
can be understood by the proxy’s particular device. It then forwards
the message to the device. When a proxy receives a message from its
device, it may translate the message into a general form understood by
all proxies, and then forward the message to other proxies. Any time
a proxy receives a message, before performing a translation and pass-
ing the message on to the device, it performs the access control checks
described in Section 4.

For ease of administration, we group proxies by their administra-
tors. An administrator’s set of proxies is called a proxy farm. This set
specifically includes the proxy for the administrator’s K21, which is
considered the root proxy of the proxy farm. When the administrator
adds a new device to the system, the device’s proxy is automatically
given a default ACL, a duplicate of the ACL for the administrator’s
K21 proxy. The administrator can manually change the ACL later, if
he desires.

A noteworthy advantage of our proxy-based architecture is that it
addresses the problem of viruses in pervasive computing environments.
Sophisticated virus scanning software can be installed in the proxy, so
it can scan any code before it is downloaded onto the device.

2.3 Servers and the server network

This network consists of a distributed collection of independent name
servers and routers. In fact, each server acts as both a name server
and a router. This is similar to the name resolvers in the Intentional
Naming System (INS) [1], which resolve device names to IP addresses,
but can also route events. If the destination name for an event matches
multiple proxies, the server network will route the event to all matching
destinations.

When a proxy comes online, it registers the name of the device it
represents with one of these servers. When a proxy uses a server to



306 Matthew Burnside, Dwaine Clarke, et al.

perform a lookup on a name, the server searches its directory for all
names that match the given name, and returns their IP addresses.

2.4 Communication via events

We use an event-based communication mechanism in our system. That
is, all messages passed between proxies are signals indicating that some
event has occurred. For example, a light bulb might generate light-on
and light-off events. To receive these messages, proxy x can add itself
as an event-listener to proxy y. Thus, when y generates an event, x will
receive a copy.

In addition, the system has several pre-defined event categories
which receive special treatment at either the proxy or server layer.
They are summarized in Figure 2. A developer can define his own
events as well. The server network simply passes developer-defined
events through to their destination.

CommandEvent Used to instruct a device to turn on or off, for example.
ErrorEvent Generated and broadcast to all listeners when an error condi-

tion occurs.
StatusChangeEvent Generated when, for example, a device changes its

location.
QueryEvent When a server receives a QueryEvent, it performs a DNS (Do-

main Name Service) or INS lookup on the query, and returns the results
of the lookup in a ResponseEvent.

ResponseEvent Generated in response to a QueryEvent.

Fig. 2. Predefined Event Types

The primary advantage of the event-based mechanism is that it
eliminates the need to repeatedly poll a device to determine changes
in its status. Instead, when a change occurs, the device broadcasts an
event to all listeners. Systems like Sun Microsystems’ Jini [26] issue
“device drivers” (RMI stubs) to all who wish to control a given device.
It is then possible to make local calls on the device driver, which are
translated into RMI calls on the device itself.

2.5 Resource discovery

The mechanism for resource discovery is similar to the resource discov-
ery protocol used by Jini. When a device comes online, it instructs its
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proxy to repeatedly broadcast a request for a server to the local sub-
network. The request contains the device’s name and the IP address
and port of its proxy. When a server receives one of these requests, it
issues a lease to the proxy.4 That is, it adds the name/IP address pair
to its directory. The proxy must periodically renew its lease by send-
ing the same name/IP address pair to the server, otherwise the server
removes it from the directory. In this fashion, if a device silently goes
offline, or the IP address changes, the proxy’s lease will no longer get
renewed and the server will quickly notice and either remove it from
the directory or create a new lease with the new IP address.

For example, imagine a device with the name [name=foo] which
has a proxy running on 10.1.2.3:4011. When the device is turned on,
it informs its proxy that it has come online, using a protocol like the
device-to-proxy protocol described in Section 3. The proxy begins to
broadcast lease-request packets of the form 〈[name=foo], 10.1.2.3:4011〉
on the local subnetwork. When (or if) a server receives one of these
packets, it checks its directory for [name=foo]. If [name=foo] is not
there, the server creates a lease for it by adding the name/IP address
pair to the directory. If [name=foo] is in the directory, the server renews
the lease. Suppose at some later time the device is turned off. When
the device goes down, it brings the proxy offline with it, so the lease
request packets no longer get broadcast. That device’s lease stops get-
ting renewed. After some short, pre-defined period of time, the server
expires the unrenewed lease and removes it from the directory.

3 Device-to-proxy protocol for
wireless devices

3.1 Overview

The device-to-proxy protocol varies for different types of devices. In
particular, we consider lightweight devices with low-bandwidth wire-
less network connections and slow CPUs, and heavyweight devices with
higher-bandwidth connections and faster CPUs. We assume that heavy-
weight devices are capable of running proxy software locally (i.e., the
proxy for a printer could run on the printer’s CPU). With a local proxy,
a sophisticated protocol for secure device-to-proxy communication is
unnecessary, assuming critical parts of the device are tamper resistant.
For lightweight devices, the proxy must run elsewhere. This section
4 Handling the scenario where the device is making false claims about its

attributes in the lease request packet is the subject of ongoing research.
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gives an overview of a protocol which is low-bandwidth and not CPU-
intensive that we use for lightweight device-to-proxy communication.

3.2 Communication

Our prototype system layers the security protocol described below over
a simple radio frequency (RF) protocol. The RF communication be-
tween a device and its proxy is handled by a gateway that translates
packetized RF communication into UDP/IP packets, which are then
routed over the network to the proxy. The gateway also works in the
opposite direction by converting UDP/IP packets from the proxy into
RF packets and transmitting them to the device.

An overview of the communication is shown in Figure 3. This figure
shows a computer running three proxies; one for each of three separate
devices. The figure also shows how multiple gateways can be used;
device A is using a different gateway from devices B and C.

3.3 Security

The proxy and device communicate through a secure channel that en-
crypts and authenticates all the messages. The HMAC-MD5 [13][20]
algorithm is used for authentication and the RC5 [21] algorithm is used
for encryption. Both of these algorithms use symmetric keys; the proxy
and the device share 128-bit keys.

Authentication HMAC (Hashed Message Authentication Code) pro-
duces a MAC (Message Authentication Code) that can validate the
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authenticity and integrity of a message. HMAC uses secret keys, and
thus only someone who knows a particular key can create a particular
MAC or verify that a particular MAC is correct.

Encryption The data is encrypted using the RC5 encryption algo-
rithm. We chose RC5 because of its simplicity and performance. Our
RC5 implementation is based on the OpenSSL [16] code. RC5 is a block
cipher; it usually works on eight-byte blocks of data. However, by im-
plementing it using output feedback (OFB) mode, it can be used as
a stream cipher. This allows for encryption of an arbitrary number of
bytes without having to worry about blocks of data.

OFB mode works by generating an encryption pad from an initial
vector and a key. The encryption pad is then XOR’ed with the data to
produce the ciphertext. Since X ⊕ Y ⊕ Y = X , the ciphertext can be
decrypted by producing the same encryption pad and XOR’ing it with
the ciphertext. Since this only requires the RC5 encryption routines to
generate the encryption pad, separate encrypt and decrypt routines are
not required.

For our implementation, we use 16 rounds for RC5. We use different
128-bit keys for encryption and authentication.

3.4 Location

Device location is determined using the Cricket location system[18, 17].
Cricket has several useful features, including user privacy, decentralized
control, low cost, and easy deployment. Each device determines its own
location. It is up to the device to decide if it wants to let others know
where it is.

In the Cricket system, beacons are placed on the ceilings of rooms.
These beacons periodically broadcast location information (such as
“Room 4011”) that can be heard by Cricket listeners. At the same time
that this information is broadcast in the RF spectrum, the beacon also
broadcasts an ultrasound pulse. When a listener receives the RF mes-
sage, it measures the time until it receives the ultrasound pulse. The
listener determines its distance to the beacon using the time difference.

4 Proxy to proxy protocol

SPKI/SDSI (Simple Public Key Infrastructure/Simple Distributed Se-
curity Infrastructure) [7, 22] is a security infrastructure that is designed
to facilitate the development of scalable, secure, distributed computing
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systems. SPKI/SDSI provides fine-grained access control using a local
name space architecture and a simple, flexible, trust policy model.

SPKI/SDSI is a public key infrastructure with an egalitarian de-
sign. The principals are the public keys and each public key is a certifi-
cate authority. Each principal can issue certificates on the same basis
as any other principal. There is no hierarchical global infrastructure.
SPKI/SDSI communities are built from the bottom-up, in a distributed
manner, and do not require a trusted “root.”

4.1 SPKI/SDSI integration

We have adopted a client-server architecture for the proxies. When
a particular principal, acting on behalf of a device or user, makes a
request via one proxy to a device represented by another proxy, the
first proxy acts like a client, and the second as a server. Resources
on the server are either public or protected by SPKI/SDSI ACLs. A
SPKI/SDSI ACL consists of a list of entries. Each entry has a subject
(a key or group) and a tag which specifies the set of operations that
that key or group is allowed to perform. To gain access to a resource
protected by an ACL, a requester must include, in his request, a chain
of certificates demonstrating that he is a member of a group in an entry
on the ACL.5

If a requested resource is protected by an ACL, the principal’s re-
quest must be accompanied by a “proof of authenticity” that shows that
it is authentic, and a “proof of authorization” that shows the principal
is authorized to perform the particular request on the particular re-
source. The proof of authenticity is typically a signed request, and the
proof of authorization is typically a chain of certificates. The principal
that signed the request must be the same principal that the chain of
certificates authorizes.

This system design, and the protocol between the proxies, is very
similar to that used in SPKI/SDSI’s Project Geronimo, in which
SPKI/SDSI was integrated into Apache and Netscape, and used to pro-
vide client access control over the web. Project Geronimo is described
in two Master’s theses [3, 14].

4.2 Protocol

The protocol implemented by the client and server proxies consists of
four messages. This protocol is outlined in Figure 4, and following is
its description:
5 For examples of SPKI/SDSI ACLs and certificates, see [7] or [3].
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4.2 Protocol

The protocol implemented by the client and server proxies consists of
four messages. This protocol is outlined in Figure 4, and following is
its description:

1. The client proxy sends a request, unauthenticated and unautho-
rized, to the server proxy.

2. If the client requests access to a protected resource, the server re-
sponds with the ACL protecting the resource6 and the tag formed
from the client’s request. A tag is a SPKI/SDSI data structure
which represents a set of requests. There are examples of tags in
the SPKI/SDSI IETF drafts [7]. If there is no ACL protecting the
requested resource, the request is immediately honored.

3. (a) The client proxy generates a chain of certificates using the
SPKI/SDSI certificate chain discovery algorithm [4, 3]. This
certificate chain provides a proof of authorization that the user’s
key is authorized to perform its request.
The certificate chain discovery algorithm takes as input the
ACL and tag from the server, the user’s public key (principal),
the user’s set of certificates, and a timestamp. If it exists, the
algorithm returns a chain of user certificates which provides
proof that the user’s public key is authorized to perform the
operation(s) specified in the tag, at the time specified in the
timestamp.
If the algorithm is unable to generate a chain because the user
does not have the necessary certificates,7 or if the user’s key is
directly on the ACL, the algorithm returns an empty certificate
chain. The client generates the timestamp using its local clock.

(b) The client creates a SPKI/SDSI sequence [7] consisting of the
tag and the timestamp. It signs this sequence with the user’s
private key, and includes copy of the user’s public key in the

6 The ACL itself could be a protected resource, protected by another ACL.
In this case, the server will return the latter ACL. The client will need
to demonstrate that the user’s key is on this ACL, either directly or via
certificates, before gaining access to the ACL protecting the object to
which access was originally requested.

7 If the user does not have the necessary certificates, the client could imme-
diately return an error. In our design, however, we choose not to return
an error at this point; instead, we let the client send an empty certificate
chain to the server. This way, when the request does not verify, the client
can possibly be sent some error information by the server which lets the
user know where he should go to get valid certificates.
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SPKI/SDSI signature. The client then sends the tag-timestamp
sequence, the signature, and the certificate chain generated in
step 3a to the server.

4. The server verifies the request by:

(a) Checking the timestamp in the tag-timestamp sequence against
the time on the server’s local clock to ensure that the request
was made recently.8

(b) Recreating the tag from the client’s request and checking that
it is the same as the tag in the tag-timestamp sequence.

(c) Extracting the public key from the signature.
(d) Verifying the signature on the tag-timestamp sequence using

this key.
(e) Validating the certificates in the certificate chain.
(f) Verifying that there is a chain of authorization from an entry

on the ACL to the key from the signature, via the certificate
chain presented. The authorization chain must authorize the
client to perform the requested operation.

If the request verifies, it is honored. If it does not verify, it is denied
and the server proxy returns an error to the client proxy. This error
is returned whenever the client presents an authenticated request
that is denied.

The protocol can be viewed as a typical challenge-response protocol.
The server reply in step 2 of the protocol is a challenge the server issues
the client, saying, “You are trying to access a protected file. Prove to
me that you have the credentials to perform the operation you are
requesting on the resource protected by this ACL.” The client uses
the ACL to help it produce a certificate chain, using the SPKI/SDSI
certificate chain discovery algorithm. It then sends the certificate chain
and signed request in a second request to the server proxy. The signed
request provides proof of authenticity, and the certificate chain provides
proof of authorization. The server attempts to verify the second request,
and if it succeeds, it honors the request.

The timestamp in the tag-timestamp sequence helps to protect
against certain types of replay attacks. For example, suppose the server
logs requests and suppose that this log is not disposed of properly. If an
adversary gains access to the logs, the timestamp prevents him from

8 In our prototype implementation, the server checks that the timestamp in
the client’s tag-timestamp sequence is within five minutes of the server’s
local time.
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Fig. 4. SPKI/SDSI Proxy to Proxy Access Control Protocol

replaying requests found in the log and gaining access to protected
resources.9

Additional security considerations The SPKI/SDSI protocol, as
described, addresses the issue of providing client access control. The
protocol does not ensure confidentiality, authenticate servers, or provide
protection against replay attacks from the network.

The Secure Sockets Layer (SSL) protocol is the most widely used
security protocol today. The Transport Layer Security (TLS) protocol
is the successor to SSL. Principal goals of SSL/TLS [19] include pro-
viding confidentiality and data integrity of traffic between the client
and server, and providing authentication of the server. There is sup-
port for client authentication, but client authentication is optional. The
SPKI/SDSI Access Control protocol can be layered over a key-exchange
protocol like TLS/SSL to provide additional security. TLS/SSL cur-
rently uses the X.509 PKI to authenticate servers, but it could just as
well use SPKI/SDSI in a similar manner. In addition to the features al-
ready stated, SSL/TLS also provides protection against replay attacks
9 In order to use timestamps, the client’s clock and server’s clock need to

be fairly synchronized; SPKI/SDSI already makes an assumption about
fairly synchronized clocks when validity time periods are specified in cer-
tificates. An alternative approach to using timestamps is to use nonces in
the protocol.
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SPKI/SDSI Access Control Protocol

Application Protocol

Key-Exchange Protocol with Server
Authentication

TCP/IP

Fig. 5. Example Layering of Protocols

from the network, and protection against person-in-the-middle attacks.
With these considerations, the layering of the protocols is shown in
Figure 5. In the figure, ‘Application Protocol’ refers to the standard
communication protocol between the client and server proxies, without
security.

SSL/TLS authenticates the server proxy. However, it does not in-
dicate whether the server proxy is authorized to accept the client’s
request. For example, it may be the case that the client proxy is re-
questing to print a ‘top secret’ document, say, and only certain printers
should be used to print ‘top secret’ documents. With SSL/TLS and the
SPKI/SDSI Client Access Control Protocol we have described so far,
the client proxy will know that the public key of the proxy with which it
is communicating is bound to a particular address, and the server proxy
will know that the client proxy is authorized to print to it. However,
the client proxy still will not know if the server proxy is authorized to
print ‘top secret’ documents. If it sends the ‘top secret’ document to be
printed, the server proxy will accept the document and print it, even
though the document should not have been sent to it in the first place.

To approach this problem, we propose extending the SPKI/SDSI
protocol so that the client requests authorization from the server and
the server proves to the client that it is authorized to handle the client’s
request (before the client sends the document off to be printed). To
extend the protocol, the SPKI/SDSI protocol described in Section 4.2
is run from the client proxy to the server proxy, and then run in the
reverse direction, from the server proxy to the client proxy. Thus, the
client proxy will present a SPKI/SDSI certificate chain proving that it
is authorized to perform its request, and the server proxy will present
a SPKI/SDSI certificate chain proving that it is authorized to accept
and perform the client’s request. Again, if additional security is needed,
the extended protocol can be layered over SSL/TLS.



Proxy-Based Security Protocols 315

Note that the SPKI/SDSI Access Control Protocol is an example
of the end-to-end argument [23]. The access control decisions are made
in the uppermost layer, involving only the client and the server.

5 Related Work

5.1 Device to proxy communication

The Resurrecting Duckling is a security model for ad-hoc wireless net-
works [25, 24]. In this model, when devices begin their lives, they must
be “imprinted” before they can be used. A master (the mother duck)
imprints a device (the duckling) by being the first one to communicate
with it. After imprinting, a device only listens to its master. During the
process of imprinting, the master is placed in physical contact with the
device and they share a secret key that is then used for symmetric-key
authentication and encryption. The master can also delegate the con-
trol of a device to other devices so that control is not always limited to
just the master. A device can be “killed” by its master then resurrected
by a new one in order for it to swap masters.

5.2 Proxy to proxy communication

Jini [26] network technology from Sun Microsystems centers around the
idea of federation building. Jini avoids the use of proxies by assuming
that all devices and services in the system will run the Java Virtual
Machine. The SIESTA project [8] at the Helsinki University of Tech-
nology has succeeded in building a framework for integrating Jini and
SPKI/SDSI. Their implementation has some latency concerns, however,
when new authorizations are granted. UC Berkeley’s Ninja project [27]
uses the Service Discovery Service [5] to securely perform resource dis-
covery in a wide-area network. Other related projects include Hewlett-
Packard’s CoolTown [9], IBM’s TSpaces [11] and University of Wash-
ington’s Portolano [29].

5.3 Other projects using SPKI/SDSI

Other projects using SPKI/SDSI include Hewlett-Packard’s e-Speak
product [10], Intel’s CDSA release [12], and Berkeley’s OceanStore
project [28]. HP’s eSpeak uses SPKI/SDSI certificates for specifying
and delegating authorizations. Intel’s CDSA release, which is open-
source, includes a SPKI/SDSI service provider for building certificates,
and a module (AuthCompute) for performing authorization computa-
tions. OceanStore uses SPKI/SDSI names in their naming architecture.
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6 Evaluation

6.1 Hardware design

Details on the the design of a board that can act as the core of a
lightweight device, or as a wearable communicator, are given in [15].

6.2 Device-to-proxy protocol

In this section we evaluate the device-to-proxy protocol described in
Section 3 in terms of its memory and processing requirements.

Component Code Size Data Size
(KB) (bytes)

Device Functionality 2.0 191
RF Code 1.1 153
HMAC-MD5 4.6 386
RC5 3.2 256
Miscellaneous 1.0 0

Total 11.9 986
Table 1. Code and data size on the Atmel processor

Memory requirements Table 1 breaks down the memory require-
ments for various software components. The code size represents mem-
ory used in Flash, and data size represents memory used in RAM.
The device functionality component includes the packet and location
processing routines. The RF code component includes the RF trans-
mit and receive routines as well as the Cricket listener routines. The
miscellaneous component is code that is common to all of the other
components.

The device code requires approximately 12KB of code space and
1KB of data space. The security algorithms, HMAC-MD5 and RC5,
take up most of the code space. Both of these algorithms were optimized
in assembly, which reduced their code size by more than half. The code
could be better optimized, but this gives a general idea of how much
memory is required. The code size we have attained is small enough
that it can be incorporated into virtually any device.
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Function Time (ms) Clock Cycles

RC5 encrypt/
decrypt (n bytes) 0.163n + 0.552 652n + 2208

HMAC-MD5
up to 56 bytes 11.48 45,920

Table 2. Performance of encryption and authentication code

Processing requirements The security algorithms put the most de-
mand on the device. Table 2 breaks down the approximate time for
each algorithm. The RC5 processing time varies linearly with the num-
ber of bytes being encrypted or decrypted. The HMAC-MD5 routine,
on the other hand, takes a constant amount of time up to 56 bytes.
This is because HMAC-MD5 is designed to work on blocks of data, so
anything less than 56 bytes is padded. Since we limit the RF packet size
to 50 bytes, we only analyze the HMAC-MD5 running time for packets
of size less than or equal to 50 bytes.

We now examine how long it takes the device to receive a packet,
process it, and send a response. In this analysis, we assume the device
is receiving a packet that has 10 data bytes, making the total packet
size 27 bytes, since each packet contains 17 header bytes made up of
a 9-byte address field and an 8-byte message authentication field. The
device broadcasts at 19.2 Kbps and we encode 8 bits into 12 bits for
DC balance. To receive the packet it takes:

packet size + RF header
bandwidth

=
12 · (27 + 4)

19200
= 19.38ms

The device then takes 11.48ms to authenticate the packet and 0.163·
10 + 0.552 = 2.18ms to decrypt it. Thus, the time for the device to re-
ceive a packet and process it is 19.38 + 11.48 + 2.18 = 33.04ms. The
device always sends back a response. In this analysis, we will assume the
device responds with a packet of the same size, so the device must en-
crypt, authenticate, and then transmit the response which will take an-
other 33.04ms. Thus, the device can handle approximately 1000

33.04·2 ≈ 15
transactions per second. We think that fifteen transactions per second
is sufficient for most purposes, with a simple device.

6.3 SPKI/SDSI evaluation

The protocol described in Section 4 is efficient. The first two steps of
the protocol are a standard request/response pair; no cryptography
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Protocol step Timing analysis Approx CPU time

Cert chain discovery The worst case is O(n3l),
where n = number of
certs, and l = length
of longest subject. How-
ever, the expected time is
O(nl).

330ms, with n = 2 and l = 2.

Chain validation The worst case is O(n),
where n = number of
certs.

200ms, with n = 2.

Table 3. Proxy-to-Proxy Protocol analysis.

is required. The significant steps in the protocol are step 3, in which
a certificate chain is formed, and step 4, where the chain is verified.
Table 3 shows analyses of these two steps. The paper on Certificate
Chain Discovery in SPKI/SDSI [4] should be referred to for a discussion
of the timing analyses. The CPU times are approximate times measured
on a Sun Microsystems Ultra-1 running SunOS 5.7.

7 Conclusions

We believe that the trends in pervasive computing are increasing the
diversity and heterogeneity of networks and their constituent devices.
Developing security protocols that can handle diverse, mobile devices
networked in various ways represents a major challenge. In this paper,
we have taken a first step toward meeting this challenge by observing
the need for multiple security protocols, each with different charac-
teristics and computational requirements. While we have described a
prototype system with two different protocols, other types of protocols
could be included if deemed necessary.

The two protocols we have described have vastly different charac-
teristics, because they apply to different scenarios. The device-to-proxy
protocol was designed to enable secure communication of data from
a lightweight device. The SPKI/SDSI-based proxy-to-proxy protocol
was designed to enable communication between sophisticated devices,
whose access control policies can change frequently. The proxy architec-
ture and the use of two different protocols has resulted, we believe, in
a secure, yet efficient, resource discovery and communication system.
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Abstract. Multi Agent Systems (MAS) are often used as a
software substrate in creating smart spaces. Many of the solu-
tions already developed within the MAS community are appli-
cable in the domain of smart spaces. Others, however, need to
be modified or re-developed. In particular, it has to be noted
that many agents acting in a physical space domain are re-
stricted in number and capability by the scarce physical hard-
ware available. Those limitations need to be taken into account
when coordinating agent activities in a MAS in a smart space.
In this paper we present Rascal, a high-level resource manage-
ment system for the Intelligent Room Project, that addresses
physical resource scarcities. Rascal performs the service map-
ping and arbitration functions for the system. Rascal is an im-
plemented tool and has been partially deployed for day-to-day
use.

1 Introduction

Building smart spaces requires distributing computation across a num-
ber of computers. The software components of a smart space need to
cooperate robustly and the system must be able to cope with compo-
nents being added and removed dynamically. For that reason a number
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of research groups have adopted an approach in which a multi-agent
system (MAS) is the software substrate connecting all of the computa-
tional components of a smart space [9, 5, 8].

Agents in smart spaces have to deal with many of the same issues as
agents in other MAS. At the same time, physical spaces are a domain
with their own features and constraints that affect how the agents deal
with certain situations.

Agents in a smart space are heavily resource-bounded because they
are embedded in a physical world where all physical resources are
scarce. This makes the coordination of multiple agent in a smart space
all the more difficult because these physical constraints have to be taken
into account. For that reason, an explicit resource management system
is required in a smart space.

In this paper we present Rascal, a resource manager for the Metaglue
agent platform. Metaglue [5] is a MAS developed at the MIT AI Lab
for the Intelligent Room project. Rascal provides service mapping and
resource access arbitration mechanisms for Metaglue agents. Rascal has
been implemented and partially deployed for every-day use. Some of its
advanced features are still being tested and optimized for speed.

1.1 Definitions

What is a resource manager for a smart space We believe a
resource manager should be capable of performing two fundamental
tasks: resource mapping and arbitration.

Resource mapping (i.e. match-making) is the process of deciding
what resources can be used to satisfy a specific request.

Arbitration is ensuring that, at a minimum, resources are not being
used beyond their capacities. Ideally, arbitration ensures optimal, or
nearly optimal, use of scarce resources via appropriate allocation of
resources to requests.

This paper is concerned with the management of high-level re-
sources. As opposed to OS level management (memory, files, etc.) and
load-balancing computationally intensive agents over multiple machines,
these high-level resources include physical devices and large software
components, for example, projectors, multiplexors, wires, displays, modems,
user attention, software programs, screen real estate, sound input and
output devices, CD players, drapes, and lamps.

For clarity, we define some potentially ambiguous terms that are
used throughout the remainder of this paper:

Metaglue Metaglue [5, 10, 11] is the MAS forming the software base
for all work at the Intelligent Room Project. Unlike most MAS,
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Metaglue provides infrastructure for close-coupling of agents (that
is, it facilitates direct method calls) in addition to a message passing
mechanism in order to enable faster communication among agents.
Metaglue is intended for use in environments where most agents
are physically close and thus good network connectivity can be as-
sumed. Metaglue makes it easy to coordinate the startup and run-
ning of agents on any number of machines with different operating
systems.
Metaglue agents are collected into “societies” which are distinct
name-spaces for multiple users and spaces. A new communication
and discovery model is currently being developed for inter-society
communication.

Agent Agents are distinct object instances capable of providing ser-
vices and making requests of the resource manager. This means
agents themselves are considered to be a type of resource because
they provide services (see below).

Device A physical or logical device is something akin to a projec-
tor, screen, or user-attention; devices are often, but not necessarily,
represented by agents. Devices provide services and therefore are
resources.

Service Services are provided by agents and devices; a single agent or
device can provide more than one service and any kind of service
can be provided by a number of agents or devices. For example, the
ShortTextOutput service can be provided by the on-wall display,
scrolling LED sign or a text-to-speech program. An A/V receiver
is a provider of a number of services, such as an amplifier, an audio
multiplexor and a radio receiver.

Resource A resource is a provider of a service. Both agents and phys-
ical devices are resources. For example, a physical LED sign is a
resource (providing the LED sign hardware service) obtained and
used by the LEDSignTextAgent, which is in turn a resource (provid-
ing TextOuput service and LEDSign service) that can be obtained
and used by any other agent needing those services.

2 Summary of design requirements

This section summarizes the essential requirements for designing a high-
level resource management system for a smart space. Space permits
only a brief overview; potential design issues are discussed in more
detail in [7]. In particular, the needs for on-demand agent startup and
“smart re-allocations” are motivated more extensively in [7].
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2.1 Closed system assumption

We assume that Rascal will work in a closed system, i.e. one where all
agents can be assumed to be trusted (but where agents can appear or
leave dynamically). We can make this assumption without reducing the
scalability of the system by dividing agents into societies . An agent
society is a collection of agents that act on behalf of a single entity,
such as a physical space, a person, a group of people, an institution,
an information store, etc. Rascal’s job is to coordinate use of resources
within a society.

In cases where agents from one society need to access resources
owned by a different society, a resource manager of one society can
make requests of the resource manager from the other one. The re-
source manager from the society that owns the resource is the sole
owner of the resource and can decide to take it back at any moment
if necessary. The negotiation for resources among a number of soci-
eties is a somewhat different problem from managing resources within
a society. For one thing, this is now an open system and access control
mechanisms need to be put in place to ensure that all requesters act
within their authority.

Extending our resource management system to a world with multi-
ple societies requires having an access control system in place (see [7]
for discussion) and is not covered here because this work is still in a
preliminary phase.

A most common kind of situation where one society needs to make
resource request of another is one in which agents acting on behalf
of the user need resources to communicate information to the user.
Agents acting on behalf of the user belong to one society and those
controlling the space, belong to another (as in Figure 1). User’s society
usually will not contain physical devices and thus if, for example, an
email alert agent acting on my behalf needs to tell me that a new mail
has arrived for me, it will need resources (such as speech output or a
display) from my office to pass the message on to me. In such situation,
the email alert agent will still make a resource request of the resource
manager in my society. My resource manager, seeing that it has no
good resources on its own, will make a request of the resource manager
of my office’s society. My office will then decide whether to fulfill the
request and if so, how.

2.2 Self-interested agents

Although we assume that all agents are trusted, we also assume that
they are self-interested. All agents admitted to a society are assumed to
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Society Agent Society Agent

Resource
Manager

Resource
Manager

VCR Agent

Secretary
Agent

Secretary
Agent

Email Alert
Agent

Projector
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society of my office my society

<=======>
inter-society

communication

Fig. 1. Our view of the world: a society is viewed as a closed system. All
agents within a society are trusted yet self-interested. A world composed of
many societies is, on the other hand, viewed as an open system where, to an
extent, every society can be viewed as a single agent providing a number of
capabilities.

be truthful in that they do not misrepresent their needs and capabilities.
They are, however, concerned solely with performing the task or tasks
they were built for. For example, an agent that controls the flow of a
presentation is only concerned with ensuring that slides are visible on
an appropriate display; it has no knowledge of how its actions affect the
abilities of other agents to perform their tasks. The assumpiton that
agents have no knowledge of their peers allows a more modular design
of the system.

2.3 Tightly tied to external physical resources

A special characteristic of a MAS based in a smart space, as noted be-
fore, is that it is very tightly coupled to the physical resources within
that space. At the simplest level, the number of physical displays in the
space is a limiting factor that determines how many visual activities
(such as web browsing, sketching, watching movies, writing email) can
be performed simultaneously. At a deeper level, the layout of physical
connections among devices also limits their use. For example, the out-
put of a VCR may be connected to only one projector and a TV, while
computers can be dynamically connected – via a multiplexor – to any
of the available displays in the space. A resource management system,
such as Rascal, is necessary to keep track of available resources and
arbitrate among conflicting requests for those resources.
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2.4 Reasoning about absent agents

In smart spaces components can be added or removed at any moment.
More often than not, however, components that are available one day,
are also available the next. We believe that our system should not only
be able to cope with dynamic changes of configuration, but also that the
stability and predictability of the physical environment should be used
to the system’s advantage. One consequence of a predictable enviroment
is the plausibility of reasoning about agents even before they have been
started. In other words, in smart spaces, agents can be started when
needed using the resources that at a given moment can be spared. For
example, when one of the users within a space needs to make a slide
presentation, an appropriate agent will be started on an available com-
puter that has the appropriate presentation software, available screen
space, and can be connected to an on-wall display device (such as a
projector). If another presentation is started at the same time, another
available computer and display device will be chosen. On-demand agent
startup allows the system to adapt to the current set of available re-
sources and prevents the system designer from having to predict all
possible configurations that might be required in a space (such as the
unusual case where two presentations need to run simultaneously).

2.5 Need for smrrt Re-allocations

In our system, it happens frequently that a new request can only be
satisfied by taking a resource away from a previously satisfied request.
But that previous request does not have to be left resource-less – there
is often an alternative resource that can be used to fill it. Suppose,
for example, that I request to watch the news in an office equipped
with an on-wall projector and a TV set (see Figure 2). The projector is
assigned to the job because it produces the largest image and has the
best resolution. Then, while watching the news, I decide to also access
my email agent. This agent must use the projector because it is the
only display that can be used by a computer. Therefore, the projector
is taken away from the news agent; ideally, instead of stopping the news
agent, Rascal moves it to the TV set.

3 Building Rascal

3.1 Centralized vs. distributed

Conceptually, Rascal is a centralized system. This decision was not
made lightly, but we believe the advantages of a centralized system
outweight its drawbacks (such as, e.g., being a single point of failure).
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Fig. 2. Sample interaction. (a) user requests to see the news – on-wall pro-
jected display is allocated as the best resource for the task. (b) user accesses
email; the only possible display for email is the on-wall projector previously
allocated to the news agent. Instead of being stopped, the news agent is
moved to a TV set.

Rascal was built as a separate centralized system primarily because
it had to reason about absent agents. If we instead chose a distributed
solution involving direct negotiation, all agents would have to be “alive”
to be considered as candidates for a request. Also, a resource manager
in an smart interactive, space has to be efficient. Rascal must make
its decisions within a couple of seconds or less. A lot of inter-agent
communication would make this goal nearly impossible.

Despite centralization, Rascal is actually not a single point of failure
in the system. This is because two features of Metaglue make any agent
nearly “invincible:” automatic restarting of agents ([11]) and persistent
storage ([5]). If any agent dies, it will be restarted the next time any
other agent tries to make a call to it. The dead agent will be restarted
on any available computer, so even if the original computer hosting
the agent fails, the agent will be restarted somewhere else. The per-
sistent storage mechanism allows agents to save changes to their state
whenever such changes occur. Consequently, if the agent dies and gets
restarted, it can retrieve its state from before the failure and continue
as if nothing had happened.

3.2 Structure

Rascal performs two major functions: service mapping and arbitration
among requests for services (as defined in Section 1.1) and it is com-
posed of three major parts: the knowledge base, the constraint satis-
faction engine, and the framework for interacting with other Metaglue
agents.
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Service mapping is performed entirely by the knowledge-based com-
ponent of Rascal. Arbitration begins in the knowledge-based part (where
relative cost and utility of various resources are determined) but most
of the work on arbitration is done by the constraint satisfaction engine.

The components for interacting with the rest of the Metaglue agents
facilitate communication with service providers and requesters, and en-
able enforcement of Rascal’s decision (i.e., taking previously allocated
services away from requesters).

In the following sections, we present these major components of the
system.

Representation and the knowledge base Upon startup, informa-
tion about all available resources is loaded into Rascal’s knowledge
base (if more resources become available later on, they can be added
dynamically). It is important to reiterate here that Rascal relies on all
resources having descriptions of their needs and capabilities separate
from the actual code. Those external descriptions contain a list of ser-
vices that the resource can provide. Agents who provide services may in
addition specify what other resources they will need in order to provide
that service. For example, the MessengerAgent that provides a message
delivery service will need one or more resources capable of providing
text output service. Agents may also specify their startup needs, i.e. a
list of requests that need to be fulfilled for the agent to exist. For exam-
ple, an agent providing speech recognition service will need a computer,
with appropriate speech recognition software installed, in order to be
able to start and configure itself properly.

When Rascal considers candidates for a request, it not only makes
sure that those candidate services are adequate and available – it also
makes sure that the needs of those candidates can be satisfied, and
so on recursively. The final selection of candidates for requests is per-
formed by the constraint satisfaction engine. Therefore, the knowledge-
based part evaluates all possible candidates for all possible requests.
This request chaining proves to be extremely valuable: when the email
alert agent, for example, requests a text output service, several differ-
ent agents may be considered, including the LED sign and the speech
output agents. The email alert agent may have its own preference as to
what kind of rendition of the text output service it prefers. However, if
the communication link with the actual LED sign is broken, the needs
of the agent controlling the LED sign will not be satisfied and so it will
not be assigned to the request.

Rascal’s knowledge base is implemented in a rule-based system
(JESS [6]) written in Java. The role of this component of the system
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is to find all plausible candidates for all requests. In addition, for each
request-candidate pair, a measure of utility has to be calculated (see
the next section).

In terms of representation, services provided by agents are described
by the names of the Java interfaces that can be used to access them.
For services provided by entities other than agents, similar hierarchical
names are used (e.g. hardware.Computer for a computer). In addition,
attribute-value pairs are used to describe services in more detail and
to refine requests.

Cost-benefit analysis When resources are scarce, part of the arbi-
tration process is deciding which requests are more important. This
could be done with self-assigned priorities or economic models may be
involved (e.g. [3]). In Rascal, self-assigned need levels are used in con-
junction with the concept of utility of a service to the requester and
its cost to others. This is a very simple and arbitrary scheme. It could
easily be replaced by a different system should there be a need for that.
This simple model is sufficient for the current implementation of Ras-
cal, because of our assumption that all agents within a society can be
trusted.

The basic assumption of this schema is that, given a request, each
candidate resource has some utility to the requester. This utility de-
pends on how badly the requester needs a particular request r fulfilled
and on how well the resource s matches the request (Equation 1). A
variety of monotonically increasing functions can be used as fu.

utility(r, s) = fu(need(r), match(r, s)) (1)

The same method is used to calculate the utility of the already
allocated resources. When a resource is taken from its current user, the
system as a whole incurs cost equal to the utility of that resource to
that user. Also, when a resource si, currently allocated to fulfill request
r, is replaced with a different resource sj , a cost is incurred. This cost is
a sum of a fixed “change penalty” and the difference in utilities between
the new allocation and the old one (if this difference is negative, it is
set to zero) as shown in Equation 2.

cost(r, si, sj) = changePenalty(r)+max{0, utility(r, si)−utility(r, sj)}
(2)

The arbiter has to make sure that whenever it awards a resource to
a new request, the cost of doing so should never exceed the utility of
the awarded resources to the new requester.
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Rascal provides a number of methods for calculating utilities and
evaluating matches between requests and resources. Each resource or
request description can also be accompanied by its own custom tools
for performing those calculations.

Finding the right solution – The constraint satisfaction engine
When the knowledge-based subsystem selects and rates all candidates
for requests, a constraint satisfaction engine (CSE) is invoked to find
an optimal or nearly optimal configuration that fulfills the new request
without breaking any of the previous assignments.

Rascal uses a Java-based CSE (JSolver [4]) in order to enable close
coupling with its other components. In order to find the right solution,
a number of constraints and heuristics are involved:

– respecting limits – there are limits on how many requests can share
a service.

– only some requests need to be satisfied – CSE needs to find services
only for some of the requests that it knows about: the newly made
request, the needs of the services assigned to satisfy this new request
and all the previously satisfied requests.

– preference to local solutions – As explained in Section 2.5, it is
sometimes necessary to change the assignment to a previously sat-
isfied request. However, it is necessary to minimize such changes to
the absolute minimum. Rascal’s CSE has been set up in such a way
that changes to old requests are only made as a last resort and have
to be limited in scope. That is, it should not be possible for a new
request to cause changes to a large number of other assignments.
For that reason, Rascal’s CSE uses following heuristics:
• the first service considered for any previously satisfied request

is the service previously allocated to the request;
• if a different service has to be assigned, the cost of service substi-

tution is calculated and added to the overall cost of the current
new request – if the cost exceeds a preset limit, CSE backtracks;

• the CSE is run several times, each time with a different limit
to the overall cost: the first time CSE runs, the limit is set to
zero in hope that a solution can be found that does not disturb
any of the previously assigned requests. If this fails, the CSE
is run again with a higher limit. The process is repeated until
a solution is found or until the CSE is ran with a limit equal
to the need of this request. In Rascal, the cost of satisfying a
request cannot exceed the need to have it satisfied.
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Rascal-Metaglue connection There are two major components to
the Rascal-Metaglue connection mechanism: the RascalAgent and the
ManagedAgent. The former makes Rascal’s methods available to the
rest of the Metaglue agents. The latter is a simple implementation of a
Metaglue agent that all other “managed” agents inherit from. That is,
all agents that want to make their services available through Rascal, or
that wish to make requests through it.

4 Related work

The Facilitator Agent in Open Agent Architecture (OAA) [8] performs
task not resource management. Implicit in the OAA design is the as-
sumption that each agent has sole control over all of the resources it
might need.

Applications in Hive [9] agent platform are created by explicitly
connecting various components together. Thus resource conflicts are
diminished because connections among agents are long-lived and pre-
designed, contrary to the on-demand configurations created within Rascal-
enhanced Metaglue.

Jini [2] is a framework with a number of discovery and descrip-
tion tools but no arbitration capabilities. The arbitration component
is supposed to be provided by the user.

Intentional Naming System (INS) [1] provides an extensive naming
mechanism and a mechanism for choosing the best available service but
it does not provide explicit arbitration mechanisms or tools for smart
re-allocations.

5 Contributions

Multi-Agent Systems constitute a very powerful programming paradigm.
Applying MAS to new domains often poses a number of challenges. This
paper shows how the MAS approach can be applied in the domain of
smart spaces, where agent coordination is constrained by the availabil-
ity of physical resources. Rascal—an implememnted and tested tool for
managing such resources—is presented.
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Abstract. In earlier work, we developed a mathematical hy-
brid I/O automaton (HIOA) modeling framework, capable of
describing both discrete and continuous behavior. This frame-
work has been used to analyze examples of automated trans-
portation systems, intelligent vehicle highway systems, air traf-
fic control systems, and consumer electronics applications. Here,
we reconsider the basic definitions of the HIOA framework, in
particular, the dual use of external variables for discrete and
continuous communication. We present a new HIOA model
that is simpler than the earlier model, due to a clearer separa-
tion between discrete and continuous activity.

1 Introduction

Recent years have seen a rapid growth of interest in hybrid systems—
systems that contain both discrete and continuous components, typi-
cally computers interacting with the physical world. Such systems are
used in many application domains, including automated transporta-
tion, avionics, automotive control, process control, robotics, and con-
sumer electronics. Motivated by a desire to describe and reason care-
fully about such applications, we are continuing our efforts to adapt
techniques from computer science to the setting of hybrid systems.
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MIT9904-12; NSF ACI-9876931, CCR-9909114, CCR-9804665; PATH
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In our previous work in this area, we developed a mathematical hy-
brid I/O automaton modeling framework [15, 16]. This framework sup-
ports description and analysis of hybrid systems using powerful meth-
ods of parallel composition and levels of abstraction. We also proved suf-
ficient conditions for hybrid I/O automata to be receptive, which means
that they allow time to advance to infinity independently of the input
provided by the environment. We and others have used this framework
to analyze examples of automated transportation systems [18, 13, 23,
22, 14, 10], intelligent vehicle highway systems [6, 12], air traffic control
systems [11, 9], and consumer electronics systems [4].

In this paper, we present a new hybrid I/O automaton model that
is considerably simpler than the earlier model, yet supports similar de-
scription and analysis methods and similar receptivity theorems. The
main simplification is a clearer separation between the notions of dis-
crete and continuous communication. We arrived at this separation as
a result of reconsidering the relationship between the computer science
notion of shared variable communication and the control theory notion
of continuous flow across component boundaries.

Levels of abstraction, compositionality, and receptiveness for hy-
brid systems have also been addressed by Alur and Henzinger [2, 3] in
their work on reactive modules. However, reactive modules communi-
cate only via shared variables, and not via shared actions. In [3], a
definition of receptiveness similar to the one in [15, 16] is proposed, and
is shown to be preserved by composition. However, in [3], no circu-
lar dependencies (“feedback loops”) are allowed among the continuous
variables of the components, a restriction that greatly simplifies the
analysis.

The rest of this paper is organized as follows. Section 2 defines
notions that are useful for describing the behavior of hybrid systems:
trajectories and hybrid sequences. Section 3 contains the theory for
the hybrid automaton (HA) model, which has all of the structure of
the HIOA model except for the division of external actions and vari-
ables into inputs and outputs. Section 4 introduces inputs and outputs,
and presents the basic theory for HIOAs. Section 5 presents the new
theory of receptiveness, including the main theorem, Theorem 7, stat-
ing that receptiveness is preserved by composition under certain com-
patibility conditions. Section 6 describes sufficient conditions for these
compatibility conditions to hold, and in particular, describes Lipschitz
automata.
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2 Describing hybrid behavior

In this section, we give basic definitions that are useful for describing
discrete and continuous system behavior, including discrete and con-
tinuous state changes, and discrete and continuous flow of information
over component boundaries. Throughout this paper, we fix a time axis
T, which is a compact subgroup of (R, +), the real numbers with addi-
tion.

2.1 Static and dynamic types

We assume a universal set V of variables. A variable represents either
a location within the state of a system component, or a location where
information flows from one system component to another. For each
variable, we assume both a (static) type, which gives the set of values
it may assume, and a dynamic type, which gives the set of trajectories
it may follow. Our motivation for introducing dynamic types is that
this allows us to define input enabling for hybrid I/O automata: if v is
an input variable of HIOA A then, roughly speaking, we require that
A accepts each input signal on v, as long as it respects the dynamic
type of v. Since we are in a hybrid setting where discrete transitions
may change the state at any time, elements of a dynamic type may
contain (countably many) “discontinuities”. Formally, we assume for
each variable v:

– type(v), the (static) type of v. This is a set of values.
– dtype(v), the dynamic type of v. This is a set of functions from left-

closed intervals of T to type(v) that is closed under the following
operations:
1. (Time shift) For each f ∈ dtype(v) and t ∈ T, f + t ∈ dtype(v).

Here f + t is the function given by (f + t) (t′) = f(t′ − t).
2. (Subinterval) For each f ∈ dtype(v) and each left-closed inter-

val J ⊆ dom(f), f � J ∈ dtype(v). Here f � J is the function
obtained by restricting the domain of f to J .

3. (Pasting) For each sequence f0, f1, f2, . . . of functions in dtype(v)
such that (a) the domain of each fi, except possibly for the last
one, is right-closed, (b) for each nonfinal index i, max(dom(fi)) =
min(dom(fi+1)), the function f given by f(t) ∆= fi(t), where i
is the smallest index with t ∈ dom(fi), is in dtype(v).

Example 1. For any variable v, the set C of constant functions from
a left-closed interval to type(v) is closed under time shift and subin-
tervals. If the dynamic type of v is obtained by closing C under the
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pasting operation, then v is called a discrete variable, as in [19]. If we
take T = R and type(v) = R, then other examples of dynamic types
can be obtained by taking the pasting closure of the set of continuous
or smooth functions, the set of integrable functions, or the set of mea-
surable locally essentially bounded functions. The set of all functions
from left-closed intervals of R to R is also a dynamic type.

In practice, dynamic types are often defined via pasting closure of
a class of continuous functions. In these cases the elements of dynamic
types are continuous from the left. Elsewhere in the literature on hybrid
systems one often encounters functions that are continuous from the
right (see, e.g., [8]). To some extent, the choice of how to define function
values at discontinuities is arbitrary. An advantage of our choice is
a nice correspondence between concatenation and prefix ordering of
trajectories (see Lemma 2). In the rest of this paper, when we say that
the dynamic type of a variable v equals S, we actually mean that the
dynamic type of v is obtained by applying the above closure operations
to S.

2.2 Trajectories

In this subsection, we define the notion of a trajectory, define operations
on trajectories, and prove simple properties of trajectories and their
operations. A trajectory is used to model the evolution of a collection
of variables over an interval of time.

Basic definitions Let V be a set of variables, that is, a subset of V. A
valuation v for V is a function that associates to each variable v ∈ V
a value in type(v). We write val(V ) for the set of valuations for V . Let
J be a left-closed interval of T with left endpoint equal to 0. Then a
J-trajectory for V is a function τ : J → val(V ), such that for each
v ∈ V , τ ↓ v ∈ dtype(v). Here τ ↓ v is the function with domain J
defined by (τ ↓ v)(t) = τ(t)(v).

We say that a J-trajectory is finite if J is a finite interval, closed if
J is a (finite) closed interval, and full if J = T≥0. A trajectory for V
is a J-trajectory for V , for any J . We write trajs(V ) for the set of all
trajectories for V . For T a set of trajectories, finite(T ), closed(T ) and
full(T ) denote the subsets of finite, closed and full trajectories in T ,
respectively. A trajectory with domain [0, 0] is called a point trajectory.
If v is a valuation then ℘(v) denotes the point trajectory that maps 0
to v.
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If τ is a trajectory then τ.ltime, the limit time of τ , is the supremum
of dom(τ). Similarly, we define τ.fval , the first valuation of τ , to be
τ(0), and if τ is closed, we define τ.lval , the last valuation of τ , to be
τ(τ.ltime). For τ a trajectory and t ∈ T≥0, we define τ � t

∆= τ � [0, t],
τ � t

∆= τ � [0, t), and τ � t
∆= (τ � [t,∞)) − t. Note that the result of

applying the above operations is always a trajectory, except when the
result is a function with an empty domain. By convention, τ � ∞ ∆= τ

and τ � ∞ ∆= τ .

Prefix ordering Trajectory τ is a prefix of trajectory υ, denoted by
τ ≤ υ, if τ can be obtained by restricting υ to a non-empty, downward
closed subset of its domain. Formally, τ ≤ υ iff τ = υ � dom(τ). For T
a set of trajectories for V , pref (T ) denotes the prefix closure of T . We
say that T is prefix closed if T = pref (T ).

The following lemma gives a simple domain theoretic characteri-
zation of the set of trajectories over a given set V . (See [7] for basic
definitions and results on complete partially ordered sets, (cpo’s)).

Lemma 1. Let V be a set of variables. Then the set trajs(V ) of tra-
jectories for V , together with the prefix ordering ≤, is an algebraic cpo
whose compact elements are the closed trajectories.

Concatenation The concatenation of two trajectories is obtained by
taking the union of the first trajectory and the function obtained by
shifting the domain of the second trajectory until the start time agrees
with the limit time of the first trajectory; the last valuation of the
first trajectory, which may not be the same as the first valuation of
the second trajectory, is the one that appears in the concatenation.
Formally, let τ, υ be trajectories, with τ closed. Then the concatenation
is the function given by τ � υ

∆= τ ∪ (υ � (0,∞) + τ.ltime). Using the
closure of dynamic types under time shift and pasting, it follows that
τ �υ is a trajectory. Observe that τ �υ is finite (resp. closed, full) iff υ is
finite (resp. closed, full). Observe also that concatenation is associative.

The following lemma, which is easy to prove, shows the close con-
nection between concatenation and the prefix ordering.

Lemma 2. Let τ, υ be trajectories with τ closed. Then τ ≤ υ iff there
exists a trajectory τ ′ such that τ � τ ′.

Note that if τ ≤ υ, then the trajectory τ ′ such that υ = τ � τ ′ is
unique except that it has an arbitrary value for τ ′.fval . Note also that
the “⇐” implication would not hold if the first valuation of the second
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argument, rather than the last valuation of the first argument, were
used in the concatenation.

Using a limit construction, we can generalize the definition of con-
catenation for any (finite or countably infinite) number of arguments.
Let τ0, τ1, τ2, . . . be a (finite or infinite) sequence of trajectories, such
that τi is closed for each nonfinal index i. Define trajectories τ ′

0, τ
′
1, τ

′
2, . . .

by τ ′
i

∆= τ0
� τ1

� · · · � τi. We define the concatenation τ0
� τ1

� τ2 . . .
to be limi→∞ τ ′

i . It is easy to prove that τ0
� τ1

� τ2 . . . is a trajectory.

2.3 Hybrid sequences

In this subsection, we introduce the notion of a hybrid sequence, which
is used to model a combination of changes that occur instantaneously
and changes that occur over intervals of time. Our definition is param-
eterized by a set A of actions, which are used to model instantaneous
changes and instantaneous synchronization with the environment, and
a set V of variables, which are used to model changes over intervals
and continuous interaction. We also define some special kinds of hybrid
sequences and operations on hybrid sequences.

Basic definitions An (A, V )-sequence is a finite or infinite alternating
sequence α = τ0 a1 τ1 a2 τ2 · · ·, where (1) each τi is a trajectory in
trajs(V ), (2) each ai is an action in A, (3) if α is a finite sequence then
it ends with a trajectory, and (4) if τi is not the last trajectory in α then
dom(τi) is closed. We define a hybrid sequence to be an (A, V )-sequence
for some A and V .

Since the trajectories in a hybrid sequence can be point trajectories,
our notion of hybrid sequence allows a sequence of discrete actions to
occur at the same real time, with corresponding changes of state.

If α is a hybrid sequence, with notation as above, then we define
the first valuation of α, α.fval , to be τ0.fval , and we define the limit
time of α, α.ltime, to be

∑
i τi.ltime. A hybrid sequence α is defined

to be:

– time-bounded if α.ltime is finite.
– admissible if α.ltime = ∞.
– closed if α is a finite sequence and the domain of its final trajectory

is a closed interval. In this case we define the last valuation of α,
α.lval , to be last(α).lval .

– Zeno if α is neither closed nor admissible, that is, if α is time-
bounded and is either an infinite sequence, or else a finite sequence
ending with a trajectory whose domain is right-open.
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Prefix ordering We say that (A, V )-sequence α = τ0a1τ1 . . . is a prefix
of (A, V )-sequence α′ = τ ′

0 a′
1 τ ′

1 . . ., denoted by α ≤ α′, if either α = α′,
or α is a finite sequence ending in some τk; τi = τ ′

i , and ai+1 = a′
i+1

for every i, 0 ≤ i < k; and τk ≤ τ ′
k. Like the set of trajectories over V ,

the set of (A, V )-sequences is a cpo.

Lemma 3. The set of (A, V )-sequences together with the prefix order-
ing ≤ is an algebraic cpo with as compact elements the set of closed
(A, V )-sequences.

Restriction Let A, A′ be sets of actions and V, V ′ sets of variables.
The (A′, V ′)-restriction of an (A, V )-sequence is obtained by projecting
the trajectories on the variables in V ′, removing the actions not in A′,
and concatenating the adjacent trajectories.

Lemma 4. Restriction is a continuous operation with respect to prefix
ordering.

Concatenation Suppose α and α′ are (A, V )-sequences, with α closed.
Then the concatenation is the (A, V )-sequence given by

α � α′ ∆= init(α) (last(α) � head(α′)) tail(α′).

(If σ is a nonempty sequence then head(σ) denotes the first element of
σ and tail (σ) denotes σ with its first element removed; if σ is finite,
then last(σ) denotes the last element of σ and init(σ) denotes σ with
its last element removed.)

Lemma 5. Let α, α′ be (A, V )-sequences with α closed. Then α ≤ α′

iff there exists and (A, V )-sequence α′′ such that α′ = α � α′′.

Note that if α ≤ α′, then the (A, V )-sequence α′′ such that α′ = α� α′′

is unique except that it has an arbitrary value in val(V ) for α′′.fval .
Based on Lemma 5 and Lemma 3, we can extend concatenation to

infinitely many (A, V )-sequences as follows. Let α1, α2, . . . be an infi-
nite sequence of closed (A, V )-sequences. Then define the concatenation
α1

� α2
� · · · to be limi→∞ α′

i, where α′
i = α1

� α2
� · · · � αi.

3 Hybrid Automata

As a preliminary step toward defining hybrid I/O automata, we first de-
fine a slightly more general hybrid automaton model. Hybrid automata
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classify actions as external and internal, but do not further subdivide
the external actions into input and output actions. Likewise, they clas-
sify variables as external and internal. The input/output distinction
is added in Section 4. In addition to defining hybrid automata, we
here define an implementation relation between hybrid automata and
a composition operation.

3.1 Definition of Hybrid Automata

A hybrid automaton (HA) A = (W, X, Θ, E, H,D, T ) consists of:

– A set W of external variables and a set X of internal variables,
disjoint from each other. We call a valuation x for X a state, and
we refer to val (X) as the set of states of A. We write V

∆= W ∪X .
Given a valuation v for V , we denote by state(v) the state v � X .

– A nonempty set Θ ⊆ val (X) of start states .
– A set E of external actions and a set H of internal actions , disjoint

from each other. We write A
∆= E∪H and let a, b, . . . range over A.

– A set D ⊆ val (X) × A × val (X) of discrete transitions. We use
x a→A x′ as shorthand for (x, a,x′) ∈ D. We sometimes drop the
subscript, and write x a→ x′, when A should be clear from the
context.

– A set T of trajectories for V . Given a trajectory τ ∈ T we denote
τ.fval � X by τ.fstate, and, if τ is closed, τ.lval � X by τ.lstate. We
require that the following axioms hold:
T1 (Prefix closure) For every τ ∈ T and every τ ′ ≤ τ , τ ′ ∈ T .
T2 (Suffix closure) For every τ ∈ T and every t ∈ dom(τ), τ � t ∈

T .
T3 (Concatenation closure) Let τ0, τ1, τ2, . . . be a sequence of tra-

jectories in T such that, for each nonfinal index i, τi is closed
and τi.lstate = τi+1.fstate. Then τ0

� τ1
� τ2 . . . ∈ T .

Axioms T1-3 express some natural closure properties on the set of tra-
jectories that we need for our results about parallel composition. In a
composed system, any trajectory of any component may be interrupted
at any moment by a discrete transition of another component. Axiom
T1 ensures that the part of the trajectory up to the discrete transition
is a trajectory, and axiom T2 ensures the remainder is a trajectory.
Axiom T3 is required because the environment of a hybrid automaton,
as a result of internal discrete transitions, may change its continuous
dynamics repeatedly, and the automaton must be able to follow this
behavior. Even without performing discrete transitions itself, a hybrid
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automaton must be able to follow this type of behavior of its environ-
ment. In the earlier definition of hybrid automata presented in [15, 16],
we used a special stuttering action e in place of axiom T3; this gave
rise to technical complications.

Another major difference between our new definition and the earlier
one is that the external variables are no longer considered to be part of
the state; thus, for instance, the discrete transitions do not depend on
the values of these variables. Analogous to the way in which external
actions can be used to model synchronization of discrete transitions
of different components, external variables allow us to model synchro-
nization of continuous activity (“flow”) between components. Because
the external actions and external variables are not part of the state, we
think of them as “ephemeral”.

We often denote the components of a HA A by WA, XA, ΘA, EA,
etc, and the components of a HA Ai by Wi, Xi, Θi, Ei, etc. We some-
times omit these subscripts, where no confusion seems likely.

3.2 Executions and traces

We now define execution fragments, executions, trace fragments, and
traces, which are used to describe automaton behavior.

An execution fragment of a HA A is an (A, V )-sequence
α = τ0 a1 τ1 a2 τ2 · · ·, where (1) each τi is a trajectory in T , and (2) if
τi is not the last trajectory in α then τi.lstate

ai+1→ τi+1.fstate. An ex-
ecution fragment records all the instantaneous, discrete state changes
that occur during a specific evolution of a system, as well as the state
changes and external variable changes that occur while time advances.
We write fragsA for the set of all execution fragments of A.

If α is an execution fragment, with notation as above, then we
define the first state of α, α.fstate, to be state(α.fval ), or equivalently,
τ0.fstate. An execution fragment α is defined to be an execution if
α.fstate is a start state, that is, is in Θ. We write execsA for the set of
all executions of A.

If α is a closed execution fragment then we define the last state of
α, α.lstate, to be state(α.lval ), or equivalently, last(α).lstate . A state
of A is reachable if it is the last state of some closed execution of A.

Lemma 6. Let α and α′ be execution fragments of A with α closed,
and such that α.lstate = α′.fstate. Then α�α′ is an execution fragment
of A.

Lemma 7. Let α and α′ be execution fragments of A with α closed.
Then α ≤ α′ iff there is an execution fragment α′′ such that α′ = α�α′′.



344 Nancy Lynch, Roberto Segala and Frits Vaandrager

The trace of an execution fragment records the external actions
and the evolution of external variables. Formally, if α is an execution
fragment, then the trace of α, denoted by trace(α), is the (E, W )-
restriction of α. A trace fragment of a hybrid automaton A from a state
x of A is a trace that arises from an execution fragment of A whose
first state is x. We write tracefragsA(x) for the set of trace fragments
of A from x. Also, we define a trace of A to be a trace fragment from
an initial state, that is, a trace that arises from an execution of A, and
write tracesA for the set of traces of A.

Hybrid automata A1 and A2 are comparable if they have the same
external actions and variables, that is, if W1 = W2 and E1 = E2. If A1

and A2 are comparable then we say that A1 implements A2, denoted
by A1 ≤ A2, if the traces of A1 are included among those of A2, that
is, if tracesA1 ⊆ tracesA2 .

3.3 Simulation relations

Let A and B be comparable HAs. A simulation from A to B is a relation
R ⊆ val(XA) × val(XB) satisfying the following conditions, for all
states xA and xB of A and B, respectively:

1. If xA ∈ ΘA then there exists a state xB ∈ ΘB such that xA R xB .
2. If xA R xB , xA

a→A x′
A and τ = trace(℘(xA) a ℘(x′

A)), then B
has a closed execution fragment α with α.fstate = xB , trace(α) =
trace(τ), and x′

A R α.lstate.
3. If xA R xB and τ is a closed trajectory of A with xA = τ.fstate

and x′
A = τ.lstate, then B has a closed execution fragment α with

α.fstate = xB, trace(α) = trace(τ), and x′
A R α.lstate.

Lemma 8. Let A and B be comparable HAs, and let R be a simulation
from A to B. Let xA and xB be states of A and B, respectively, such
that xA R xB . Then tracefragsA(xA) ⊆ tracefragsB(xB).

Theorem 1. Let A and B be comparable HAs, and let R be a simula-
tion from A to B. Then tracesA ⊆ tracesB.

3.4 Composition

We now introduce the operation of composition for hybrid automata,
which allows an automaton representing a complex system to be con-
structed by composing automata representing individual system com-
ponents. We prove that the composition operation respects our imple-
mentation relationship (inclusion of sets of traces). Our composition
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operation identifies actions and variables with the same name in differ-
ent component automata. When any component automaton performs a
step involving an action a, so do all component automata that have a in
their signatures. Common variables are shared among the components.

We define composition as a partial, binary operation on hybrid au-
tomata. Since internal actions of an automaton A1 are intended to be
unobservable by any other automaton A2, we do not allow A1 to be
composed with A2 unless the internal actions of A1 are disjoint from
the actions of A2. Also, we require disjointness of the internal variables
of A1 and the variables of A2. Formally, we say that hybrid automata
A1 and A2 are compatible if for i 
= j, Xi ∩ Vj = Hi ∩ Aj = ∅. If A1

and A2 are compatible then their composition A1‖A2 is defined to be
the structure A = (W, X, Θ, E, H,D, T ) where

– W = W1 ∪ W2, X = X1 ∪ X2, E = E1 ∪ E2, H = H1 ∪ H2.
– Θ = {x ∈ val(X) | x � X1 ∈ Θ1 ∧ x � X2 ∈ Θ2}.
– For each x,x′ ∈ val (X) and each a ∈ A, x a→A x′ iff for i = 1, 2,

either (1) a ∈ Ai and x � Xi
a→i x′ � Xi, or (2) a 
∈ Ai and

x � Xi = x′ � Xi.
– T ⊆ trajs(V ) is given by τ ∈ T ⇔ τ ↓ V1 ∈ T1 ∧ τ ↓ V2 ∈ T2.

Proposition 1. A1‖A2 is a hybrid automaton.

Theorem 2. Suppose A1,A2 and B are HAs with A1 ≤ A2, and sup-
pose that each of A1 and A2 is compatible with B. Then A1‖B ≤ A2‖B.

In the full version of this paper, we define two natural hiding op-
erations on HAs, which hide external actions and external variables,
respectively, and prove that these operations also respect the imple-
mentation preorder.

4 Hybrid I/O Automata

In this section we specialize the hybrid automaton model of Section 3
by adding a distinction between input and output.

4.1 Definition of Hyybrid I/O Automata

A hybrid I/O automaton (HIOA) A is a tuple (H, U, Y, I, O) where

– H = (W, X, Θ, E, H,D, T ) is a hybrid automaton.
– U and Y partition W into input and output variables, respectively.

Variables in Z
∆= X ∪ Y are called locally controlled ; as before we

write V
∆= W ∪ X .
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– I and O partition E into input and output actions , respectively.
Actions in L

∆= H ∪ O are called locally controlled ; as before we
write A

∆= E ∪ H .
– The following additional axioms are satisfied:

E1 (Input action enabling)
For all x ∈ val(X) and all a ∈ I there exists x′ such that
x a→ x′.

E2 (Input flow enabling)
For all x ∈ val (X) and υ ∈ trajs(U ), there exists τ ∈ T such
that τ.fstate = x, τ ↓ U ≤ υ, and either
1. τ ↓ U = υ, or
2. there exist t ∈ dom(τ) and l ∈ L such that l is enabled

from τ(t).

Input action enabling is the input enabling condition of ordinary I/O
automata. Input flow enabling is a new corresponding condition for
continuous interaction. It says that an HIOA should be able to accept
any continuous input flow, either by letting time advance for the entire
duration of the input flow, or by reacting with a locally controlled
action after some part of the input flow has occurred.

An execution of an HIOA A is an execution of HA. Similarly, a
trace of A is a trace of HA. Two HIOAs A1 and A2 are comparable
if their inputs and outputs coincide, that is, if I1 = I2, O1 = O2,
U1 = U2, and Y1 = Y2. If A1 and A2 are comparable, then A1 ≤ A2 is
defined to mean that the traces of A1 are included among those of A2:
A1 ≤ A2

∆= tracesA1 ⊆ tracesA2 . If A1 and A2 are comparable HIOAs
then H1 and H2 are comparable and A1 ≤ A2 iff H1 ≤ H2.

The definition of simulation for HIOAs is the same as for HAs, and
the soundness result carries over immediately to the enriched setting.

4.2 Composition

The definition of composition for HIOAs builds on the corresponding
definition for HAs, but also takes the input/output structure into ac-
count. Just as in the definition of compatibility for HAs, we do not
allow an HIOA A1 to be composed with an HIOA A2 unless the in-
ternal actions and variables of A1 are disjoint from the actions and
variables, respectively, of A2. In addition, in order that the composi-
tion operation might satisfy nice properties (such as Theorem 7), we
require that at most one component automaton “controls” any given
action or variable; that is, we do not allow A1 and A2 to be composed
unless the sets of output actions of A1 and A2 are disjoint and the sets
of output variables of A1 and A2 are disjoint.
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If A1 and A2 are compatible then their composition A1‖A2 is de-
fined to be the tuple A = (H, U, Y, I, O) where H = H1‖H2, U =
(U1 ∪ U2) − (Y1 ∪ Y2), Y = Y1 ∪ Y2, I = (I1 ∪ I2) − (O1 ∪ O2), and
O = O1 ∪ O2.

The definition of compatibility given above is not quite strong enough
to imply that the composition of two HIOAs is actually an HIOA. Thus,
we define a stronger notion and say that compatible HIOAs A1 and A2

are strongly compatible if A1‖A2 satisfies axiom E2. Strong compatibil-
ity implies that the reaction of the composed automaton to any input
flow υ must be the result of a deliberate reaction by either A1 or A2.
That is, either both A1 and A2 accept υ in its entirety, or one of the two
reacts with a locally controlled action. No “time deadlock” is allowed
due to incompatible reactions of A1 and A2.

Proposition 2. The composition of two strongly compatible HIOAs is
an HIOA.

Theorem 3. Suppose A1,A2 and B are HIOAs with A1 ≤ A2, and
each of A1 and A2 is strongly compatible with B. Then A1‖B ≤ A2‖B.

5 Receptive Hybrid I/O Automata

In this section we adapt the notion of receptiveness [20] to our new
framework. Informally speaking, a system is receptive provided that it
admits a strategy for resolving its nondeterministic choices that never
generates infinitely many locally controlled actions in finite time. An
important consequence of this definition is that a receptive HIOA has
some response defined for any sequence of discrete and continuous in-
put. We show that receptiveness is closed under composition. Because
of the improvements in our new model, the treatment of receptiveness
in this paper is simpler than that in [20]; however, we only address
admissibility here, and not general liveness properties as in [20].

An execution fragment of an HIOA is locally-Zeno if it is Zeno
and contains infinitely many locally controlled actions. An HIOA A is
locally-Zeno if it has at least one locally-Zeno execution fragment. In
the rest of the paper we will be interested mainly in non-locally-Zeno
HIOAs, that is, HIOAs that are not locally-Zeno. We use non-locally-
Zeno HIOAs as the basis for defining receptiveness.

Theorem 4. Let A1, A2 be strongly compatible non-locally-Zeno HIOAs.
Then A1‖A2 is also non-locally-Zeno.
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Theorem 5. Let A be a non-locally-Zeno HIOA. Then, for each (I, U)-
sequence β and each state x, there is an execution fragment α of A such
that (1) α.fstate = x, (2) α � (I, U) = β.

The property stated in Theorem 5 is known in the literature as I/O
feasibility [17]; it implies that any finite execution can be extended to
an admissible execution, no matter what the environment does.

A strategy for an HIOA A is an HIOA A′ that differs from A only in
that D′ ⊆ D and T ′ ⊆ T . A strategy A′ for an HIOA A can be viewed
as a nondeterministic memoryless strategy in the sense of [5, 20] that
chooses some of the evolutions that are possible from each of the states
of A. The fact that the states of A and A′ are the same ensures that
A′ chooses evolutions for every state x of A.

We say that an HIOA is receptive if it has a non-locally-Zeno strat-
egy.

Theorem 6. A receptive HIOA is I/O feasible.

Theorem 7. Let A1 and A2 be two compatible receptive HIOAs with
two strongly compatible non-locally-Zeno strategies A′

1 and A′
2, respec-

tively. Then A1‖A2 is a receptive HIOA with non-locally-Zeno strategy
A′

1‖A′
2.

6 Sufficient conditions for strong compatibility

In order to apply Theorem 7, one has to establish that two strategies are
strongly compatible. This is difficult in general since it requires check-
ing compatibility between the continuous dynamics of two systems.
However, for certain restricted classes of HIOAs, strong compatibility
follows directly from compatibility.

6.1 HIOAs with restrictions on input variables

Our first example is the class of HIOAs without input variables. It is
routine to verify that two HIOAs without input variables are strongly
compatible iff they are compatible. From the perspective of classical
control theory a system without input variables is uninteresting be-
cause it cannot be controlled; in a hybrid setting, however, a system
without input variables can still interact with its environment via dis-
crete input actions. Linear hybrid automata [1], for instance, have no
input variables.

Another example is the class of autistic HIOAs—those for which
the values of output variables do not depend on the values of input
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variables. Formally, an HIOA A is called autistic if for all τ ∈ T and
all υ ∈ trajs(U ) such that dom(τ) = dom(υ) there exists τ ′ ∈ T such
that τ ′ ↓ U = υ and τ ′ ↓ Y = τ ↓ Y .

6.2 Lipschitz HIOAs

In this section, we define Lipschitz HIOAs, based on systems of dif-
ferential equations using Lipschitz functions. We give examples of con-
ditions on classes of Lipschitz HIOAs that imply strong compatibility.
The ideas are derived from methods in the literature on control theory
[21]. In control theory, continuous system behavior is typically defined
using differential equations of the form:

D
∆=

{ .
x = f(x, u)
y = g(x)

where u, y, and x are the vectors of input, output, and state variables,
respectively, together with a starting condition of the form x(0) = x0.

To ensure that the system’s behavior is defined, the differential
equations must admit a solution for each possible starting condition.
The following theorem from calculus gives sufficient conditions for a
solution to exist.

Theorem 8 (Local existence). If f is globally Lipschitz and u is C1,
then for each starting condition x(0) = x0 there is a unique solution to
the equations of D, defined on a maximal neighborhood of 0, such that
x(0) = x0.

Observe that, since the set of globally Lipschitz functions is closed
under composition, the local existence theorem is valid also when the
variables u are the result of a globally Lipschitz function applied to a
C1 function.

Suppose two interacting systems are described by sets of equations
D1 and D2 of the form given above. Then their combined behavior can
be described by the union of the sets of equations D1 and D2. It is
easy to show that, if the functions occurring in D1 and D2 are globally
Lipschitz, and D1 and D2 do not have any common output and state
variables, then the union of these two sets of equations is expressible in
the same form with functions that are globally Lipschitz. Thus, in this
case no additional machinery is needed to prove that the behavior of
the interacting systems is well defined. We define a set D of equations
to be Lipschitz if functions f and g are globally Lipschitz.

To extend the above ideas to the hybrid case we define the notion
of a Lipschitz HIOA. An HIOA A is Lipschitz if there is a subset M of
its state variables (we call these the mode variables) such that:
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L1 The dynamic type of each variable in M is piecewise constant.
L2 The dynamic type of each variable not in M is a subset of the set

of real-valued functions defined on left-closed intervals of the reals
that can be expressed in the form h(c(·)) where h is a globally
Lipschitz function and c is a C1 function, closed under pasting.

L3 The values of the M variables are constant in each trajectory of T .
L4 For each valuation m of M there is a Lipschitz system of equations

Dm with input variables U , output variables Y , and state variables
X − M such that the following holds: If trajectory τ of T starts
from a state x with x � M = m, then τ � V − M is expressible as
the concatenation of countably many trajectories τ0, τ1, . . ., where
each τi is a solution to Dm.

Define a Lipschitz HIOA to be input bounded if for each input vari-
able u there exists a positive real value B such that every function in
the dynamic type of u has range in [−B, B].

Lemma 9. Compatible input-bounded Lipschitz HIOAs are strongly
compatible.

Theorem 9. The composition of two compatible input-bounded Lips-
chitz HIOAs is a Lipschitz HIOA.

Theorem 10. Let A1 and A2 be compatible receptive HIOAs with non-
locally-Zeno, input-bounded, Lipschitz strategies. Then A1‖A2 is a re-
ceptive HIOA with a non-locally-Zeno input-bounded Lipschitz strategy.

Theorem 11. The composition of two compatible receptive input-bounded
Lipschitz HIOAs is a receptive input-bounded Lipschitz HIOA.

The conclusion that we derive from Theorem 11 is that compatibil-
ity implies strong compatibility if we describe the continuous behaviors
of HIOAs by means of differential equations of the form of D with func-
tions f and g globally Lipschitz. In general, any choice of conditions on
f, g, and u that guarantees local existence of unique solutions, continu-
ity of solutions, and that is preserved by interaction between systems,
can be used to define a class of automata for which strong compatibility
follows from compatibility.
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Abstract. We present a unified mathematical framework for
analyzing the tradeoffs between parallelism and storage alloca-
tion within a parallelizing compiler. Using this framework, we
show how to find a good storage mapping for a given sched-
ule, a good schedule for a given storage mapping, and a good
storage mapping that is valid for all legal schedules. We con-
sider storage mappings that collapse one dimension of a multi-
dimensional array, and programs that are in a single assign-
ment form with a one-dimensional schedule. Our technique
combines affine scheduling techniques with occupancy vector
analysis and incorporates general affine dependences across
statements and loop nests. We formulate the constraints im-
posed by the data dependences and storage mappings as a set
of linear inequalities, and apply numerical programming tech-
niques to efficiently solve for the shortest occupancy vector. We
consider our method to be a first step towards automating a
procedure that finds the optimal tradeoff between parallelism
and storage space.

1 Introduction

It remains an important and relevant problem in computer science to
automatically find an efficient mapping of a sequential program onto
� This research was done while Frédéric Vivien was a Visiting Professor

in the MIT Laboratory for Computer Science. More information on this
project can be found at http://compiler.lcs.mit.edu/aov.
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a parallel architecture. Though there are many heuristic algorithms in
practical systems and partial or suboptimal solutions in the literature,
a theoretical framework that can fully describe the entire problem and
find the optimal solution is still lacking. The difficulty stems from the
fact that multiple inter-related costs and constraints must be considered
simultaneously to obtain an efficient executable.

While exploiting the parallelism of a program is an important step
towards achieving efficiency, gains in parallelism are often overwhelmed
by other costs relating to data locality, synchronization, and communi-
cation. In particular, with the widening gap between clock speed and
memory latency, and with modern memory systems becoming increas-
ingly hierarchical, the amount of storage space required by a program
can have a drastic effect on its performance. Nonetheless, parallelizing
compilers often employ varying degrees of array expansion [9, 5, 1] to
eliminate element-level anti and output dependences, thereby adding
large amounts of storage that may or may not be justified by the re-
sulting gains in parallelism.

Thus, compilers must be able to analyze the tradeoffs between par-
allelism and storage requirements in order to arrive at an efficient exe-
cutable. In this paper, we introduce a unifying mathematical framework
that incorporates both schedule constraints (restricting when state-
ments can be executed) and storage constraints (restricting where their
results can be stored). We consider storage mappings that collapse one
dimension of a multi-dimensional array, and programs that are in a sin-
gle assignment form with a one-dimensional schedule. Our technique in-
corporates general affine dependences across statements and loop nests,
making it applicable to many scientific applications

Using this technique, we present solutions to three important schedul-
ing problems. Namely, we show how to determine 1) a good storage
mapping for a given schedule, 2) a good schedule for a given storage
mapping, and 3) a good storage mapping that is valid for all legal sched-
ules. Our method is precise and practical in that it reduces to a linear
program that can be efficiently solved with standard techniques. We
believe that these solutions represent the first step towards automat-
ing a procedure that finds the optimal compromise between parallelism
and storage space.

The rest of this paper is organized as follows. In Section 2 we mo-
tivate the problem abstractly, and in Section 3 we define it concretely.
Section 4 formulates the method abstractly, and Section 5 illustrates
the method with examples. Experiments are described in Section 6,
related work in Section 7, and we conclude in Section 8.
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2 Abstract problem

To motivate our approach, we consider simplified descriptions of the
scheduling problems faced by a parallelizing compiler. We are given a
directed acyclic graph G = (V, E). Each vertex v ∈ V represents a
dynamic instance of an instruction; a value will be produced as a result
of executing v. Each edge (v1, v2) ∈ E represents a dependence of v2 on
the value produced by v1. Thus, each edge (v1, v2) imposes the schedule
constraint that v1 be executed before v2, and the storage constraint that
the value produced by v1 be stored until the execution time of v2.

Our task is to output (Θ, m), where Θ is a function mapping each
operation v ∈ V to its execution time, and m is the maximum number
of values that we need to store at a given time. Parallelism is expressed
implicitly by assigning the same execution time to multiple operations.
To simplify the problem, we ignore the question of how the values are
mapped to storage cells and assume that live values are stored in a fully
associative map of size m. How, then, might we go about choosing Θ
and m?

2.1 Choosing a store given a schedule

The first problem is to find the optimal storage mapping for a given
schedule. That is, we are given Θ and choose m such that 1) (Θ, m)
respects the storage constraints, and 2) m is as small as possible.

This problem is orthogonal to the traditional loop parallelization
problem. After selecting the instruction schedule by any of the existing
techniques, we are interested in identifying the best storage allocation.
That is, with schedule-specific storage optimization we can build upon
the performance gains of any one of the many scheduling techniques
available to the parallelizing compiler.

2.2 Choosing a schedule given a store

The second problem is to find an optimal schedule for a given size of the
store, if any valid schedule exists. That is, we are given m and choose Θ
such that 1) (Θ, m) respects the schedule and storage constraints, and
2) Θ assigns the earliest possible execution time to each instruction.
Note that if m is too small, there might not exist a Θ that respects the
constraints.

This is a very relevant problem in practice because of the stepwise,
non-linear effect of storage size on execution time. For example, when
the storage required cannot be accommodated within the register file
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A[][] = new int[n][m]
...
for j = 1 to m

for i = 1 to n
A[i][j] = f(A[i-2][j-1], A[i][j-1], A[i+1][j-1])

Fig. 1. Original code for Example 1.

or the cache, and has to resort to the cache or the external DRAM,
respectively, the cost of storage increases dramatically. Further, since
there are only a few discrete storage spaces in the memory hierarchy,
and their size is known for a given architecture, the compiler can adopt
the strategy of trying to restrict the store to successively smaller spaces
until no valid schedule exists. Once the storage is at the lowest possible
level, the schedule could then be shortened, having a more continuous
and linear effect on efficiency than the storage optimization. In the
end, we end up with a near-optimal storage allocation and instruction
schedule.

2.3 Choosing a store for all schedules

The final problem is to find the optimal storage mapping that is valid
for all legal schedules. That is, we are given a (possibly infinite) set Ψ =
{Θ1, Θ2, . . . }, where each Θ in Ψ respects the schedule constraints. We
choose m such that 1) ∀Θ ∈ Ψ, (Θ, m) respects the storage constraints,
and 2) m is as small as possible.

A solution to this problem allows us to have the minimum storage
requirements without sacrificing any flexibility of our scheduling. For
instance, we could first apply our storage mapping, and then arrange
the schedule to optimize for data locality, synchronization, or commu-
nication, without worrying about violating the storage constraints.

Such flexibility could be critical if, for example, we want to apply
loop tiling [10] in conjunction with storage optimization. If we optimize
storage too much, tiling could become illegal; however, we sacrifice
efficiency if we don’t optimize storage at all. Thus, we optimize storage
as much as we can without invalidating a schedule that was valid under
the original storage mapping.

More generally, if our analysis indicates that certain schedules are
undesirable by any measure, we could add edges to the dependence
graph and solve again for the smallest m sufficient for all the remaining
candidate schedules. In this way, m provides the best storage option
that is legal across the entire set of schedules under consideration.
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A[] = new int[n]
...
for j = 1 to m

for ALL i = 1 to n
A[i] = f(A[i-2], A[i], A[i+1])

Fig. 2. Transformed code for Example 1. The occupancy vector is (0,1).

Fig. 3. Iteration space diagram for Example 1. Given the schedule where
each row is executed in parallel, our method identifies (0, 1) as the shortest
valid occupancy vector.

3 Concrete problem

Unfortunately, the domain of real programs does not lend itself to the
simple DAG representation as presented above. Primarily, loop bounds
in programs are often specified by symbolic expressions instead of con-
stants, thereby yielding a parameterized and infinite dependence graph.
Furthermore, even when the constants are known, the problem sizes
are too large for schedule and storage analysis on a DAG, and the ex-
ecutable grows to an infeasible size if a static instruction is generated
for every node in the DAG.

Accordingly, we make two sets of simplifying assumptions to make
our analysis tractable. The first concerns the nature of the dependence
graph G and the scheduling function Θ. Instead of allowing arbitrary
edge relationships and execution orderings, we restrict our attention to
affine dependences and affine schedules. The second assumption con-
cerns our approach to the optimized storage mapping. Instead of allow-
ing a fully associative map of size m, as above, we employ the occupancy
vector as a mechanism of storage reuse. In the following sections, we
discuss these assumptions in the context of an example.

3.1 Program domain

Primarily, we require an affine description of the dependences of the
program. This formulation gives an accurate description of the depen-



358 William Thies, Frédéric Vivien, et al.

Fig. 4. Iteration space diagram for Example 1. Given an occupancy vector of
(0, 2), our method identifies the range of valid schedules. An affine schedule
will sweep across the space, executing a line of iterations at once. If this line
falls within the gray region (as on the left), then the schedule is valid for the
occupancy vector of (0, 2). If this line falls within the striped region (as on
the right) then the schedule is valid for some occupancy vector other than
(0, 2). The schedule at right is invalid because the operation at the tip of the
occupancy vector (0, 2) overwrites a value before the operation at (2, 1) can
consume it.

dences of programs with static control flow and affine index expressions
[6] and can be estimated conservatively for others. As will become clear
below, restricting our attention to affine dependences allows us to model
the infinite dependence graph as a finite set of parameters, which is cen-
tral to the method.

In this paper, we further assume a single-assignment form where
the iteration space of each statement exactly corresponds with the data
space of the array written by that statement. That is, for array refer-
ences appearing on the left hand side of a statement, the expression
indexing the i’th dimension of the array is the index variable of the
i’th enclosing loop (this is formalized below). While techniques such
as array expansion [5] can be used to convert programs with affine
dependences into this form, our analysis will be most useful in cases
where an expanded form was obtained for other reasons (e.g., to detect
parallelism) and one now seeks to reduce storage requirements.

We will refer to the example in Figure 1, borrowed from [17]. It
clearly falls within our input domain, as the dependences have constant
distance, and iteration (i, j) assigns to A[i][j]. This example represents
a computation where a one-dimensional array A[i] is being updated
over a time dimension j, and the intermediate results are being stored.
We assume that only the element A[n][m] is used outside the loop; the
other values are only temporary.
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3.2 Occupancy vectors

To arrive at a simple model of storage reuse, we borrow the notion of
an occupancy vector from Strout et al. [17]. The strategy is to reduce
storage requirements by defining equivalence classes over the locations
of an array. Following a storage transformation, all members of a given
equivalence class in the original array will be mapped to the same
location in the new array. The equivalence relation is:

Rv = {(l1, l2) | ∃k ∈ Z s.t. l1 = l2 + k · v}
and we refer to v as the occupancy vector. We say that A′ is the result
of transforming A under the occupancy vector v if, for all pairs of
locations (l1, l2) in A:

Rv(l1, l2) ⇐⇒ l1 and l2 are stored in same location in A′

We say that an occupancy vector v is valid for an array A with respect
to a given schedule Θ if transforming A under v everywhere in the
program does not change the semantics when the program is executed
according to Θ.

Given an occupancy vector, we implement the storage transforma-
tion using the technique of [17] in which the original data space is
projected onto the hyperplane perpendicular to the occupancy vector.
If an occupancy vector intersects multiple (integral) points of the data
space, then modulation must be used to distinguish these points in the
transformed array.

Occupancy vector transformations are useful for reducing storage re-
quirements when many of the values stored in the array are temporary.
Generally, shorter occupancy vectors lead to smaller storage require-
ments because more elements of the original array are coalesced into
the same storage location. However, the shape of the array also has the
potential to influence the transformed storage requirements. Through-
out this paper, we assume that the shapes of arrays have second-order
effects on storage requirements, and we refer to the “best” occupancy
vector as that which is the shortest.

We are now in a position to consider our occupancy vector analysis
as applied to Example 1. First, assume that we have chosen to execute
each row in parallel so as to have the shortest schedule. What is the best
storage mapping for this schedule? Our method can identify (0, 1) as
the shortest occupancy vector for this schedule (see Figure 3), yielding
the code in Figure 2.

Secondly, consider the case where we become interested in adding
some flexibility to our scheduling. If we lengthen the occupancy vector
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Fig. 5. Iteration space diagram for Example 1. Here the hollow arrow denotes
an Affine Occupancy Vector that is valid for all legal affine schedules. The
gray region indicates the slopes at which a legal affine schedule can sweep
across the iteration domain.

A[] = new int[2*n+m]
...
for j = 1 to m

for i = 1 to n
A[2*i-j+m] = f(A[2*(i-2)-(j-1)+m],

A[2*i-(j-1)+m],
A[2*(i+1)-(j-1)+m])

Fig. 6. Transformed code for Example 1. The AOV is (1,2).

to (0, 2), what is the range of schedules that we can consider? As il-
lustrated in Figure 4, our method can identify all legal affine schedules
for the occupancy vector of (0, 2). We could then use affine scheduling
techniques [7] to choose amongst these schedules according to other
criteria.

3.3 Affine occupancy vectors

Finally, we might inquire as to the shortest occupancy vector that is
valid for all affine schedules in Example 1. An affine schedule is one
where each dynamic instance of a statement is executed at a time that
is an affine expression of the loop indices, loop bounds, and compile-
time constants. To address the problem, then, we need the notion of
an Affine Occupancy Vector:

Definition 1 An occupancy vector v for array A is an Affine Occu-
pancy Vector (AOV) if it is valid with respect to every affine schedule
Θ that respects the schedule constraints of the original program.

Note that, in contrast to the Universal Occupancy Vector of [17], an
AOV need not be valid for all schedules; rather, it only must be valid
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for affine ones. Almost all the instruction schedules found in practice
are affine, since any FOR loop with constant increment and bounds
defines a schedule that is affine in its loop indices. (This is independent
of the array references found in practice, which are sometimes non-
affine.) In this paper, we further relax the definition of an AOV to
those occupancy vectors which are valid for all one-dimensional1 affine
schedules.

We also observe that, if tiling is legal in the original program, then
tiling is legal after transforming each array in the program under one
of its AOV’s. This follows from the fact that two loops are tilable if and
only if they can be permuted without affecting the semantics of the pro-
gram [10]. Since each permutation of the loops corresponds to a given
affine schedule and the AOV is valid with respect to both schedules,
the AOV transformation is also valid with respect to a tiled schedule.

Returning to our example, we find using our method that (1, 2) is
a valid AOV (see Figure 5). Any affine one-dimensional schedule that
respects the dependences in the original code will give the same result
when executed with the transformed storage.

4 The Method

4.1 Notation

We adopt the following notation:

– An iteration vector i contains the values of surrounding loop indices
at a given point in the execution of the program.

– The structural parameters n, of domain N , represent loop bounds
and other parameters that are unknown at compile time, but that
are fixed for any given execution of the program.

– There are ns statements S1 . . . Sns in the program. Each statement
S has an associated polyhedral domain DS , such that ∀i ∈ DS ,
there is a dynamic instance S(i) of statement S at iteration i during
the execution of the program.

– With each statement S is associated a scheduling function θS which
maps the instance of S on iteration i to a scalar execution time. By
assumption, θS is an affine function of the iteration vector and the

1 A one-dimensional affine schedule assigns a scalar execution time to each
operation as an affine function of the enclosing loop indices and sym-
bolic constants. Multi-dimensional schedules assign vector-valued execu-
tion times, which are ordered lexicographically; certain programs require
multi-dimensional schedules. See [7, 8, 4] for details.
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structural parameters: θS(i, n) = aS · i + bS ·n + cS . The schedule
for the entire program is denoted by Θ ∈ E , where E is the space of
all the scheduling parameters (aS1 , bS1 , cS1), . . . , (aSns

, bSns
, cSns

).
– There are np dependences P1 . . . Pnp in the program. Each depen-

dence Pj is a 4-tuple (Rj , Tj,Pj , hj) where Rj and Tj are state-
ments, hj is a vector-valued affine function, and Pj ⊆ DRj is a
polyhedron such that:

∀i ∈ Pj , Rj(i) depends on Tj(hj(i, n)) (1)

The dependences Pj are determined using an array dataflow anal-
ysis, e.g., [6] or the Omega test [15].

– There are na arrays A1 . . . Ana in the program, and A(S) denotes
the array assigned to by statement S. Our assumption that the
data space corresponds with the iteration space implies that for all
statements S, S(i) writes to location i of A(S), and S is the only
statement writing to A. However, each array A may still appear on
the right hand side of any number of statements, where its indices
can be arbitrary affine expressions of i and n.

– With each array A we will associate an occupancy vector vA that
specifies the storage reuse within A. The locations l1 and l2 in the
original data space of A will be stored in the same location following
our storage transform if and only if l1 = l2+k∗vA, for some integer
k. Given our assumption about the data space, we can equivalently
state that the values produced by iterations i1 and i2 will be stored
in the same location following our storage transform if and only if
i1 = i2 + k ∗ vA, for some integer k.

4.2 Schedule constraints

According to dependence Pj (Equation (1)), for any value of i in Pj ,
operation Rj(i) depends on the execution of operation Tj(hj(i, n)).
Therefore, in order to preserve the semantics of the original program,
in any new order of the computations, Tj(hj(i, n)) must be scheduled
at a time strictly earlier than Rj(i), for all i ∈ Pj . We express this
constraint in terms of the scheduling function. We must have, for each
dependence Pj , j ∈ [1, np]:

∀n ∈ N , ∀i ∈ Pj , θRj (i, n) − θTj (hj(i, n), n) − 1 ≥ 0 (2)

These dependence constraints can be solved using Farkas’ lemma as
shown by Feautrier [7, 8, 4]. The result can be expressed as a polyhe-
dron R: the set of all the legal schedules Θ in the space of scheduling
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parameters E . Note that Equation (2) does not always have a solution
[7]. In such a case, one needs to use multidimensional schedules [8].
However, in this paper, we assume that Equation (2) has a solution.

Refer to Section 5.1 for an example of the schedule constraints.

4.3 Storage constraints

The occupancy vectors induce some storage constraints. We consider
any array A. Because we assume that the data space corresponds with
the iteration space, and by definition of the occupancy vectors, the val-
ues computed by iterations i and i + vA are both stored in the same
location l. For an occupancy vector vA to be valid for a given data
object A, every operation depending on the value stored at location l
by iteration i must execute no later than iteration i + vA stores a new
value at location l. Otherwise, following our storage transformation, a
consumer expecting to reference the contents of l produced by iteration
i could reference the contents of l written by iteration i + vA instead,
thereby changing the semantics of the program. We assume that, at a
given time step, all the reads precede the writes, such that an operation
consuming a value can be scheduled for the same execution time as an
operation overwriting the value. (This choice is arbitrary and unimpor-
tant to the method; under the opposite assumption, we would instead
require that the consumer execute at least one step before its value is
overwritten.)

Let us consider a dependence P = (R, T, h,P). Then operation
T (h(i, n)) produces a value which will be later on read by R(i). This
value will be overwritten by T (h(i, n)+vA(T )). The storage constraint
imposes that T (h(i, n) + vA(T )) is scheduled no earlier than R(i).
Therefore, any schedule Θ and any occupancy vector vA(T ) respects
the dependence P if:

∀n ∈ N , ∀i ∈ Z, θT (h(i, n) + vA(T ), n) − θR(i, n) ≥ 0 (3)

where Z represents the domain over which the storage constraint ap-
plies. That is, the storage constraint applies for all iterations i where i is
in the domain of the dependence, and where h(i, n)+vA(T ) is in the do-
main of statement T . Formally, Z = {i | i ∈ P∧h(i, n)+vA(T ) ∈ DT }.
This definition of Z is not problematic, since the intersection of two
polyhedra is defined simply by the union of the affine inequalities de-
scribing each, which obviously is a polyhedron. Note, however, that Z
is parameterized by both vA(T ) and n, and not simply by n.

Equation (3) expresses the constraint on an occupancy vector for
a given dependence and a given schedule. For an occupancy vector to
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be an AOV, however, it must respect all dependences across all legal
schedules. Thus, the following constraint defines a valid AOV vA for
each object A in the program:

∀Θ ∈ R, ∀n ∈ N , ∀j ∈ [1, np], ∀i ∈ Zj ,

θTj (hj(i, n) + vA(Tj), n) − θRj (i, n) − 1 ≥ 0 (4)

See Section 5.1 for an illustration of the storage constraints.

4.4 Linearizing the constraints

Equations (3) and (4) represent a possibly infinite set of constraints,
because of the parameters. Therefore, we need to rewrite them so as to
obtain an equivalent but finite set of affine equations and inequalities,
which we can easily solve. Meanwhile, we seek to express the schedule
(2) and storage (4) constraints in forms affine in the scheduling param-
eters Θ. This step is essential for constructing a linear program that
minimizes the length of the AOV’s.

Section 5.2 contains an illustrative example of the constraint lin-
earization.

Reduction using the vertices of polyhedra Any nonempty poly-
hedron is fully defined by its vertices, rays and lines [16], which can be
computed even in the case of parameterized polyhedra [13]. The fol-
lowing theorem explains how we can use these vertices, rays and lines
to reduce the size of our sets of constraints.

Theorem 1. Let D be a nonempty polyhedron. D can be written D =
P + C, where P is a polytope (bounded polyhedron) and C is a cone.
Then any affine function h defined over D is nonnegative on D if and
only if 1) h is nonnegative on each of the vertices of P and 2) the linear
part of h is nonnegative (resp. null) on the rays (resp. lines) of C.

Although the domain of structural parameters N is an input of
this analysis and may be unbounded, all the polyhedra produced by
the dependence analysis of programs are in fact polytopes, or bounded
polyhedra. Therefore, in order to simplify the equations, we now as-
sume that all the polyhedra we manipulate are polytopes, except when
stated otherwise. Then, according to Theorem 1, an affine function is
nonnegative on a polyhedron if and only if it is nonnegative on the ver-
tices of this polyhedron. We successively use this theorem to eliminate
the iteration vector and the structural parameters from Equation (3).
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Eliminating the tteration vector Let us consider any fixed values
of Θ in R and n in N . Then, for all j ∈ [1, np], vA(Tj) must satisfy:

∀i ∈ Zj , θTj (hj(i, n) + vA(Tj), n) − θRj (i, n) − 1 ≥ 0 (5)

which is an affine inequality in i (as hj , θTj , and θRj are affine func-
tions). Thus, according to Theorem 1, it takes its extremal values on
the vertices of the polytope Zj , denoted by z1,j , . . . , znz,j . Note that Zj

is parameterized by n and vA(Tj). Therefore, the number of its vertices
might change depending on the domain of values of n and vA(Tj). In
this case we decompose the domains of n and vA(Tj) into subdomains
over which the number and definition of the vertices do not change [13],
we solve our problem on each of these domains, and we take the “best”
solution.

Thus, we evaluate (5) at the extreme points of Zj , yielding the
following:

∀k ∈ [1, nz], θTj (hj(zk,j(vA(Tj), n), n) + vA(Tj), n)

−θRj (zk,j(vA(Tj), n), n) − 1 ≥ 0
(6)

According to Theorem 1, Equations (5) and (6) are equivalent. How-
ever, we have replaced the iteration vector i with the vectors zk,j , each
of which is an affine form in n and vA(Tj).

Eliminating the structural parameters Suppose N is also a bound-
ed polyhedron. We eliminate the structural parameters the same way
we eliminated the iteration vector: by only considering the extremal
vertices of their domain N . Thus, for any fixed value of Θ in R, j in
[1, np], and k in [1, nz] we must have:

∀n ∈ N , θTj (hj(zk,j(vA(Tj), n), n) + vA(Tj), n)

−θRj (zk,j(vA(Tj), n), n) − 1 ≥ 0
(7)

Denoting the vertices of N by (w1, . . . , wnw), the above equation is
equivalent to:

∀l ∈ [1, nw], θTj (hj(zk,j(vA(Tj), wl), wl) + vA(Tj), wl)

−θRj(zk,j(vA(Tj), wl), wl) − 1 ≥ 0
(8)

Case of unbounded domain of parameters. It might also be the case
that N is not a polytope but an unbounded polyhedron, perhaps cor-
responding to a parameter that is input from the user and can be
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arbitrarily large. In this case, we use the general form of Theorem 1.
Let r1, . . . , rnr be the rays defining the unbounded portion of N (a line
being coded by two opposite rays). We must ensure that the linear part
of Equation (8) is nonnegative on these rays. For example, given a sin-
gle structural parameter n1 ∈ [5,∞), we have the following constraint
for the vertex n1 = 5:

θTj (hj(zk,j(vA(Tj), 5), 5) + vA(Tj), 5)

−θRj(zk,j(vA(Tj), 5), 5) − 1 ≥ 0

and the following constraint for the positive ray of value 1:

θTj (hj(zk,j(vA(Tj), 1), 1) + vA(Tj), 1)

−θRj (zk,j(vA(Tj), 1), 1)

−θTj (hj(zk,j(vA(Tj), 0), 0) + vA(Tj), 0)

+θRj (zk,j(vA(Tj), 0), 0) ≥ 0

(9)

Though this equation may look complicated, in practice it leads to
simple formulas since all the constant parts of Equation (7) are going
away. We assume in the rest of this paper that N is a polytope. This
changes nothing in our method, but greatly improves the readability of
the upcoming systems of constraints!

4.5 Finding a solution

After removing the structural parameters, we are left with the following
set of storage constraints:

∀j ∈ [1, np], ∀k ∈ [1, nz], ∀l ∈ [1, nw],
θTj (hj(zk,j(vA(Tj), wl), wl) + vA(Tj), wl)

−θRj (zk,j(vA(Tj), wl), wl) − 1 ≥ 0

(10)

which is a set of affine inequalities in the coordinates of the schedule Θ,
with the occupancy vectors vA(Tj) as unknowns. Note that the vertices
zk,j of the iteration domain, the vertices wl of the structural parame-
ters, and the components hj of the affine functions, all have fixed and
known values.

Similarly, we can linearize the schedule constraints to arrive at the
following equations:

∀j ∈ [1, np], ∀k ∈ [1, ny], ∀l ∈ [1, nw],
θRj (yk,j(wl), wl) − θTj (hj(yk,j(wl), wl), wl) − 1 ≥ 0

(11)

Where y1,j , . . . , yny,j denote the vertices of Pj .
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Finding an occupancy vector given a schedule At this point we
have all we need to determine which occupancy vectors (if any) are
valid for a given schedule Θ: we simply substitute into the simplified
storage constraints (10) the value of the given schedule. Then we obtain
a set of affine inequalities where the only unknowns are the components
of the occupancy vector. This system of constraints fully and exactly
defines the set of the occupancy vectors valid for the given schedule.
We can search this space for solutions with any Linear Programming
solver.

To find the shortest occupancy vectors, we can use as our objec-
tive function the sum of the lengths2 of the components of the occu-
pancy vector. This metric minimizes the “Manhattan” length of each
occupancy vector instead of minimizing the Euclidean length. However,
minimizing the Euclidean length would require a non-linear objective
function.

We improve our heuristic slightly by minimizing the difference be-
tween the lengths of the occupancy vector components as a second-
order term in the objective function. That is, the objective function
is

obj(v) = k ∗
dim(v)∑

i=1

|vi| +
dim(v)∑

i=1

dim(v)∑
j=1

|vi − vj |

where k is large enough that the first term dominates, thereby select-
ing our vector first by the length of its components and then by the
distribution of those lengths across its dimensions (a more “even” distri-
bution having a shorter Euclidean distance.) It has been our experience
that this linear objective function also finds the occupancy vector of
the shortest Euclidean distance.

For an example of this procedure, refer to Section 5.1.

Finding a schedule given an occupancy vector At this point, we
also have all we need to determine which schedules (if any) exist for
a given set of occupancy vectors. Given an occupancy vector vA for
each array A in the program, we substitute into the linearized storage
constraints (10) to obtain a set of inequalities where the only unknowns
are the scheduling parameters. These inequalities, in combination with
the linearized schedule constraints (11) completely define the space of
valid affine schedules valid for the given occupancy vectors. Once again,

2 To minimize |x|, set x = w − z, w ≥ 0, z ≥ 0, and then minimize w + z.
Either w or z will be zero in the optimum, leaving w + z = |x|.
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A[][] = new int[n][m]
B[][] = new int[n][m]
...
for i = 1 to n

for j = 1 to m
A[i][j] = f(B[i-1][j]) (S1)
B[i][j] = g(A[i][j-1]) (S2)

Fig. 7. Original code for Example 2.

j

i s2
s1

Fig. 8. Dependence diagram for Example 2.

we can search this space for solutions with any Linear Programming
solver, selecting the “best” schedule as in [7].

See Section 5.1 for an example.

Finding the AOV’s Solving for the AOV’s is more involved (follow
Section 5.1 for an example.) To find a set of AOV’s, we need to satisfy
the storage constraints (10) for any value of the schedule Θ within the
polyhedron R defined by the schedule constraints. To do this, we apply
the Affine Form of Farkas’ Lemma [16, 7, 4].

Theorem 2. (Affine Form of Farkas’ Lemma) Let D be a nonempty
polyhedron defined by p affine inequalities

aj · x + bj ≥ 0, j ∈ [1, p],

in a vector space E. Then an affine form Ψ is nonnegative everywhere in
D if and only if it is an affine combination of the affine forms defining
D:

∀x ∈ E , Ψ(x) ≡ λ0 +
∑

j

(λj(aj · x + bj)), λ0 . . . λp ≥ 0

The nonnegative constants λj are referred to as Farkas multipliers.
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A[] = new int[m+n]
B[] = new int[m+n]
...
for i = 1 to n

for j = 1 to m
A[i-j+m] = f(B[(i-1)-j+m]) (S1)
B[i-j+m] = g(A[i-(j-1)+m]) (S2)

Fig. 9. Transformed code for Example 2. Each array has an AOV of (1,1).

To apply the lemma, we note that the storage constraints are affine in-
equalities in Θ which are nonnegative over the polyhedron R. Thus, we
can express each storage constraint as a nonnegative affine combination
of the schedule constraints defining R.

To simplify our notation, let STORAGE be the set of expressions
that are constrained to be nonnegative by the linearized storage con-
straints (10). That is, STORAGE contains the left hand side of each
inequality in (10). Naively, |STORAGE| = np × nz × (nw + nr); how-
ever, several of these expressions might be equivalent, thereby reducing
the size of STORAGE in practice.

Similarly, let SCHEDULE be the set of expressions that are con-
strained to be nonnegative by the linearized schedule constraints (11).
The size of SCHEDULE is at most np × ny × (nw + nr).

Then, the application of Farkas’ Lemma yields these identities across
the vector space E of scheduling parameters in which Θ lives:

STORAGEi(x) = λi,0 +
|SCHEDULE|∑

j=1

(λi,j · SCHEDULEj(x))

λi,j ≥ 0, ∀x ∈ E , ∀i ∈ [1, |STORAGE|]
These equations are valid over the whole vector space E . Therefore,

we can collect the terms for each of the components of x, as well as the
constant terms, setting equal the respective coefficients of these terms
from opposite sides of a given equation (cf. [7, 4] for full details). We
are left with |STORAGE| × (3 × ns + 1) linear equations where the
only variables are the λ’s and the occupancy vectors vA.

The set of valid AOV’s is completely and exactly determined by this
set of equations and inequalities. To find the shortest AOV, we proceed
as in Section 4.5.

5 Examples

We present four examples to illustrate applications of the method de-
scribed above.
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5.1 Example 1: Simple Stencil

First we derive the solutions presented earlier for the 3-point stencil in
Example 1.

Constraints Let θ denote the scheduling function for the statement
writing to array A. We assume that θ is an affine form as follows:

θ(i, j, n, m) = a ∗ i + b ∗ j + c ∗ n + d ∗ m + e

There are three dependences in the stencil, each from the statement
unto itself. The access functions describing the dependences are h1(i, j, n, m) =
(i−2, j−1), h2(i, j, n, m) = (i, j−1), and h3(i, j, n, m) = (i+1, j−1).
Because these dependences are uniform–that is, they do not depend on
the iteration vector–we can simplify our analysis by considering the de-
pendence domains to be across all values of i and j. Thus, the schedule
constraints are:

θ(i, j, n, m) − θ(i − 2, j − 1, n, m) − 1 ≥ 0
θ(i, j, n, m) − θ(i, j − 1, n, m) − 1 ≥ 0
θ(i, j, n, m) − θ(i + 1, j − 1, n, m) − 1 ≥ 0

However, substituting the definition of θ into these equations, we find
that i, j, n, and m are eliminated. This is because the constraints are
uniform. Thus, we obtain the following simplified schedule constraints,
which are affine in the scheduling parameters:

2 ∗ a + b − 1 ≥ 0
b − 1 ≥ 0
−a + b − 1 ≥ 0

Now let vA = (vi, vj) denote the AOV that we are seeking for array A.
Then the storage constraints are as follows:

θ(i − 2 + vi, j − 1 + vj , n, m) − θ(i, j, n, m) ≥ 0
θ(i + vi, j − 1 + vj , n, m) − θ(i, j, n, m) ≥ 0
θ(i + 1 + vi, j − 1 + vj , n, m) − θ(i, j, n, m) ≥ 0

Simplifying the storage constraints as we did the schedule constraints,
we obtain the linearized storage constraints:

a ∗ vi + b ∗ vj − 2 ∗ a − b ≥ 0
a ∗ vi + b ∗ vj − b ≥ 0
a ∗ vi + b ∗ vj + a − b ≥ 0
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imax = a.length
jmax = b.length
kmax = c.length
D[][][] = new int[imax][jmax][kmax]
...
for i = 1 to imax

for j = 1 to jmax
for k = 1 to kmax
if (i==1) or (j==1) or (k==1) then

D[i][j][k] = f(i,j,k) (S1)
else

D[i][j][k] = (S2)
min(D[i-1][j-1][k-1] + w(a[i],b[j],c[k]),

D[i][j-1][k-1] + w(GAP,b[j],c[k]),
D[i-1][j][k-1] + w(a[i],GAP,c[k]),
D[i-1][j-1][k] + w(a[i],b[j],GAP),
D[i-1][j][k] + w(a[i],GAP,GAP),
D[i][j-1][k] + w(GAP,b[j],GAP),
D[i][j][k-1] + w(GAP,GAP,c[k]))

Fig. 10. Original code for Example 3, for multiple sequence alignment. Here
f computes the initial gap penalty and w computes the pairwise alignment
cost.

Finding an occupancy vector To find the shortest occupancy vec-
tor for the schedule that executes the rows in parallel, we substitute
θ(i, j, n, m) = j into the linearized schedule and storage constraints.
Minimizing |vi + vj | with respect to these constraints gives the occu-
pancy vector of (0, 1) (see Figure 3).

Finding a schedule To find the set of schedules that are valid for the
occupancy vector of (0, 2), we substitute vi = 0 and vj = 2 into the
linearized schedule and storage constraints. Simplifying the resulting
constraints yields:

b ≥ 1 − 2 ∗ a
b ≥ 1 + a
b ≥ 2 ∗ a

Inspection of these inequalities reveals that the ratio a/b has a minimum
value of −1/2 and a maximum value that asymptotically approaches
1/2, thus corresponding to the set of legal affine schedules depicted in
Figure 5 (note that in the frame of the figure, however, the schedule’s
slope is −a/b.)

Finding an AOV To find an AOV for A, we apply Farkas’ Lemma
to rewrite each of the linearized storage constraints as a non-negative
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imax = a.length
jmax = b.length
kmax = c.length
D[][] = new int[imax+jmax][imax+kmax]
...
for i = 1 to imax

for j = 1 to jmax
for k = 1 to kmax
if (i==1) or (j==1) or (k==1) then

D[jmax+i-j][kmax+i-k] = f(i,j,k) (S1)
else

D[jmax+i-j][kmax+i-k] = (S2)
min(D[jmax+(i-1)-(j-1)][kmax+(i-1)-(k-1)] + w(a[i],b[j],c[k]),

D[jmax+i-(j-1)][kmax+i-(k-1)] + w(GAP,b[j],c[k]),
D[jmax+(i-1)-j][kmax+(i-1)-(k-1)] + w(a[i],GAP,c[k]),
D[jmax+(i-1)-(j-1)][kmax+(i-1)-k] + w(a[i],b[j],GAP),
D[jmax+(i-1)-j][kmax+(i-1)-k] + w(a[i],GAP,GAP),
D[jmax+i-(j-1)[kmax+i-k] + w(GAP,b[j],GAP),
D[jmax+i-j][kmax+i-(k-1)] + w(GAP,GAP,c[k]))

Fig. 11. Transformed code for Example 3, using the AOV of (1,1,1). The new
array has dimension [imax+jmax][imax+kmax], with each reference to [i][j][k]
mapped to [jmax+i-j][kmax+i-k].

affine combination of the linearized schedule constraints:




a ∗ vi + b ∗ vj − 2 ∗ a − b
a ∗ vi + b ∗ vj − b

a ∗ vi + b ∗ vj + a − b


 =




λ1,1 λ1,2 λ1,3 λ1,4

λ2,1 λ2,2 λ2,3 λ2,4

λ3,1 λ3,2 λ3,3 λ3,4







1
2 ∗ a + b − 1

b − 1
−a + b − 1




λi,j ≥ 0, ∀i ∈ [1, 3], ∀j ∈ [1, 4]

Minimizing |vi+vj| subject to these constraints yields an AOV (vi, vj) =
(1, 2), which is smaller than the shortest UOV of (0, 3) [17].

To transform the data space of array A according to this AOV v,
we follow the approach of [17] and project the original data space onto
the line perpendicular to v. Choosing v⊥ = (2,−1) so that v · v⊥ = 0,
we transform the original indices of (i, j) into v⊥ · (i, j) = 2 ∗ i − j.
Finally, to ensure that all data accesses are non-negative, we add m
to the new index, such that the final transformation is from A[i][j] to
A[2∗ i− j+m]. Thus, we have reduced storage requirements from n∗m
to 2∗n+m. The modified code corresponding to this mapping is shown
in Figure 6.
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A[][] = new int[n][m]
B[] = new int[n]
...
for i = 1 to n

for j = 1 to n
A[i][j] = B[i-1]+j (S1)

B[i] = A[i][n-i] (S2)

Fig. 12. Original code for Example 4.

5.2 Example 2: Two-statement stencil

We now consider an example adapted from [12] where there is a uni-
form dependence between statements in a loop (see Figures 7 and 8).
Letting θ1 and θ2 denote the scheduling functions for statements 1 and
2, respectively, we have following schedule constraints:

θ1(i, j, n, m) − θ2(i − 1, j, n, m) − 1 ≥ 0
θ2(i, j, n, m) − θ1(i, j − 1, n, m) − 1 ≥ 0

and the following storage constraints:

θ2(i − 1 + vB,i, j + vB,j , n, m) − θ1(i, j, n, m) ≥ 0
θ1(i + vA,i, j − 1 + vA,j , n, m) − θ2(i, j, n, m) ≥ 0

We now demonstrate how to linearize the schedule constraints. We
observe that the polyhedral domain of the iteration parameters (i, j)
has vertices at (1, 1), (n, 1), (1, m), (n, m), so we evaluate the schedule
constraints at these points to eliminate (i, j):

θ1(1, 1, n, m) − θ2(0, 1, n, m) − 1 ≥ 0
θ2(1, 1, n, m) − θ1(1, 0, n, m) − 1 ≥ 0
θ1(n, 1, n, m) − θ2(n − 1, 1, n, m)− 1 ≥ 0
θ2(n, 1, n, m) − θ1(n, 0, n, m)− 1 ≥ 0
θ1(1, m, n, m) − θ2(1 − 1, m, n, m)− 1 ≥ 0
θ2(1, m, n, m) − θ1(1, m − 1, n, m)− 1 ≥ 0
θ1(n, m, n, m) − θ2(n − 1, m, n, m) − 1 ≥ 0
θ2(n, m, n, m) − θ1(n, m − 1, n, m) − 1 ≥ 0

Next, we eliminate the structural parameters (n, m). Assuming n
and m are positive but arbitrarily large, the domain of these parameters
is an unbounded polyhedron:
(n, m) = (1, 1) + j ∗ (0, 1) + k ∗ (1, 0), for positive integers j and k.
We must evaluate the above constraints at the vertex (1, 1), as well as
the linear part of the constraints for the rays (1, 0) and (0, 1). Doing
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j

i s2
s1

Fig. 13. Dependence diagram for Example 4.

A[] = new int[n]
B = new int
...
for i = 1 to n

for j = 1 to n
A[i] = B+j (S1)

B = A[i] (S2)

Fig. 14. Transformed code for Example 4. The AOV’s for A and B are (1,0)
and 1, respectively.

so yields 24 equations, of which we show the first 3 (which result from
substituting into the first of the equations above):

θ1(1, 1, 1, 1)− θ2(0, 1, 1, 1)− 1 ≥ 0
θ1(1, 1, 1, 0)− θ2(0, 1, 1, 0)− θ1(1, 1, 0, 0) + θ2(0, 1, 0, 0) ≥ 0
θ1(1, 1, 0, 1)− θ2(0, 1, 0, 1)− θ1(1, 1, 0, 0) + θ2(0, 1, 0, 0) ≥ 0

Expanding the scheduling functions as θx(i, j, n, m) = ax + bx ∗ i + cx ∗
j + dx ∗ n + ex ∗m, the entire set of 24 equations can be simplified to:

d1 = d2

e1 = e2

a1 + b1 + c1 − a2 − c2 + (b1 − b2)n − 1 ≥ 0
a1 + 2b1 + c1 − a2 − b2 − c2 − 1 ≥ 0
a2 + b2 + 2c2 − a1 − b1 − c1 − 1 ≥ 0
a2 + 2c2 − a1 − c1 + (b2 − b1)n − 1 ≥ 0

These equations constitute the linearized schedule constraints. In a
similar fashion, we could linearize the storage constraints, and then
apply Farkas’ lemma to find the shortest AOV’s of vA = vB = (1, 1).
Due to space limitations, we do not derive the entire solution here.
The code that results after transformation by these AOV’s is shown in
Figure 9.
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5.3 Example 3: Multiple sequence alignment

We now consider a version of the Needleman-Wunch sequence align-
ment algorithm [14] to determine the cost of the optimal global align-
ment of three strings (see Figure 10). The algorithm utilizes dynamic
programming to determine the minimum-cost alignment according to
a cost function w that specifies the cost of aligning three characters,
some of which might represent gaps in the alignment.

Using θ1 and θ2 to represent the scheduling functions for statements
1 and 2, respectively, we have the following schedule constraints (we
enumerate only three constraints for each pair of statements since the
other dependences follow by transitivity):

θ2(i, j, k, x, y, z)− θ1(i − 1, j, k, x, y, z)− 1 ≥ 0
for i = 2, j ∈ [2, y], k ∈ [2, z]

θ2(i, j, k, x, y, z)− θ1(i, j − 1, k, x, y, z)− 1 ≥ 0
for i ∈ [2, x], j = 2, k ∈ [2, z]

θ2(i, j, k, x, y, z)− θ1(i, j, k − 1, x, y, z)− 1 ≥ 0
for i ∈ [2, x], j ∈ [2, y], k = 2

θ2(i, j, k, x, y, z)− θ2(i − 1, j, k, x, y, z)− 1 ≥ 0
for i ∈ [3, x], j ∈ [2, y], k ∈ [2, z]

θ2(i, j, k, x, y, z)− θ2(i, j − 1, k, x, y, z)− 1 ≥ 0
for i ∈ [2, x], j ∈ [3, y], k ∈ [2, z]

θ2(i, j, k, x, y, z)− θ2(i, j, k − 1, x, y, z)− 1 ≥ 0
for i ∈ [2, x], j ∈ [2, y], k ∈ [3, z]

Note that each constraint is restricted to the subset of the iteration
domain under which it applies. That is, S2 depends on S1 only when
i, j, or k is equal to 2; otherwise, S2 depends on itself. This exam-
ple illustrates the precision of our technique for general dependence
domains.

The storage constraints are as follows:

θ2(i − 1 + vi, j + vj , k + vk, x, y, z) − θ2(i, j, k, x, y, z) ≥ 0
for i ∈ [3, x], j ∈ [2, y], k ∈ [2, z]
θ2(i + vi, j − 1 + vj , k + vk, x, y, z) − θ2(i, j, k, x, y, z) ≥ 0
for i ∈ [2, x], j ∈ [3, y], k ∈ [2, z]
θ2(i + vi, j + vj , k − 1 + vk, x, y, z) − θ2(i, j, k, x, y, z) ≥ 0
for i ∈ [2, x], j ∈ [2, y], k ∈ [3, z]

There is no storage constraint corresponding to the dependence of
S2 on S1 because the domain Z of the constraint is empty for occu-
pancy vectors with positive components, and occupancy vectors with
a non-positive component do not satisfy the above constraints. That
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is, for the first dependence of S2 on S1, the dependence domain is
P = {(2, j, k) | j ∈ [2, y] ∧ k ∈ [2, z]} while the existence domain
of S1 is DS1 = {(i, j, k) | i ∈ [1, x] ∧ j ∈ [1, y] ∧ k ∈ [1, z] ∧ (i =
1 ∨ j = 1 ∨ k = 1)}. Then, the domain of the first storage constraint
is Z = {(i, j, k) | (i, j, k) ∈ P ∧ (i − 1, j, k) + vA ∈ DS1}. Now, Z is
empty given that vA has positive components, because if (i, j, k) ∈ P
then i = 2, but if (i − 1, j, k) + vA ∈ DS1 then i − 1 + vA,i = 1, or
equivalently i + vA,i = 2. Thus for Z to be non-empty, we would have
2 + vA,i = 2, which contradicts the positivity assumption on vA,i. The
argument is analogous for other dependences of S2 on S1.

Applying our method for this example yields an AOV of (1, 1, 1).
The transformed code under this occupancy vector is just like the orig-
inal, except that the array is of dimension [imax+jmax][imax+kmax]
and element [i][j][k] is mapped to [jmax+i-j][kmax+i-k].

5.4 Example 4: Non-uniform dependences

Our final example is constructed to demonstrate the application of
our method to non-uniform dependences (see Figures 12 and 13). Let
θ1 and θ2 denote the scheduling functions for statements S1 and S2,
respectively. Then we have the following schedule constraints:

θ1(i, j, n) − θ2(i − 1, n) − 1 ≥ 0
θ2(i, n) − θ1(i, n − i, n) − 1 ≥ 0

and the following storage constraints:

θ2(i − 1 + vB, n) − θ1(i, j, n) ≥ 0
θ1(i + vA,i, n − i + vA,j , n) − θ2(i, n) ≥ 0

Applying our method to these constraints yields the AOV’s vA = (1, 0)
and vB = 1. The transformed code is shown in Figure 14.

6 Experiments

We performed preliminary experiments that validate our technique as
applied to two of our examples. The tests were carried out on an SGI
Origin 2000, which uses MIPS R10000 processors with 4MB L2 caches.

For Example 2, the computation was divided into diagonal strips.
Since there are no data dependences between strips, the strips can
be assigned to processors without requiring any synchronization [12].
Figure 15 shows the speedup gained on varying numbers of processors
using both the original and the transformed array. Both versions show
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Fig. 15. Speedup vs. number of processors for Example 2.
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Fig. 16. Speedup vs. number of processors for Example 3.

the same trend and do not significantly improve past 16 processors, but
the transformed code has an advantage by a sizable constant factor.

Example 3 was parallelized by blocking the computation, and as-
signing rows of blocks to each processor. As shown in Figure 16, the
transformed code again performs substantially better than the original
code. With the reduced working set of data in the transformed code,
the speedup is super-linear in the number of processors due to improved
caching.
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7 Related work

The work most closely related to ours is that of [17], which consid-
ers schedule-independent storage mappings using the Universal Occu-
pancy Vector (UOV). While an AOV is valid only for affine schedules,
a UOV is valid for any legal execution ordering. Consequently, some-
times there exist AOV’s that are shorter than any UOV since the AOV
must be valid for a smaller range of schedules. While the analysis of
[17] is limited to a stencil of dependences involving only one statement
within a perfectly nested loop, our method applies to general affine
dependences across statements and loop nests. Moreover, our frame-
work goes beyond AOV’s to unify the notion of occupancy vectors with
known affine scheduling techniques.

Another related approach to storage management for parallel pro-
grams is that of [3, 2, 11]. Given an affine schedule, [11] optimizes stor-
age first by restricting the size of each array dimension and then by
combining distinct arrays via renaming. This work is extended in [3, 2]
to consider storage mappings for a set of schedules, towards the end of
capturing the tradeoff between parallelism and storage.

However, these techniques utilize a storage mapping where, in an
assignment, each array dimension is indexed by a loop counter and is
modulated independently (e.g. A[i mod n][j mod m]). This is distinct
from the occupancy vector mapping, where the data space of the array
is projected onto a hyperplane before modulation (if any) is introduced.
The former mapping–when applied to all valid affine schedules–does
not enable any storage reuse in Examples 2 and 3, where the AOV did.
However, with a single occupancy vector we can only reduce the dimen-
sionality of an array by one, whereas the other mapping can introduce
constant bounds in several dimensions. In the future, we hope to ex-
tend our method to find multiple occupancy vectors, thereby enabling
storage reuse along multiple array dimensions.

Memory reuse in the context of the polyhedral model is also con-
sidered in [18]. This approach uses yet another storage mapping, which
utilizes array transformations on the data space to achieve the effect of
multiple occupancy vectors applied at once. However, the mapping does
not have any modulation, so it could not duplicate the effect of an oc-
cupancy vector that intersects multiple integral points of the iteration
space. Also, the technique assumes that the schedule is given.
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8 Conclusion

We have presented a mathematical framework that unifies the tech-
niques of affine scheduling and occupancy vector analysis. Within this
framework, we showed how to determine a good storage mapping for
a given schedule, a good schedule for a given storage mapping, and a
good storage mapping that is valid for all legal schedules. Our technique
is general and precise, allowing inter-statement affine dependences and
efficiently solving for the shortest occupancy vector using standard nu-
merical programming methods.

We consider this research to be the first step towards automating
a procedure that finds the optimal tradeoff between parallelism and
storage space. This question is very relevant in the context of array
expansion, where the cost of extra array dimensions must be weighed
against the scheduling freedom that they provide. Additionally, our
framework could be applied to single-assignment functional languages
where all storage reuse must be orchestrated by the compiler. In both
of these applications, and even for compiling to uniprocessor systems,
understanding the interplay between scheduling and storage is crucial
for achieving good performance.

However, since finding an exact solution for the “best” occupancy
vector is a very complex problem, our method relies on several assump-
tions to make the problem tractable. We ignore the shape of the data
space and assume that the shortest occupancy vector is the best; fur-
ther, we minimize the Manhattan length of the vector, since minimizing
the Euclidean length is nonlinear. Also, we restrict the input domain to
programs where 1) the data space matches the iteration space, 2) only
one statement writes to each array, 3) the schedule is one-dimensional
and affine, and 4) there is an affine description of the dependences. It
is with these qualifications that our method finds the “best” solution.

In future work, we aim to relax some of the assumptions about the
input domain. Perhaps most relevant is the case of arbitrary affine ref-
erences on the left hand side, since it would not only widen the input
domain, but would allow the reduction of multiple array dimensions
via application of successive occupancy vectors. Many of these exten-
sions are difficult because, in their straightforward formulations, the
constraints become nonlinear. We consider it to be an open question to
formulate these extensions as linear programming problems.

It will also be valuable to consider more general storage mappings.
The occupancy vector method as it stands now can only decrease the
dimensionality of an array by one, and the irregular shape of the re-
sulting data space could be hard to embed in a rectilinear array in a
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storage-efficient way. However, other storage mappings [11, 18] we dis-
cussed also have their limitations. The perfect storage mapping would
allow variations in the number of array dimensions, while still capturing
the directional and modular reuse of the occupancy vector and having
an efficient implementation; it should also lend itself to efficient storage
reuse between distinct arrays.
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Abstract. Existing variable-length instruction formats pro-
vide higher code densities than fixed-length formats, but are
ill-suited to pipelined or parallel instruction fetch and decode.
This paper presents a new variable-length instruction format
that supports parallel fetch and decode of multiple instruc-
tions per cycle, allowing both high code density and rapid exe-
cution for high-performance embedded processors. In contrast
to earlier schemes that store compressed variable-length in-
structions in main memory then expand them into fixed-length
in-cache formats, the new format is suitable for direct execu-
tion from the instruction cache, thereby increasing effective
cache capacity and reducing cache power. The new head-and-
tails (HAT) format splits each instruction into a fixed-length
head and a variable-length tail, and packs heads and tails in
separate sections within a larger fixed-length instruction bun-
dle. The heads can be easily fetched and decoded in parallel
as they are a fixed distance apart in the instruction stream,
while the variable-length tails provide improved code density.
A conventional MIPS RISC instruction set is re-encoded in
a variable-length HAT scheme, and achieves an average static
code compression ratio of 75% and a dynamic fetch ratio (new-
bits-fetched/old-bits-fetched) of 75%.

1 Introduction

Many embedded systems have severe cost, power consumption, and
space constraints. Reducing code size is a critical factor in meeting these
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constraints. Program code is often the largest consumer of memory in
control-intensive applications, affecting both system cost and size. Also,
instruction fetches are responsible for a significant fraction of system
power and memory bandwidth.

Architects of CISC instruction sets had similar motivations for re-
ducing program size and instruction fetch bandwidth, because early
systems had small, slow magnetic core memories with no caches. These
variable-length CISC instructions tend to give greater code density than
fixed-length instructions. However, fixed-length RISC-style instruction
sets became popular after inexpensive DRAMs reduced the cost of main
memory and large semiconductor instruction caches became feasible to
reduce memory bandwidth demands. Fixed-length instructions simplify
high performance implementations because the address of the next in-
struction can be determined before decoding the current instruction
(ignoring branches and other changes in control flow). Therefore, they
allow fetch and decode to be easily pipelined or performed in parallel
for superscalar machines.

Although embedded processors have traditionally had simple single-
issue pipelines, newer designs have deeper pipelines or superscalar issue
[5, 16, 19] to meet higher performance requirements. Fixed-length ISAs
reduce the complexity of pipelined and superscalar fetch and decode,
but incur a significant code size penalty.

In this paper, we present a new heads-and-tails (HAT) format, which
allows compressed variable-length instructions to be held in the cache
yet remain easily indexable for parallel fetch and decode. Therefore, we
take advantage of the high code density of variable-length instructions
while enabling deeply pipelined or superscalar machines.

The paper is structured as follows. In Section 2, we review re-
lated work in instruction compression and superscalar variable-length
instruction decoding. Section 3 gives a general overview of the HAT in-
struction format and describes a straightforward hardware implemen-
tation. In Section 4, we present an example that packs MIPS RISC [12]
instructions into the HAT format using a simple compression scheme.
Using MIPS-HAT as a concrete example, we also describe more so-
phisticated hardware schemes that remove branch penalties. Section 5
presents results for MIPS-HAT using programs taken from the Media-
bench benchmark suite. Section 6 concludes the paper.

2 Related work

The ARM Thumb [18] and MIPS16 [13] instruction sets provide alter-
nate 16-bit versions of the base fixed-length RISC ISA (ARM and MIPS
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respectively) to improve code density. Decompression is a straight-
forward mapping from the short instruction format to the wider in-
struction format in the decode stage of the pipeline. Both ISAs allow
dynamic switching between full-width and half-width instruction for-
mats at subroutine boundaries. The half-width formats reduce static
code size by around 30–40%. However, since they can only encode a
limited subset of operations and operand addressing modes, more dy-
namic instructions are required to execute a given task. The reduced
fetch bandwidth can compensate for the increased instruction count
when running directly from a 16-bit memory system, but for systems
with an instruction cache, performance is reduced by around 20% [18].
Although they are fixed length, the reduced performance makes these
short instruction formats unattractive for a superscalar implementa-
tion, as a simpler approach to boosting performance would be to revert
back to the higher-performing wider format.

An alternative technique that reduces the static code size of a RISC
ISA while allowing parallel fetch and decode is to hold instruction cache
lines compressed in main memory but then expand them into fixed-
length instruction lines when refilling the cache. This idea was intro-
duced with the CCRP scheme [20], and a variety of similar techniques
have subsequently been developed and commercialized [10, 15]. Earlier
techniques developed for VLIW machines [8] only removed NOP fields
within a VLIW instruction, reducing code size to about that of a RISC
ISA. The processor remains unchanged with these techniques, as it sees
regular easy-to-decode fixed-length instructions in the cache. Caching
the uncompressed instructions avoids the additional latency and energy
consumption of the decompression unit on cache hits, but decreases the
effective capacity of the primary cache and increases the energy used
to fetch cached instructions. Cache miss latencies increase for two rea-
sons. First, because the processor uses regular program counter (PC)
addresses to index the cache, cache miss addresses must be translated
through an additional memory-resident lookup table (the Line Address
Table [20]) to locate the corresponding compressed block in main mem-
ory, although a miss address translation cache can be added to reduce
this penalty (the CLB in [20]). Second, the missing block is often en-
coded in a form that must be decompressed sequentially, increasing
refill latency particularly when the requested word is not the first word
in the cache line. For systems with limited memory bandwidth, how-
ever, the compressed format can actually reduce total miss latency by
reducing the amount of data read from memory [20].

Dictionary-based compression schemes have also been used on in-
struction streams, where fixed-length code words in the instruction
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stream point to a dictionary holding commonly occuring instruction
sequences [2, 7, 9]. The program code is scanned to determine the com-
monly occuring strings, which are replaced with codewords pointing
into a dictionary. Branch addresses must also be modified to point
to locations in the compressed instruction stream. The dictionary is
preloaded before program execution starts and forms an additional
component of the process state, although it could potentially be man-
aged as a separate cache. The main advantage of these techniques is
that decompression is just a fast table lookup. On the other hand,
these schemes have several disadvantages. Preloading the table before
each program is executed complicates multi-programmed systems, and
the table fetch adds latency into the instruction pipeline increasing
branch mispredict penalties. Many dictionary schemes interleave vari-
able length code words with uncompressed instructions, severely com-
plicating a highly pipelined or superscalar implementation. Although it
might be possible to have parallel fetch and decode from the sequences
stored in the dictionary, the common strings tend to be short — of-
ten only a single instruction [2, 3, 7]. Dictionary schemes fetch full-size
instructions from the dictionary RAM, which is often comparable in
size to a primary instruction cache, adding additional instruction fetch
energy overhead on top of the fetch of codeword bits from the primary
instruction stream.

Of course, the complexity of dynamically compressing instructions
can be avoided by adopting a more compact base instruction set. Legacy
CISC ISAs, including VAX and x86, provide denser encoding but were
intended for microcoded implementations that interpret the instruc-
tion format sequentially. Parallel fetch and decode is complicated by
the need to examine multiple bytes of an instruction before the start
address of the next sequential instruction is known. Nevertheless, the
economic importance of legacy CISC instruction sets, such as x86, has
resulted in several high-performance superscalar variable-length CISC
designs [1, 4, 6, 11]. These all convert complex variable-length instruc-
tions into fixed-length RISC-like internal “micro-ops”. The Intel P6
microarchitecture can decode three variable-length x86 instructions in
parallel, but the second and third instructions must be simple [6]. The
P6 takes a brute-force strategy by performing speculative decodes at
each byte position, then muxing out the correctly decoded instructions
once the lengths of the first and second instructions are determined
(further described below). The AMD Athlon design predecodes instruc-
tions during cache refill to mark the boundaries between instructions
and the locations of opcodes, but still requires several cycles after in-
struction fetch to scan and align multiple variable-length instructions
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[1]. The Pentium-4 design [4] improves on the P6 family by caching de-
coded fixed-length micro-ops in a trace cache, but similar to the CCRP
scheme, cache hits require full-size fixed-length micro-op fetches and
cache misses have longer latency due to the decoding process.

These legacy CISC ISAs were not designed with parallel fetch and
decode in mind. In this paper, we introduce a new heads-and-tails
(HAT) format designed to support parallel fetch and decode of compact
variable-length instruction sets directly from cache. The HAT format
helps an implementation deliver multiple, variable-sized, randomly-
accessible instruction units to the CPU in a single cycle or alternatively
enables a deeply-pipelined fetch of such units. This capability can be
used in several ways. The HAT format can be used to hold variable-
length instructions generated by other compression schemes, or alterna-
tively hold a new ISA developed to take advantage of the format. The
example evaluated in this paper uses HAT to hold a quickly-decodable
variable-length re-encoding of the MIPS instruction set.

                                bundle #                      instr #

H0   H1    H2    H3    H4    H5    H6         T6         T4         T3          T1         T0

H0   H1    H2    H3    H4                       T4          T3         T2    T1            T0

H0   H1    H2    H3    H4    H5                            T4        T3         T2              T0

unused

             heads

       tails

last instr #

 4

 6

 5

Fig. 1. Overview of heads-and-tails format.

3 Heads and tails format

The HAT format packs multiple variable-length instructions into fixed-
length bundles as shown in Figure 1. The HAT format is used both
in main memory and cache, although additional information might be
added to the cached version to improve performance as described be-
low. A cache line could contain one or more bundles. Bundles contain
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varying numbers of instructions, so each bundle begins with a small
fixed-length field holding the number of the last instruction in the bun-
dle, i.e. a bundle holding N instructions has N − 1 in this field. The
remainder of the bundle is used to hold instructions.

Each instruction is split into a fixed-length head portion and a
variable-length tail portion. The fixed-length heads are packed together
in program order at the start of the bundle, while the variable-length
tails are packed together in reverse program order at the end (i.e., the
first tail is at the end of the bundle). Not all heads necessarily have
a tail, though this can simplify some hardware implementations. The
granularity of the tails is independent of the size of the heads, i.e.,
the heads could be 11-bits long while the tails are multiples of 5 bits,
though there can be hardware advantages to making the head length a
multiple of the tail granularity as discussed below. When packing com-
pressed instructions into bundles, there can be internal fragmentation
if the next instruction doesn’t fit into the remaining space in a bundle,
in which case the space is left empty and a new bundle is started.

The program counter (PC) in a HAT scheme is split into a bun-
dle number held in the high bits and an instruction offset held in the
low bits. During sequential execution, the PC is incremented as usual,
but after fetching the last instruction in a bundle (as given by the in-
struction count stored in the bundle), it will skip to the next bundle
by incrementing the bundle number and reseting the instruction offset
to zero. All branches into a bundle have their target instruction offset
field checked against the instruction count, and a PC error is generated
if the offset is larger than the instruction count.

A PC value points directly to the head portion of an instruction and,
because they are fixed-length, multiple sequential instruction heads can
be fetched and decoded in parallel. The tails are still variable-length,
however, and so the heads must contain enough information to locate
the correct tail. One approach would be for each head to have a pointer
to its tail, but this would usually require a large number of bits. Fewer
bits are needed if the head just encodes the presence and length of
a tail. This length information can often be folded into the opcode
information to further reduce code size, as described below in the MIPS-
HAT scheme. Similar to a conventional variable-length scheme, the tail
size information in the head of one instruction must be decoded to
ascertain the location of the start of the tail of the next instruction.
But in the HAT format the length information for each instruction is
held at a fixed spacing in the head instruction stream, independent
of the length of the whole instruction. This makes the critical path to
determine tail alignment for multiple parallel instructions much shorter
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than in a conventional variable-length scheme, where the location of the
length information in the next instruction depends on the length of the
current instruction.

Length
1

Inst. 1 Inst. 2 Inst. 3

Length
2

Length
3

Head 1 Head 2 Head 3

+
+

Tail 1Tail 2Tail 3

Length
1

Length
2

Length
3 +

+

Fig. 2. Comparison of variable-length decoding in a conventional variable-
length scheme and a HAT scheme.

This difference between a regular variable-length scheme and a HAT
scheme is illustrated in Figure 2. The Figure shows a three-issue super-
scalar length decoder for a conventional variable-length ISA and a HAT
ISA scheme. In both cases, instructions vary from 2–8 bytes and length
information is encoded in the first byte. In the conventional scheme,
the length decoder for the second instruction cannot produce a value
until the first length decoder drives the mux to steer the correct byte
into the second length decoder. Similarly, the third length decoder has
to wait for the first two to complete before its input settles. The out-
put of the third decoder is needed to determine the correct amount to
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shift the instruction input buffer for the next cycle. This scheme scales
poorly, as O(W 2) area and delay for issue width W, because the num-
ber of inputs to the length byte muxes grows linearly with the number
of parallel instructions. The Intel P6 family reduces this critical path
by replicating simple decoders at every byte position, then muxing out
the correct instructions. This requires considerable die area and addi-
tional power, and still scales as O(W 2) albeit with a smaller constant
for delay. In contrast, the HAT scheme operates all the length decoders
in parallel, and then sums their outputs to determine tail alignments.
This addition can be organized as a parallel prefix sum using a carry-
save adder tree, and so delay scales logarithmically with issue width
O(log W ), and hardware costs grow as O(W log W ).

The tails in a HAT scheme are delayed relative to the heads, but the
head and tail fetches can be pipelined independently. The performance
impact of the additional latency for the tails can be partly hidden
if more latency-critical instruction information is located in the head
portions.

3.1 Handling branches in HAT

While fetching sequentially within a bundle, the HAT instruction de-
coder is consuming head bits from one end of the bundle and tail bits
from the other end. To avoid having to fetch and decode a new bundle
before locating its first instruction’s tail bits, we place tails in reverse
order starting at the end of the bundle. When execution moves sequen-
tially on to a new bundle, the initial head and tail data can be simply
found at either end of the new bundle.

Branches create the biggest potential problems for the HAT scheme.
Whereas a branch target address points at the entire target instruction
in a conventional scheme, it only locates the head within a bundle in
a HAT scheme. One simplistic approach to locate the tail of a branch
target is to scan all earlier heads from the beginning of the target bun-
dle, summing their tail lengths to get a pointer to the start of the
branch target’s tail. Although correct, this scheme would add a sub-
stantial delay and energy penalty to taken branch instructions. Next,
we describe three different approaches to finding branch target tails in
a HAT scheme: tail-start bit vectors, tail pointers, and an enhanced
branch target buffer.

Tail-start bit vector We can reduce branch penalties for locating the
target tail by storing auxiliary data structures in the cache alongside
each bundle. These data structures do not impact static code size as
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they are only present in the cache, but they increase cache area and the
number of dynamic bits fetched from the cache, potentially increasing
cache hit energy. The simplest scheme would be to hold a separate
tail pointer for each possible instruction in a bundle, but this incurs a
large overhead of H log(T ) bits per bundle, where H is the maximum
number of heads and T is the number of possible tail positions. A more
compact approach is to store a single bit per tail position (T bits total
per bundle), each bit indicating the possible start of a tail. A branch
into a bundle would then read the bit vector to find the start of the
Nth tail. This bit vector approach handles both fixed and indirect
jumps, but adds some additional latency to taken branches to process
the bit vector. This scheme also requires that every instruction has
a tail, otherwise a second bit vector would be required to determine
which instructions had tails.

Tail pointers A different approach to finding branch target tails is to
change branch and jump instruction encodings to include an additional
tail pointer field pointing to the tail portion of the branch target. This is
filled in by the linker at link time. The tail pointer removes all latency
penalties for fixed-target branch instructions, but increases code size
slightly. This approach, however, cannot be used for indirect jumps
where the target address is not known until run time.

There are two schemes that can be used to handle indirect jumps
with tail pointers. The first scheme is to expand all PC values to contain
a tail pointer in addition to the bundle and instruction offset numbers.
Jump-to-subroutine instructions would then write these expanded PCs
into the link register as return PC values, and jump indirect instructions
would expect tail pointers in the PC values held in registers as jump
targets. A minor disadvantage of this scheme is that it reduces the
virtual address space available for user code by the number of bits
taken for the target tail pointer (log(T ) bits). Another disadvantage is
that it becomes possible to branch to the middle of a tail if the user
manipulates the target tail pointer directly.

The second scheme treats each type of indirect jump separately.
There are three main uses of indirect jumps: indirect function calls (e.g.,
virtual functions in C++), switch statement tables, and subroutine
returns. We can eliminate penalties on function calls and switch tables
by noting that a branch to the start of a bundle can always find the
tail bits of the first instruction at the end of the bundle. Therefore by
simply placing function entry points and case statement entry points at
the start of a bundle (which might be desirable for cache performance
in any case), we eliminate branch penalties for these indirect jumps.
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Subroutine returns cannot be handled as easily because the subroutine
call could be anywhere within a bundle. One simple approach is to
only allow instructions without tails between the subroutine call and
the end of the current bundle, as a tail-less instruction does not need
the tail pointer to be restored correctly after the subroutine returns.
This is likely to reduce performance and waste code space, as NOPS
will have to be inserted if an instruction with tail is required. Another
approach is to store the return PC tail pointer on the subroutine return
address stack, if the microrachitecture has one to predict subroutine
returns. If the return address stack prediction fails, execution falls back
to the naive algorithm that scans heads from the beginning of the target
bundle.

BTB for HAT branches The third general approach to handling
branches in a HAT scheme stores target tail pointer information in the
branch target buffer (BTB). This can handle both fixed and indirect
jumps. Again, if the prediction fails, the target bundle can be scanned
from the beginning to locate a tail in the middle of the bundle. This
approach does not increase static code size, but increases BTB size and
branch mispredict penalty.

3.2 HAT advantages

To summarize, the HAT scheme has a number of advantages over con-
ventional variable-length schemes.

– Fetch and decode of multiple variable-length instructions can be
pipelined or parallelized.

– Unlike conventional variable-length formats, it is impossible to jump
into the middle of an instruction (except if PCs are expanded to
include a tail pointer field as described above).

– The PC granularity is always in units of a single instruction, and
is independent of the granularity at which the instruction length
can be varied. This allows branch offsets to be encoded with fewer
bits than a conventional variable-length ISA, where PC granularity
and instruction length granularity are identical (e.g., in bytes). This
helps counteract the code size increase if tail pointers are added to
branch target specifiers.

– The variable alignment muxes needed are smaller than in a con-
ventional variable-length scheme, because they only have to align
bits from the tail and not from the entire instruction length. The
fixed-length heads are handled using a much simpler and faster
mux.
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– The HAT format guarantees that no variable-length instruction
straddles a cache line or page boundary, simplifying instruction
fetch and handling of page faults.

4 MIPS-HAT

In this section, we demonstrate the HAT format using a compressed
variable-length re-encoding of the MIPS RISC ISA [12] as an example.

4.1 MIPS-HAT compression techniques

The MIPS compression scheme we use is based partly on a previous
scheme by Panich [17]. To keep instruction decoding simple, we choose
to never split MIPS register specifier fields, and so use a 5-bit gran-
ularity for our tail encoding. Our minimum size instruction is 15 bits
and the maximum size is 40 bits. As discussed later in the hardware
section, tail lookup can be simplified if every instruction has a tail and
so we chose heads that are 10 bits long but always with a tail, giving
a minimum instruction size of 15 bits. The following techniques were
used to compress the MIPS instructions.

1. Use the minimum number of 5-bit fields to encode immediates.
2. Eliminate unused register and operand fields.
3. Certain instructions often use a specific value for a register or im-

mediate, for example, the BEQ instruction often (≈90%) has zero
as one operand. We provide new opcodes for these cases.

4. We provide two-address versions of instructions that frequently
have a source register the same as the destination register.

5. We re-encode some common instruction sequences as a single in-
struction. We re-encode only the simplest but most common two
types of instruction sequence: branch instructions with a NOP
in the delay slot and multiple sequential loads. New opcodes for
branches and jumps indicate that they are followed by a NOP. The
multiple load instructions are used by subroutines to restore saved
registers from consecutive offsets from the stack pointer and can be
combined into a single instruction by specifying the initial register,
initial offset, and the number of load instructions in the sequence.
We considered a multiple store instruction but this did not pro-
vide sufficient savings to be justified (we believe this asymmetry
was because the compiler often interleaves code from the start of
a function with the register save code in the prologue whereas the
register restore in the function epilogue is not polluted in the same
way).
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Each instruction can be one of six sizes, ranging from 15–40 bits.
One way to specify the size would be to attach three overhead bits per
instruction. However, each instruction type, e.g., ADDI (add-immediate),
typically only uses a few sizes, so we fold instruction sizes into new op-
codes, e.g. ADDI10b for a 10-bit add-immediate.

This substantially increases the number of possible opcodes, but
only a small subset of these new opcodes is frequently used. We select
the most popular opcodes, together with several different “escape” op-
codes, and encode these in a 5-bit primary opcode field in the head. The
escape opcodes indicate that a secondary opcode is placed in the tail,
but also includes critical information required for decode, such as the
size of the instruction and its general category (e.g., arithmetic versus
branch). Table 1 and Table 2 show the most popular primary opcodes
and escape opcodes together with the frequency that they occur across
the Mediabench benchmarks. The “Break” escape opcode is used for
all instructions that will cause opcode traps, including SYSCALL and
BREAK.

Table 1. The 32 MIPS-HAT primary opcodes.

Instruction Size Freq Instruction Size Freq

Specific Primary Opcodes

addu(rt=0) 15 8.7% lw(imm=0) 15 2.2%

sw 25 5.2% sw 20 1.9%

lw 25 4.7% addu 20 1.8%

addiu 25 4.5% lw 20 1.7%

noop 15 4.3% addiu(-1) 15 1.6%

lui 30 3.6% jr 15 1.5%

addiu(+1) 15 3.2% bne(rt=0) 15 1.4%

jal 25 3.2% beq(rt=0) 15 1.3%

addu(rs=rd) 15 2.6% addiu(rs=rd) 15 1.2%

sw(rw=r2) 20 2.6% addiu(rs=rd) 20 1.2%

addiu 20 2.4% addiu 30 1.1%

j 25 2.2%

Escape Opcodes

I-Load/Store 30 10.0% I-Arithmetic 40 1.5%

R 25 7.2% I-Load/store 40 0.4%

I-Branch 30 6.7% I-Branch 40 0.0%

I-Arithmetic 30 5.4% J 40 0.0%

Break 35 3.3%
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Table 2. MIPS-HAT primary opcodes by category.

Instruction Size Freq Instruction Size Freq

R

addu(rt=0) 15 8.7% addu(rs=rd) 15 2.6%

ESC 25 7.2% addu 20 1.8%

noop 15 4.3% jr 15 1.5%

I-Arithmetic

ESC 30 5.4% addiu(-1) 15 1.6%

addiu 25 4.5% ESC 40 1.5%

lui 30 3.6% addiu(rs=rd) 15 1.2%

addiu(+1) 15 3.2% addiu(rs=rd) 20 1.2%

addiu 20 2.4% addiu 30 1.1%

I-Branch

ESC 30 6.7% beq(rt=0) 15 1.3%

bne(rt=0) 15 1.4% ESC 40 0.0%

I-Load/Store

ESC 30 10.0% lw(imm=0) 15 2.2%

sw 25 5.2% sw 20 1.9%

lw 25 4.7% lw 20 1.7%

sw(rw=r2) 20 2.6% ESC 40 0.4%

J

jal 25 3.2% ESC 40 0.0%

j 25 2.2%

Break

ESC 35 3.3%
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R-Type       opcode      reg1               op2

 I-Type        opcode      reg1 op2/imm    (imm)     (imm)     (imm)     (imm)

 opcode      reg1               reg2       (op2)

  opcode     reg1               reg2        reg3       (op2)

  opcode      reg1              reg2 op2/imm   (imm)     (imm)      (imm)     (imm)

  J-Type       opcode op2/imm            imm       (imm)    (imm)     (imm)     (imm)      (imm)

     Heads                                                         Tails

Fig. 3. Compressed MIPS instruction formats.

Figure 3 shows the formats of the three types of MIPS-HAT in-
structions — register (R), immediate (I), and jump (J). All fields are
five bits wide. The fields in parenthesis are optional, depending on the
instruction length.

4.2 Bundle format

We evaluated use of both 128-bit and 256-bit bundles for MIPS-HAT.
The 128b bundle is split into a three-bit instruction count field and
25×5b units, holding up to 8×10b heads and up to 16×5b tail units.
The 256b bundle has a four-bit instruction count field, two empty bits,
and 50×5b units which can hold up to 16×10b heads and up to 32×5b
tail units.

Note that we restrict the size of the head and tail regions to reduce
the number of bits needed for the instruction count field and for the
tail-start bit vector if present. Neither the head nor tail region com-
pletely spans the bundle, although the boundary between the regions
is flexible. In practice, it is rare for bundle packing to be affected by
this restriction.
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4.3 HAT cache implementation

MIPS-HAT is designed to be directly executed from cache, and instruc-
tions remain in the same format after being fetched from memory to
cache, avoiding additional cache miss latencies. The new format is only
slightly more complex than regular MIPS to decode, and the decom-
pression is just folded into the decoder.

A conventional variable-length ISA would fetch words of data se-
quentially from the cache into fetch buffers that can rotate the data
to the correct alignment for the instruction decoder. MIPS-HAT would
use the same scheme for the tails, but in addition would be fetching
a second stream for the fixed-length heads which would not require
an alignment circuit. The cache RAM does not require a second read
port to provide the head data stream, as the heads are always from the
same bundle as the tails and hence would be on the same cache line.
The cache RAM sense-amps just need a separate set of bus drivers onto
the head data bus.

Table 3. Static Compression Ratios

Input 128b 256b 128b 256b
BrTail BrTail

adpcm-dec 78.5% 75.5% 82.6% 82.1%

adpcm-enc 78.6% 75.6% 82.6% 82.0%

epic-dec 77.1% 74.0% 80.4% 79.5%

epic-enc 78.7% 75.5% 81.6% 80.8%

g721-dec 78.0% 75.0% 82.3% 81.6%

g721-enc 78.0% 75.0% 82.3% 81.6%

gsm-dec 79.8% 76.8% 85.2% 84.4%

gsm-enc 79.8% 76.8% 85.2% 84.4%

jpeg-dec 74.3% 71.5% 78.4% 77.5%

jpeg-enc 74.2% 71.5% 78.7% 77.9%

mpeg2-dec 80.6% 77.9% 85.5% 85.2%

mpeg2-enc 81.6% 79.1% 86.4% 86.4%

pegwit-dec 80.0% 76.6% 84.4% 84.4%

pegwit-enc 80.0% 76.6% 84.4% 84.4%

Average 78.5% 75.5% 82.8% 82.3%

Because head information is needed to extract the tails, the tail
instruction bits always lag the heads. To reduce the impact of this
additional latency on the execution pipeline, MIPS-HAT places the
instruction category in the head so that the instruction can be steered
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Table 4. Instruction Size Distribution

15b 20b 25b 30b 35b 40b

Average (w/o BrTail) 22.1% 13.0% 47.5% 3.8% 3.3% 10.4%

Cumulative 22.1% 35.1% 82.6% 86.4% 89.6% 100.0%

Average (w/ BrTail) 19.8% 16.1% 35.1% 17.3% 3.3% 8.4%

Cumulative 19.8% 35.9% 70.9% 88.2% 91.6% 100.0%

to an appropriate functional unit before the tail arrives, allowing the
tail to be sent directly to the appropriate unit for further decoding.

5 Experimental results

To test the effectiveness of the MIPS-HAT scheme, we selected bench-
marks from the Mediabench [14] benchmark suite, reencoded the MIPS
binaries generated by a gcc cross-compiler (egcs-1.0.3a -O2), and
took static and dynamic measurements. For the dynamic measure-
ments, the Mediabench programs were run to completion on the pro-
vided input sets.

5.1 Static compression ratios

Table 3 gives the static compression ratios (compressed-size/original-
size) for 128b and 256b versions of MIPS-HAT. The bundle ratios for
the two sizes includes the overhead bits to count the instructions in
each bundle and any wasted space due to fragmentation.

The average bundle compression ratio is 78.5% for the 128b bundle
and 75.5% for the 256b bundle. The smaller bundle incurs relatively
more overhead and has more internal fragmentation. If we adopt the
scheme that adds target tail links to speed taken branches, the static
code size increases, to a compression ratio of 82.8% for 128b bundles
and 82.3% for the 256b bundles.

Table 4 shows the distribution of static instruction sizes averaged
over the benchmark set, with and without the tail pointer scheme.
Without target tails, over 80% of instructions are 25 bits or less.

5.2 Dynamic measures

We measured the reduction in dynamic bits fetched from the instruction
cache using the MIPS-HAT scheme. We report this number as a dy-
namic fetch ratio
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(new-bits-fetched/original-bits-fetched). We evaluated several different
schemes to avoid taken branch penalties

Tables 5 and 6 show the dynamic fetch ratios for 128b and 256b
bundles, respectively, for a variety of implementations. The baseline
column shows the ratios including the cost of fetching the instruction
count on every access to a new bundle. The 256b scheme has a slightly
lower fetch ratio (75.0% versus 75.5%) as relatively fewer overhead bits
are fetched.

The BrBV column shows the large increase in dynamic fetch ratio
when a tail-start bit vector (Section 3.1) is used to reduce branch taken
penalties. The increase is less for the 128b bundles which have a 16b
vector per line, such that these now have lower fetch ratios than 256b
bundles, which must fetch a 32b vector on every taken branch.

The BrTail columns shows the fetch ratio for the tail pointer scheme,
where branch instruction encodings include a tail pointer. These fetch
ratios are much lower than for the BrBV approach, but this technique
has a higher static code size.

Table 5. Dynamic Compression Ratios - 128b

Input Line Ratio BrBV BrTail

adpcm-dec 72.0% 79.8% 75.0%

adpcm-enc 74.5% 84.0% 76.9%

epic-dec 75.2% 83.4% 77.7%

epic-enc 85.5% 89.3% 87.8%

g721-dec 75.3% 82.2% 78.4%

g721-enc 75.3% 82.2% 78.5%

gsm-dec 75.5% 79.6% 76.0%

gsm-enc 72.0% 74.1% 74.5%

jpeg-dec 68.2% 71.0% 69.1%

jpeg-enc 72.9% 79.9% 73.9%

mpeg2-dec 80.1% 85.3% 82.0%

mpeg2-enc 74.0% 79.1% 75.7%

pegwit-dec 79.1% 83.2% 80.8%

pegwit-enc 78.0% 82.3% 79.8%

average 75.5% 81.1% 77.6%

A BTB aproach to locating target tails would add nothing to the
static code size, and would have a dynamic fetch ratio similar to the
BrTail scheme, except now some of these bits would be fetched from
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Table 6. Dynamic Compression Ratios - 256b

Input Line Ratio BrBV BrTail

adpcm-dec 71.2% 86.9% 74.5%

adpcm-enc 73.5% 92.5% 76.4%

epic-dec 74.5% 91.0% 77.3%

epic-enc 85.1% 92.8% 87.1%

g721-dec 75.0% 88.9% 78.5%

g721-enc 73.8% 87.7% 78.4%

gsm-dec 74.8% 83.1% 77.5%

gsm-enc 71.3% 75.5% 72.2%

jpeg-dec 67.5% 80.7% 68.8%

jpeg-enc 72.4% 86.3% 75.3%

mpeg2-dec 79.7% 90.1% 79.7%

mpeg2-enc 76.1% 83.8% 75.1%

pegwit-dec 78.2% 86.5% 79.9%

pegwit-enc 77.1% 85.8% 78.8%

average 75.0% 86.5% 77.1%

the BTB structure. The BTB scheme will also incur additional latency
penalties on BTB mispredicts.

5.3 Results discussion

The numbers show that there are tradeoffs between static code size,
dynamic fetch ratio, and taken branch performance, depending on the
bundle size and the branch penalty avoidance scheme. The larger bun-
dle generally gives the best reduction in code size and bits fetched. Our
dynamic results did not measure the expected increase in performance
due to the effective increase in cache capacity, which should lower miss
rates.

Other work has presented compression numbers for MIPS code.
CCRP [20] achieves a compression ratio of 73% but has to uncompress
instructions into cache to allow parallel fetch and decode. MIPS16 [13]
obtains a compression ratio of around 60%, but at the cost of limiting
operations and operand addressing modes which reduces performance.
SAMC and SADC [15] use more complex algorithms to achieve a com-
pression ratio nearly 50% on MIPS code but either with a long decoding
delay or an added dictionary lookup step.
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6 Conclusions

We have introduced a new head-and-tails (HAT) variable-length in-
struction format that separates instructions into fixed-length heads that
can be easily indexed and variable-length tails that provide code com-
pression. The format can provide high code density in memory and in
cache, while allowing parallel fetch and decode for direct superscalar
execution from cache. The HAT scheme makes it difficult to quickly
locate an entire instruction at a branch target. A number of techniques
are possible to reduce taken branch penalties, and these were shown
to have differing effects on static code size, dynamic bits fetched, and
branch penalties.

We developed a simple MIPS instruction compression scheme by
re-encoding the MIPS ISA into a variable-length format, and mapping
the resulting variable-length instructions into the HAT format. Our
experiments showed that the MIPS-HAT format can provide a com-
pression ratio of 75.5% and a dynamic fetch ratio reduction of 75.0%
while supporting deeply pipelined or superscalar execution.

The HAT format can be applied to many other types of instruction
encoding. For example, each instruction slot in a VLIW instruction
could be encoded in a similar way as MIPS-HAT to give similar savings
(over and above simple NOP compression). In future work, we are also
investigating more aggressive instruction compression techniques tuned
for the HAT format, as well as developing new instruction sets that
take advantage of the HAT format to increase performance without
sacrificing code density.
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Abstract. An accurate, tractable, analytic cache model for
time-shared systems is presented, which estimates the overall
cache miss-rate of a multiprocessing system with any cache
size and time quanta. The input to the model consists of the
isolated miss-rate curves for each process, the time quanta
for each of the executing processes, and the total cache size.
The output is the overall miss-rate. Trace-driven simulations
demonstrate that the estimated miss-rate is very accurate.
Since the model provides a fast and accurate way to estimate
the effect of context switching, it is useful for both understand-
ing the effect of context switching on caches and optimizing
cache performance for time-shared systems. A cache partition-
ing mechanism is also presented and is shown to improve the
cache miss-rate up to 25% over the normal LRU replacement
policy.

1 Introduction

This paper presents an analytical model for the behavior of a cache
in a multiprocessing system that can accurately estimate overall miss-
rate for any cache size and any time quantum. An evaluation method
for miss-rate is essential to optimize cache performance. Traditional
cache performance evaluation is done by simulations [25, 16, 12], which
provide accurate results, but simulation time is often long. Hardware
monitoring can dramatically speed up the process [26], however, it is
limited to the particular cache configuration. As a result, both simula-
tions and hardware monitoring can only be used to evaluate the effect of
context switches [14, 10]. Moreover, simulations and monitoring rarely
provide intuitive understanding making it difficult to improve cache
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performance. To provide both performance prediction and insight into
improving performance, analytical cache models are required.

We use our model to determine the best cache partitioning so as to
improve performance. Partitioning is needed to mitigate the effects of
conflicts among concurrently executing processes, especially for large
caches. In the past, caches were small and it was best to let each pro-
cess consume the entire cache space, since process footprints were much
larger than the cache. In modern microprocessors, caches are much
larger; some Level 1 (L1) caches range up to one MB [5], and L2 caches
are up to several MB [2, 13]. Large caches allow potential performance
improvement by partitioning. Since each process may not need the en-
tire cache space, the effect of context switches can be mitigated by
keeping useful data in the cache over context switches. It is crucial for
modern microprocessors to minimize inter-process conflicts by proper
cache partitioning [21, 9] or scheduling [17, 23].

Our model requires information that is relatively easy to acquire.
The characteristics for each process are given by the miss-rate as a
function of cache size when the process is isolated, which can be easily
obtained either on-line or off-line. The time quantum for each process
and cache size are also given as inputs to the model. With this infor-
mation, the model estimates the overall miss-rate for a given cache size
when an arbitrary combination of processes is run. The model provides
good estimates for any cache size and any time quantum, and is eas-
ily applied to real problems since the input miss-rate curves are both
intuitive and easy to obtain in practice. Therefore, we believe that the
model is useful for any study related to the effect of context switches
on cache memory.

After describing related research in Section 2, Section 3 derives an
analytical cache model for time-shared systems. Section 4 discusses
cache partitioning based on the model and evaluates the model-based
partitioning method by simulations. Finally, Section 5 concludes the
paper.

2 Related work

Several early investigations of the effects of context switches use analyt-
ical models. Thiébaut and Stone [20] modeled the amount of additional
misses caused by context switches for set-associative caches. Agarwal,
Horowitz and Hennessy [1] also included the effect of conflicts between
processes in their analytical cache model and showed that inter-process
conflicts are noticeable for a mid-range of cache sizes that are large
enough to have a considerable number of conflicts but not large enough



Analytical Cache Models 405

to hold all the working sets. However, these models work only for long
enough time quanta, and require information that is hard to collect
on-line.

Mogul and Borg [14] studied the effect of context switches through
trace-driven simulations. Using a timesharing system simulator, their
research shows that system calls, page faults, and a scheduler are the
main sources of context switches. They also evaluated the effect of
context switches on cycles per instruction (CPI) as well as the cache
miss-rate. Depending on cache parameters, the cost of a context switch
appears to be in the thousands of cycles, or tens to hundreds of mi-
croseconds in their simulations.

Stone, Turek and Wolf [18] investigated the optimal allocation of
cache memory between two competing processes that minimizes the
overall miss-rate of a cache. Their study focuses on the partitioning of
instruction and data streams, which can be thought of as multitasking
with a very short time quantum. Their model for this case shows that
the optimal allocation occurs at a point where the miss-rate derivatives
of the competing processes are equal. The LRU replacement policy
appears to produce cache allocations very close to optimal for their
examples. They also describe a new replacement policy for longer time
quanta that only increases cache allocation based on time remaining in
the current time quantum and the marginal reduction in miss-rate due
to an increase in cache allocation. However, their policy simply assumes
the probability for a evicted block to be accessed in the next time
quantum as a constant, which is neither validated nor is it described
how this probability is obtained.

Thiébaut, Stone and Wolf applied their partitioning work [18] to
improve disk cache hit-ratios [21]. The model for tightly interleaved
streams is extended to be applicable for more than two processes. They
also describe the problems in applying the model in practice, such as ap-
proximating the miss-rate derivative, non-monotonic miss-rate deriva-
tives, and updating the partition. Trace-driven simulations for 32-MB
disk caches show that the partitioning improves the relative hit-ratios
in the range of 1% to 2% over the LRU policy.

Our analytical model and partitioning differ from previous efforts
that tend to focus on some specific cases of context switches. Our model
works for any specific time quanta, whereas the previous models focus
only on long time quanta. Also, our partitioning works for any time
quanta, whereas Thiébaut’s algorithms only works for very short time
quanta. Moreover, the inputs of our model (miss-rates) are much easier
to obtain compared to footprints or the number of unique cache blocks
that previous models require.
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3 Analytical cache model

The analytical cache model estimates the overall cache miss-rate for a
multi-processing system. The cache size and the time quantum length
for each job is known. The cache size is given by the number of cache
blocks, and the time quantum is given by the number of memory refer-
ences. Both are assumed to be constants (See Figure 1 (a)). In addition,
associated with each job is its miss-rate curve, i.e., the number of cache
misses as a function of the cache size.

Time
Process 1 Process NProcess 2 ... Process 2Process 1 ...

T1 T2T1TNT2 ......

(b)

miss-rate curves (mi(x))

time quanta (Ti) 

cache size (C)

Cache Model overall miss-rate

(a)

Fig. 1. (a) The overview of an analytical cache model. (b) Round-robin sched-
ule.

This section explains the development of the model in several steps.
Heavy use is made of the individual, isolated miss-rate curve (iimr).
This curve is the miss-rate for a process as a function of cache size
assuming no other processes are running. There is much information
that can be gleaned from this equation. For example, we can compute
the miss rate of a process as a function of time (Section 3.2) from the
miss-rate of a process as a function of space.

Observe that as a process executes, it either references an item in
the cache, in which case its footprint size remains the same, or it gets
a cache miss thereby increasing its footprint size. In other words, we
know how much cache is allocated to a process as a function of time:
from the iimr curve, we compute the independent, isolated footprint as
a function of time (iifp) (Section 3.2).

If one knows how much cache is allocated to a process when it
begins executing its time quantum and how much more cache it will
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need during the execution of that time quantum, we can compute how
much cache will be left for the next process that is about to begin its
time quantum execution. In other words, from the iifp curves of all the
concurrent processes, we compute the individual, dependent footprint
(dfp) as a function of time (Section 3.2).

At each time step, we know how much cache is allocated to the run-
ning process (from dfp(t)) and we know the miss rate for that size (from
iimr(S)) for the executing process and so we can get the dependent miss
rate as a function of time (dmr(t)) (Section 3.2).

Finally, integrating or summing the dmr(t) over time, gives the
overall average miss rate for a given cache size, given time quantum
sizes, and a given set of concurrent processes (Section 3.2).

The following subsection gives an overview of our assumptions. The
development of the cache model is then presented, following the outline
given above. Finally, this section ends with experimental verification of
the model.
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Fig. 2. (a) The probability of a miss at time t0. (b) The number of misses
from Pmiss(t) curve.

3.1 Assumptions

The memory reference pattern of each process is assumed to be repre-
sented by a miss-rate curve that is a function of the cache size. More-
over, this miss-rate curve is assumed not to change over time. Although
real applications do have dynamically changing memory reference pat-
terns, our results show that, in practice, an average miss-rate function
works very well. For abrupt changes in the reference pattern, multiple
miss-rate curves can be used to estimate an overall miss-rate.
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There is no shared address space among processes. This assumption
is true for common cases where each process has its own virtual address
space and the shared memory space is negligible compared to the entire
memory space that is used by a process.

Finally, a round-robin scheduling policy with a fixed time quantum
for each process is assumed (see Figure 1 (b)), an LRU replacement pol-
icy is used, and the cache is fully associative. Although most real caches
are set-associative, a model for fully-associative caches is very useful
for understanding the effect of context switches because the model is
simple. Moreover, cache partitioning experiments demonstrate that the
fully-associative model can also be applied to set-associative caches in
practice (Section 4). Elsewhere, we have extended the model to handle
set-associative caches [19]. A model assuming many other scheduling
methods and replacement policies can be similarly derived.

We make use of the following notations:

t the number of memory references from the beginning of a time quan-
tum.

x(t) the number of cache blocks that belong to a process after t memory
references.

m(x) the steady-state miss-rate for a process with cache size x.
T the number of memory references in a time quantum.

3.2 Cache model

The goal is to predict the average miss-rate for a multiprocess machine
with a given cache size and set of processes.

Miss rate as function of time Given the independent, isolated miss-
rate of a process as a function of cache size, we compute its miss-rate as
a function of time. Let time t start at the beginning of a time quantum,
not at the beginning of execution. Since all time quanta for a process
are identical by our assumptions, we consider only one time quantum
for each process.

Although the cache size is C, at certain times, it is possible that only
part of the cache is filled with the current process’ data (Figure 2 (a)
shows a snapshot of a cache at time t0). Therefore, the effective cache
size at time t0 can be thought of as the amount of the current process’
data x(t0) in the cache at that time. The probability of a cache miss in
the next memory reference is given by

Pmiss(t0) = m(x(t0)). (1)
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Once we have Pmiss(t0), it is easy to estimate the miss-rate over
time during that time quantum. The number of misses for the process
over a time quantum can be expressed as a simple integral, Figure 2 (b),
where the miss-rate is expressed as the number of misses divided by the
number of memory references.

miss-rate =
1
T

∫ T

0

Pmiss(t)dt =
1
T

∫ T

0

m(x(t))dt (2)

Footprint as a function of time We now estimate x(t), the amount
of a process’ data, i.e. its footprint, in a cache as a function of time. Let
us begin with the assumption that a process starts executing during a
time quantum with an empty cache in order to estimate cache perfor-
mance for cases when a cache gets flushed for every context switch.
Virtual address caches without process ID are good examples of such a
case. We show later how to estimate x(t) when the cache is not empty
at the start of a time quantum.

Consider x∞(t) as the amount of the current process’ data at time
t for an infinite size cache. We assume that the process starts with an
empty cache at time 0. There are two possibilities for x∞(t) at time
t + 1. If the (t + 1)th memory reference results in a cache miss, a new
cache block is brought into the cache. As a result, the amount of the
process’s cache data increases by one block. Otherwise, the amount of
data remains the same. Therefore, the amount of the process’ data in
the cache at time t + 1 is given by

x∞(t + 1) =

{
x∞(t) + 1 (t + 1)th reference misses
x∞(t) otherwise.

(3)

Since the probability for the (t + 1)th memory reference to miss is
m(x∞(t)) from Equation 1, the expected value of x(t+1) can be written
by

E[x∞(t + 1)] = E[x∞(t) · (1 − m(x∞(t)))
+ (x∞(t) + 1) · m(x∞(t))]

= E[x∞(t) + 1 · m(x∞(t))]
= E[x∞(t)] + E[m(x∞(t))].

(4)
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Assuming that m(x) is convex1, we can use Jensen’s inequality [3] and
rewrite the equation as a function of E[x∞(t)].

E[x∞(t + 1)] ≥ E[x∞(t)] + m(E[x∞(t)]). (5)

Usually, a miss-rate changes slowly. As a result, for a short interval such
as from x to x + 1, m(x) can be approximated as a straight line. Since
the equality in Jensen’s inequality holds if the function is a straight
line, we can approximate the amount of data at time t + 1 as

E[x∞(t + 1)] � E[x∞(t)] + m(E[x∞(t)]). (6)

We can calculate the expectation of x∞(t) more accurately by calcu-
lating the probability for every possible value at time t [19]. However,
calculating a set of probabilities is computationally expensive. Also,
our experiments show that the above approximation closely matches
simulation results.

If we further approximate the amount of data x∞(t) to be the ex-
pected value E[x∞(t)], x∞(t) can be expressed with a differential equa-
tion:

x∞(t + 1) − x∞(t) = m(x∞(t)), (7)

which can be easily calculated in a recursive manner.
To obtain a closed form solution, we can rewrite the discrete form

of the differential equation 7 to a continuous form:

dx∞

dt
= m(x∞). (8)

Solving the differential equation by separating variables, the differ-
ential equation becomes

t =
∫ x∞(t)

x∞(0)

1
m(x′)

dx′. (9)

We define a function M(x) as an integral of 1/m(x), which means that
dM(x)/dx = 1/m(x), and then x∞(t) can be written as a function of
t:

x∞(t) = M−1(t + M(x∞(0))) (10)

where M−1(x) represents the inverse function of M(x).
Finally, for a finite size cache, the amount of data in the cache is

limited by the size of the cache C. Therefore, xφ(t), the amount of a
process’ data starting from an empty cache, is written by

xφ(t) = MIN [x∞(t), C] = MIN [M−1(t + M(0)), C]. (11)
1 If a replacement policy is smart enough, the marginal gain of having one

more cache block monotonically decreases as we increase the cache size.
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Individual, dependent footprint as a function of time We now
compute the amount of a process’ data at time t when the cache is
not flushed at a context switch, i.e., the dependent case. To distinguish
between the processes, a subscript i is used to represent Process i. For
example, xi(t) represents the amount of Process i’s data at time t.

The estimation of xi(t) is based on round-robin scheduling (See
Figure 1 (b)) and the LRU replacement policy. Process i runs for a
fixed length time quantum Ti. For simplicity, processes are assumed to
be of infinite length so that there is no change in the scheduling. Also,
the initial startup transient from an empty cache is ignored since it is
negligible compared to the steady state.

To estimate the amount of a process’ data at a given time, imagine
the snapshot of a cache after executing Process i for time t as shown
in Figure 3. Note that time is 0 at the beginning of the process’ time
quantum. In the figure, the blocks on the left side show recently used
data, and blocks on the right side show old data. Pj,k represents the
data of Process j, and subscript k specifies the most recent time quan-
tum when the data are referenced. From the figure, we can obtain xi(t)
once we know the size of all Pj,k blocks.

Pi,1 Pi,3Pi+1,2...Pi-1,2Pi,2Pi+1,1...Pi-1,1

MRU data LRU data
The snapshot of a cache
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Fig. 3. The snapshot of a cache after running Process i for time t.

The size of each block can be estimated using the xφ
i (t) curve from

Equation 11, which is the amount of Process i’s data when the process
starts with an empty cache. Since xφ

i (t) can also be thought of as the
amount of data that are referenced from time 0 to time t, xφ

i (Ti) is the
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amount of data that are referenced over one time quantum. Similarly,
we can estimate the amount of data that are referenced over k recent
time quanta to be xφ

i (k · Ti). As a result, the size of Block Pj,k can be
written as

Pj,k =




xφ
j (t + (k − 1) · Tj) − xφ

j (t + (k − 2) · Tj)
if j is executing

xφ
j (k · Tj) − xφ

j ((k − 1) · Tj)
otherwise

(12)

where we assume that xφ
j (t) = 0 if t < 0.

xi(t) is the sum of Pi,k blocks that are inside the cache of size C in
Figure 3. If we define li(t) as the maximum integer value that satisfies
the following inequality, then li(t)+ 1 represents how many Pi,k blocks
are in the cache.

li(t)∑
k=1

N∑
j=1

Pj,k = xφ
i (t + (li(t) − 1) · Ti) +

N∑
j=1,j �=i

xφ
j (li(t) · Tj) ≤ C (13)

where N is the number of processes. From li(t) and Figure 3, the esti-
mated value of xi(t) is

xi(t) =




xφ
i (t + li(t) · Ti) if xφ

i (t + li(t) · Ti)+
N∑

j=1,j �=i

xφ
j (li(t) · Tj) ≤ C

C −
N∑

j=1,j �=i

xφ
j (li(t) · Tj) otherwise

(14)

Figure 4 illustrates the relation between xφ
i (t) and xi(t). In the

figure li(t) is assumed to be 2. Unlike the cache flushing case, a process
can start with some of its data left in the cache. The amount of initial
data xi(0) is given by Equation 14. If the least recently used (LRU)
data in a cache does not belong to Process i, xi(t) increases the same
as xφ

i (t). However, if the LRU data belongs to Process i, xi(t) does not
increase on a cache miss since Process i’s block gets replaced.

Define tstart(j, k) as the time when the kth MRU block of Process j
(Pj,k) becomes the LRU part of a cache, and tend(j, k) as the time when
Pj,k gets completely replaced from the cache (See Figure 3). tstart(j, k)
and tend(j, k) specify the flat segments in Figure 4 and can be estimated
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Fig. 4. The relation between xφ
i (t) and xi(t). xi(0) is the amount of Process

i’s data in the cache when a time quantum starts.

from the following equations that are based on Equation 12.

xφ
j (tstart(j, k) + (k − 1) · Tj) +

N∑
p=1,p�=j

xφ
p ((k − 1) · Tp) = C. (15)

xφ
j (tend(j, k) + (k − 2) · Tj) +

N∑
p=1,p�=j

xφ
p ((k − 1) · Tp) = C. (16)

tstart(j, lj(t)+1) would be zero if Equation 15 is satisfied when tstart(j, lj(t)+
1) is negative, which means that the P (j, lj(t)+ 1) block is already the
LRU part of the cache at the beginning of a time quantum.

Overall miss-rate This section presents the overall miss-rate calcu-
lation. When a cache uses virtual address tags and gets flushed for ev-
ery context switch, each process starts a time quantum with an empty
cache. In this case, the miss-rate of a process can be estimated from the
results of Section 3.2 and 3.2. From Equation 2 and 11, the miss-rate
for Process i can be written by

miss-rateφ
i =

1
Ti

∫ Ti

0

mi(MIN [M−1
i (t + Mi(0)), C])dt. (17)

If a cache uses physical address tags or has a process’ ID with virtual
address tags, it does not have to be flushed at a context switch. In this
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Fig. 5. The result of the cache model for cache flushing cases. (a) vpr. (b)
vortex. (c) gcc. (d) bzip2.
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case, the amount of data xi(t) is estimated in Section 3.2. The miss-rate
for Process i can be written by

miss-ratei =
1
Ti

∫ Ti

0

mi(xi(t))dt (18)

where xi(t) is given by Equation 14.
For actual calculation of the miss-rate, tstart(j, k) and tend(j, k)

from Equation 15 and 16 can be used. Since tstart(j, k) and tend(j, k)
specify the flat segments in Figure 4, the miss-rate of Process i can be
rewritten by

miss-ratei =
1
Ti

{
∫ T ′

i

0

mi(MIN [M−1
i (t + Mi(xi(0))), C])dt

+
li(t)+1∑
k=di

mi(x
φ
i (tstart(i, k) + (k − 1) · Ti))

· (MIN [tend(i, k), Ti] − tstart(i, k))}

(19)

where di is the minimum integer value that satisfies tstart(i, di) < Ti.
T ′

i is the time that Process i actually grows.

T ′
i = Ti −

li(t)+1∑
k=di

(MIN [tend(i, k), Ti] − tstart(i, k)). (20)

As shown above, calculating a miss-rate could be complicated if
we do not flush a cache at a context switch. If we assume that the
executing process’ data left in a cache is all in the most recently used
part of the cache, we can use the equation for estimating the amount
of data starting with an empty cache. Therefore, the calculation can be
much simplified as follows,

miss-ratei =
1
Ti

∫ Ti

0

mi(MIN [M−1
i (t + Mi(xi(0))), C])dt (21)

where xi(0) is estimated from Equation 14. The effect of this approxi-
mation is evaluated in the experiment section (cf. Section 3.3).

Once we calculate the miss-rate of each process, the overall miss-rate
is straightforwardly calculated from those miss-rates.

Overall miss-rate =
∑N

i=1 miss-ratei · Ti∑N
i=1 Ti

(22)
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Fig. 6. The result of the cache model when two processes (vpr, vortex) are
sharing a cache (32 KB fully-associative). (a) the overall miss-rate. (b) the
initial amount of data xi(0).
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3.3 Experimental verification

Our cache model can be validated by comparing estimated miss-rate
predictions with simulation results. Several combinations of bench-
marks are modeled and simulated for various time quanta. First, we
simulate cases when a cache gets flushed at every context switch, and
compare the results with the model’s estimation. Cases without cache
flushing are also tested. For the cases without cache flushing, both the
complete model (Equation 19) and the approximation (Equation 21)
are used to estimate the overall miss-rate. Based on the simulation
results, the error caused by the approximation is discussed.

Cache flushing case The results of the cache model and simulations
are shown in Figure 5 in cases when a process starts its time quantum
with an empty cache. Four benchmarks from SPEC CPU2000 [7], which
are vpr, vortex, gcc and bzip2, are tested. The cache is a 32-KB
fully-associative cache with 32-Byte blocks. The miss-rate of a process
is plotted as a function of the length of a time quantum, and shows
a good agreement between the model’s estimation and the simulation
result.

As inputs to the cache model, the average miss-rate of each process
has been obtained from simulations. Each process has been simulated
for 25 million memory references, and the miss-rates of the process for
various cache size have been recorded. The simulation results were also
obtained by simulating benchmarks for 25 million memory references
with flushing a cache every T memory references. As the result shows,
the average miss-rate works very well.

General case Figure 6 shows the result of the cache model when two
processes are sharing a cache. The two benchmarks are vpr and vortex
from SPEC CPU2000, and the cache is a 32-KB fully-associative cache
with 32-Byte blocks. The overall miss-rates are shown in Figure 6 (a).
As shown in the figure, the miss-rate estimated by the model shows a
good agreement with the results of the simulations.

The figure also shows an interesting fact that a certain range of time
quanta could be very problematic for cache performance. For short
time quanta, the overall miss-rate is relatively small. For very long
time quanta, context switches do not matter since a process spends
most of its time in the steady state. However, medium time quanta
could severely degrade cache miss-rates as shown in the figure. This
problem occurs when a time quantum is long enough to pollute the
cache but not long enough to compensate for the misses caused by
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context switches. The problem becomes clear in Figure 6 (b). The figure
shows the amount of data left in the cache at the beginning of a time
quantum. Comparing Figure 6 (a) and (b), we can see that the problem
occurs when the initial amount of data rapidly decreases.

The error caused by our approximation (Equation 21) method can
be seen in Figure 6. In the approximation, we assume that the data
left in the cache at the beginning of a time quantum are all in the
MRU region of the cache. In reality, however, the data left in the cache
could be the LRU cache blocks and get replaced before other process’
blocks in the cache, although the current process’s data are likely to be
accessed in the time quantum. As a result, the approximated miss-rate
is lower than the simulation result when the initial amount of data is
not zero.
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Fig. 7. The overall miss-rate when four processes (vpr, vortex, gcc, bzip2)
are sharing a cache (32 KB, fully-associative).

A four-process case is also tested in Figure 7. Two more bench-
marks, gcc and bzip2, from SPEC CPU2000 [7] are added to vpr and
vortex, and the same cache configuration is used as the two process
case. The figure also shows a very close agreement between the miss-
rate estimated by the cache model and the miss-rate from simulations.
The problematic time quanta and the effect of the approximation have
changed. Since there are more processes polluting the cache as com-
pared to the two process case, a process experiences an empty cache



Analytical Cache Models 419

in shorter time quanta. As a result, the problematic time quanta be-
come shorter. On the other hand, the effect of the approximation is less
harmful in this case. This is because the error in one process’ miss-rate
becomes less important as we have more processes.

4 Cache partitioning

This section shows how the analytical cache model can be used to
dynamically partition the cache. A partitioned cache allocates cache
space to particular processes. This space is dedicated to the process and
cannot be used to satisfy cache misses by other processes. Using trace-
driven simulations, we compare partitioning with the normal LRU. The
partitioning is based on the fully-associative cache model. However,
simulation results demonstrate that this implementation works for both
fully-associative caches and set-associative caches.

4.1 Recording memory reference patterns

The miss-rate curves for each process are generated off-line. We record
the miss-rate curve for each process to represent its memory reference
pattern. For various cache sizes, a single process cache simulator is
applied to each process. This information can be reused for any com-
bination of processes as long as the cache configuration is the same2.

To incorporate the dynamically changing behavior of a process, a
set of miss-rate curves, one for each time period, are produced. At run-
time, the miss-rate curve is mapped to the appropriate time quantum.

4.2 The partitioning scheme

The overall flow of the partitioning scheme can be viewed as a set
of four modules: off-line recording, scheduler information, allocation,
and replacement (Figure 8). The scheduler provides the partition mod-
ule with the set of executing processes and their start/end times. The
partition module uses the miss-rate information for the processes to
calculate cache partitions at the end of each time quantum. Finally,
the replacement unit maps these partitions to the appropriate parts of
the cache.

The partition module decides the number of cache blocks that should
be dedicated to a process (Di). The Di most recently used cache blocks
of Process i are kept in the cache over other process’ time quanta, and
2 Note that for our fully-associative model, only the cache block size matters
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Record Files Scheduler

Partition Module Replacement Unit

    Add/remove a process,�
  End of a time quantum,�
The Length of a time quantum

Miss-rate �
    Curves

{X1,X2,...,XN}

{D1,D2,...,DN}

Fig. 8. The implementation of on-line cache partitioning.

Process i starts its time quantum with those cache blocks in the cache.
During its own time quantum, Process i can use all cache blocks that
are not reserved for other processes (S = C − ∑N

j=1,j �=i Dj).
In addition to LRU information, our replacement decision depends

on the number of cache blocks that currently belong to each process
(Xi), that is, the number of cache lines in the cache that currently
contain memory of that process. The LRU cache block of an active
process (i) is chosen if its actually allocation (Xi) is larger than or
equal to the desired one (Di + S ≤ Xi). Otherwise, the LRU cache
block of a dormant overallocated process is chosen. For set-associative
caches, there may be no cache block of the desired process in the set.
In this case, the LRU cache block of the set is replaced.

For set-associative caches, the fully-associative replacement policy
may result in replacing recently used data to keep useless data. Imagine
the case when a process starts to heavily access two or more addresses
that happen to be mapped to the same set. If the process already has
many cache blocks in other sets, our partitioning will allocate only a few
cache blocks in the accessed set for the process, causing lots of conflict
misses. To solve this problem, we can use better mapping functions [22,
6] or a victim cache [8].

When a Process i first starts, Di is set to zero since there is no cache
block that belongs to the process. At the end of Process i’s time quan-
tum, the partition module updates the information such as the miss-
rate curve(mi(x)) and the time quantum(Ti). If there is any change,
Di is also updated based on the cache model.

A cache partition specifies the amount of data in the cache at the
beginning of a process’ time quantum (Di), and the maximum cache



Analytical Cache Models 421

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (million memory references)

M
is

s−
ra

te

bzip2
swim 
gcc  
mesa 

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (million memory references)

M
is

s−
ra

te

vpr   
iu    
vortex
twolf 

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Cache Size (blocks)

M
is

s−
ra

te

swim 
bzip2
mesa 
gcc  

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cache Size (blocks)

M
is

s−
ra

te

vpr   
iu    
vortex
twolf 

(a) 

(b) 

Fig. 9. The characteristics of the benchmarks. (a) The change of a miss-rate
over time. (b) The miss-rate as a function of the cache size.
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space the process can use (C − ∑N
j=1,j �=i Dj). Therefore, the number

of misses for a process over one time quantum can be estimated from
Equation 21:

missi =
∫ Ti

0

mi(MIN [M−1
i (t + Mi(Di)), C −

N∑
j=1,j �=i

Dj ])dt (23)

where C is cache size, and N is the number of processes sharing the
cache.

The new value of Di is the integer, in the range [0, Xi], that mini-
mizes the total number of misses that is given by the following quantity:

N∑
p=1

∫ Tp

0

mp(MIN [M−1
p (t + Mp(Dp)), C −

N∑
q=1,q �=p

Dq])dt. (24)

4.3 Experimental verification

The case of eight processes sharing a 32-KB cache is simulated to eval-
uate model-based partitioning. Seven benchmarks (bzip2, gcc, swim,
mesa, vortex, vpr, twolf) are from SPEC CPU2000 [7], and one (the
image understanding program (iu)) is from a data intensive systems
benchmark suite [15]. The overall miss-rate with partitioning is com-
pared to the miss-rate only using the normal LRU replacement policy.

The simulations are carried out for fifty million memory references
for each time quantum. Processes are scheduled in a round-robin fash-
ion with the fixed number of memory references per time quantum.
Also, the number of memory references per time quantum is assumed
to be the same for the all eight processes. Finally, two record cycles
(P ), of ten million and one hundred thousand memory references, re-
spectively, are used for the model-based partitioning. The record cycle
represents how often the miss-rate curve is recorded for the off-line
profiling. Therefore, a shorter record cycle implies more detailed infor-
mation about a process’ memory reference pattern.

The characteristics of the benchmarks are illustrated in Figure 9.
Figure 9 (a) shows the change of a miss-rate over time. The x-axis
represents simulation time. The y-axis represents the average miss-rate
over one million memory references at a given time. As shown in the
figure, bzip2, gcc, swim and iu show abrupt changes in their miss-rate,
whereas other benchmarks have very uniform miss-rate characteristics
over time. Figure 9 (b) illustrates the miss-rate as a function of the
cache size. For a 32-KB fully-associative cache, benchmarks show miss-
rates between 1% and 5%.



Analytical Cache Models 423

Fully-associative result The results of cache partitioning for a fully-
associative cache are shown in Figure 10. In Figure 10 (a), the miss-
rates are averaged over 50 million memory references and shown for
various time quanta. As discussed in the cache model, the normal LRU
replacement policy is problematic for a certain range of time quanta. In
this case, the overall miss-rate increases dramatically for time quanta
between one thousand and ten thousand memory references. For this
problematic region, the model-based partitioning improves the cache
miss-rate by lowering it from 4.6% to 3.4%, which is about a 25% im-
provement. For short time quanta, the relative improvement is about
7%. For very long time quanta, the model-based partitioning shows the
exact same result as the normal LRU replacement policy. In general,
it is shown by the figure that the model-based partitioning always per-
forms at least as well as or better than the normal LRU replacement
policy. Also, the partitioning with a short record cycle performs better
than the partitioning with a long record cycle.

In our example of a 32-KB cache with eight processes (Figure 10),
the problematic time quanta are in the order of a thousand memory
references, which is very short for modern microprocessors. As a result,
only systems with very fast context switching, such as simultaneous
multi-threading machines [24, 11, 4], can be improved for this cache
size and workload. However, longer time quanta become problematic
if a cache is larger. Therefore, conventional time-shared systems with
very high clock frequency can also be improved by the same technique
if a cache is large.

Figure 10 (b) shows the change of a miss-rate over time rather than
an average miss-rate over the entire simulation. It is clear from the
figure how the short record cycle helps partitioning. In the figure, the
model-based partitioning with the long record cycle (P = 107) performs
worse than LRU at the beginning of a simulation, even though it out-
performs the normal LRU replacement policy overall. This is because
the model-based partitioning has only one average miss-rate curve for a
process. As shown in Figure 9, some benchmarks such as bzip2 and gcc
have a very different miss-rate at the beginning. Therefore, the average
miss-rate curves for those benchmarks do not work at the beginning
of the simulation, which results in worse performance than the nor-
mal LRU replacement policy. The model-based partitioning with the
short record cycle (P = 105), on the other hand, always outperforms
the normal LRU replacement policy. In this case, the model has cor-
rect miss-rate curves for all the time quanta, and partitions the cache
properly even for the beginning of processes.
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Fig. 10. The results of the model-based cache partitioning for a fully-
associative cache when eight processes (bzip2, gcc, swim, mesa, vortex, vpr,
twolf, iu) are sharing the cache (32 KB, fully associative). (a) the average
miss-rate for various time quanta. (b) the change of the miss-rate over time
with ten memory references per time quantum.
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Fig. 11. The results of the model-based cache partitioning for a set-
associative cache when eight processes (bzip2, gcc, swim, mesa, vortex, vpr,
twolf, iu) are sharing the cache (32 KB, 8-way associative).

Set-associative result The result of cache partitioning for a set-
associative cache is shown in Figure 11. The same set of benchmarks
are simulated with a 32-KB 8-way set-associative cache, and the same
miss-rate curves generated for a 32-KB fully-associative cache are used.
In this case, a 16 entry victim cache is added. In the figure, the model-
based partitioning improves the miss-rate about 4% for short time
quanta and up to 15% for mid-range time quanta. The figure demon-
strates that the model-based partitioning mechanism works reasonably
well for set-associative caches.

5 Conclusion

An analytical cache model to estimate overall miss-rate when multiple
processes are sharing a cache has been presented. The model obtains the
information about each process from its miss-rate curve, and combines
it with parameters that define the cache configuration and schedule of
processes. Interference among processes under the LRU replacement
policy is quickly estimated for any cache size and any time quantum,
and the estimated miss-rate is very accurate. A more important result
is that the model provides not only the overall miss-rate but also a very
good understanding of the effect of context switching. For example, the
model clearly shows that the LRU replacement policy is problematic
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for mid-range time quanta because the policy replaces the blocks of
least recently executed process that are more likely to be accessed in
the near future.

The analytical model has been applied to the cache partitioning
problem. A model-based partitioning method has been implemented
and verified by simulations. Miss-rate curves are recorded off-line and
partitioning is performed on-line according to the combination of pro-
cesses that are executing. Even though we have used an off-line profiling
method to obtain miss-rate curves, it should not be hard to approx-
imate the miss-rate curve on-line using a miss-rate monitoring tech-
nique. Therefore, a fully on-line cache partitioning method can be de-
veloped based on the model.

Only the cache partitioning problem has been studied in this paper.
However, as shown by the study of cache partitioning, our model can
be applied to any cache optimization problem that is related to the
problem of context switching. For example, it can be used to determine
the best combination of processes that can be run on each processor
of a multi-processor system. Also, the model is useful to identify areas
in which further research in improving cache performance would be
fruitful since it can easily provide the maximum improvement we can
expect in the area.
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Abstract. This paper proposes a dynamic cache partitioning
method for simultaneous multithreading systems. We present a
general partitioning scheme that can be applied to set-associative
caches at any partition granularity. Furthermore, in our scheme
threads can have overlapping partitions, which provides more
degrees of freedom when partitioning caches with low associa-
tivity.

Since memory reference characteristics of threads can change
very quickly, our method collects the miss-rate characteristics
of simultaneously executing threads at run-time, and partitions
the cache among the executing threads. Partition sizes are var-
ied dynamically to improve hit rates. Trace-driven simulation
results show a relative improvement in the L2 hit-rate of up to
40.5% over those generated by the standard least recently used
replacement policy, and IPC improvements of up to 17%. Our
results show that smart cache management and scheduling is
important for SMT systems to achieve high performance.

1 Introduction

Microprocessors with multiple functional units have low IPC (Instruc-
tions per Cycle) rates either because of a lack of parallelism, or be-
cause of a high incidence of data dependencies. Simultaneous Multi-
Threading, [15, 10, 6] (SMT), helps in the former case but, in the latter
case, it only exacerbates the stress on the memory subsystem, espe-
cially since the standard LRU replacement scheme treats all references
in the same way. Thus, a single thread can easily “pollute” the cache
with its data, causing higher miss rates for other threads, and resulting
in low overall performance.
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This paper presents a dynamic cache partitioning algorithm that
minimizes the overall cache miss rate for simultaneous multithread-
ing systems. Rather than relying on the standard least recently used
(LRU) cache replacement policy, our algorithm dynamically allocates
parts of the cache to the most needy threads using on-line estimates of
individual thread miss rates. The cache is assumed to be large enough
to support multiple contexts, but not large enough to hold all of the
working sets of the simultaneously executing threads. Although a 1997
study has shown that a 256-KB L2 cache, which is reasonable size for
modern microprocessors [8, 5, 11], is large enough for a particular set
of workloads [10], we believe that workloads have become much larger
and diverse; multimedia programs such as video or audio processing
software often consume hundreds of MB and many SPEC CPU2000
benchmarks now have memory footprints larger than 100 MB [9].

We propose a novel cache partitioning scheme wherein a cache miss
will only allocate a new cache block to a thread if its current allocation
is below its limit. To implement this scheme, we require counters in the
cache that provide on-line estimates of individual thread miss rates.
Based on these counters, we can augment LRU replacement to better
allocate cache resources to threads, or we can use Column caching [3],
which allows threads to be assigned to overlapping partitions, to par-
tition the cache. Simulation shows that the partitioning algorithm can
significantly improve both the miss-rate and the instructions per cycle
(IPC) of the overall workload.

In conventional time-shared systems, cache partitioning depends not
only on the active thread, but also on the memory reference pattern of
inactive threads which have run in the past, and will run again in the
near future. On the other hand, in SMT systems, multiple threads are
active at the same time, collectively stressing the memory system. Since
these threads very quickly use up cache resources once they start run-
ning, partitioning depends only on the memory reference characteristics
of the set of active threads. This differs from traditional time sharing
systems where one must also consider the length of the time quantum
and the characteristics of the ready, but not executing threads. Since
the memory references from each thread are interleaved very tightly,
one can consider an SMT system to be a traditional time-sharing sys-
tem with a context switch at each memory reference.1

1 In many systems, each page fault or disk access causes a context switch
and so disk cache partitioning schemes are somewhat relevant to SMT
cache partitioning.
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This paper is organized as follows. In Section 2, we describe related
work. In Section 3, we first study the optimal cache partitioning prob-
lem for the ideal case of fully associative caches that are partitionable
on a cache-block basis. We then extend our method to the more re-
alistic set-associative cache case. Section 4 evaluates the partitioning
method by simulations. Finally, Section 5 concludes the paper.

2 Related work

Stone, Turek and Wolf [12] investigated the optimal allocation of cache
memory between two competing processes that minimizes the overall
miss-rate of a cache. Their study focuses on the partitioning of instruc-
tion and data streams, which can be thought of as multitasking with a
very short time quantum, and shows that the optimal allocation occurs
at a point where the miss-rate derivatives of the competing processes
are equal. The LRU replacement policy appears to produce cache allo-
cations very close to optimal for their examples.

In previous work [13] we proposed an analytical cache model for
multitasking, and also studied the cache partitioning problem for time-
shared systems based on the model. That work is applicable to any
length of time quantum rather than just short time quantum, and shows
that the cache performance can be improved by partitioning a cache
into dedicated areas for each process and a shared area. However, the
partitioning was performed by collecting the miss-rate information of
each process off-line. The work of [13] did not investigate how to par-
tition the cache memory at run-time.

Thiébaut, Stone and Wolf applied their theoretical partitioning study
[12] to improve disk cache hit-ratios [14]. The model for tightly inter-
leaved streams is extended to be applicable for more than two processes.
They also describe the problems in applying the model in practice,
such as approximating the miss-rate derivative, non-monotonic miss-
rate derivatives, and updating the partition. Trace-driven simulations
for 32-MB disk caches show that the partitioning improves the relative
hit-ratios in the range of 1% to 2% over the LRU policy.

Our partition work differs from previous efforts. It works for set-
associative caches with multiple threads and a coarse-grained partition,
whereas Thiébaut et al. [14] only focused on disk caches that are fully-
associative with cache block granularity. Finally, this work discusses
an on-line method to partition the cache, whereas our previous only
covered partitioning based on off-line profiling [13].
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3 Partitioning algorithm

This section presents our cache partitioning algorithm. We lead up to
a general partitioning method in several steps. First, given a fully-
associative cache that can be partitioned on a cache-block basis and
knowing the miss-rate for each task as a function of partition size, we
show how an optimal partition is obtained by iteratively increasing the
partition size for the thread that will benefit the most. Next, we show
that it is possible to compute the miss rate functions on-line using many
hardware counters for a fully associative cache, and that it is possible
to approximate the miss-rate function using fewer counters in the case
of a set-associative cache. These results are then combined and applied
to the more practical case of coarse grained partitioning. Finally, the
algorithm to actually allocate cache blocks to each thread is developed.

3.1 Optimal cache partitioning

Given N executing threads sharing a cache of C blocks with parti-
tioning on a cache block granularity, the problem is to partition the
cache into N disjoint subsets of cache blocks so as to minimize the
overall miss-rate. For each thread, the miss-rate as a function of parti-
tion size (the number of cache blocks), is known. Let ci represent the
number of cache blocks allocated to the ith thread. A cache partition
is specified by the number of cache blocks allocated to each thread,
i.e., {c1, c2, ..., cN} . Since it is unreasonable to repartition the cache
every memory reference, the partition remains fixed over a time period,
π, that is long enough to amortize the repartitioning cost.

The number of cache misses for the ith thread over π is given by a
function of partition size (mi(x)). The optimal partition for the period
is the set of integer values {c1, c2, ..., cN}, that minimizes the following
expression:

total misses over time period π =
N∑

i=1

mi(ci) (1)

under the constraint that
∑N

i=1 ci = C. C is the total number of blocks
in the cache.

For the case where the number of misses for each thread is a strict
convex function of cache space, Stone, Turek and Wolf [12] noted that
finding the optimal partition, {c1, c2, ..., cN}, falls into the category
of separable convex resource allocation problems. The following, well-
known, simple greedy algorithm yields an optimal partition [12, 7]:
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1. Let the marginal gain, gj(x), be the number of additional hits for
the jth thread, when the allocated cache blocks increases from x to
x + 1.

2. Initialize c1 = c2 = ... = cN = 0.
3. Increase by one the number of cache blocks assigned to the thread

that has the maximum marginal gain given the current allocation.
Increase cj by one, where j is the index for which gj(cj) is largest.

4. Repeat step 3 until all cache blocks are assigned (i.e C times).

3.2 Computing the marginal gain

The computation of the marginal gain, gi(x), depends on the the miss
rate for task i as a function of the cache partition size, mi(x), over
a time period, π. For a fully associative LRU cache, it is possible to
compute mi(x) on-line using C counters. When a task references a data
item in the cache that is the kth most recently referenced item, then
counter k for task i is increased. At the end of the time period, these
counters form the miss rate function for each task, as described below.
The description below applies to the general case of a set-associative
cache.

To perform dynamic cache partitioning, the marginal gains of hav-
ing one more cache block can be estimated on-line. As discussed in
the previous section, gi(x) is the number of additional hits that the
ith thread can obtain by having x + 1 cache blocks compared to the
case when it has x blocks. Assuming the LRU replacement policy is
used, gi(0) represents the number of hits on the most recently used
cache block of the ith thread, gi(1) represents the number of hits on
the second most recently used cache block of the ith thread, and so on.

For each thread, a set of counters, one for each associativity (way) of
the cache, is maintained. On every cache hit, the corresponding counter
is increased. That is, if the hit is on the most recently used cache
block of the thread, the first counter is increased by one, and so on.
The kth counter value represents the number of additional hits for the
thread by having the kth way. If we ignore the degradation due to low
associativity, the kth counter value can also be thought of as the number
of additional hits for a cache with k ·S blocks compared to a cache with
(k− 1) ·S blocks, where S is the number of cache sets. Therefore, gi(x)
satisfies the following equation.

k·S−1∑

x=(k−1)·S
gi(x) = counti(k) (2)
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where counti(k) represents the kth counter value of the ith thread.
To estimate marginal gains from Equation 2, assume that gi(x) is a

straight line for x between k ·S and (k +1) ·S − 1. This approximation
is very simple to calculate and yet shows reasonable performance in
partitioning. This is especially true in the case of large L2 (level 2)
caches, which only see memory references that are filtered by L1 (level
1) caches, and often show the miss-rate that is proportional to cache
size. To be more accurate, gi(x) can be assumed to be a form of an
power function, e.g., a · xb. Empirical studies showed that the power
function often accurately estimates the miss-rate [4].

Since characteristics of threads change dynamically, the estimation
of gi(x) should reflect the changes. This is achieved by giving more
weight to the counter value measured in more recent time periods. After
every T memory references, we multiply each counter by δ, which is
between 0 and 1. As a result, the effect of hits in previous time periods
exponentially decays.
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Fig. 1. The miss-rate of art as a function of cache blocks.

The number of misses for a real application is often not strictly con-
vex as illustrated in Figure 1. The figure shows the miss-rate curve of
art from the SPEC CPU2000 benchmark suite [9] for a 32-way 1-MB
cache. As long as the miss-rate curve is convex, the marginal gain func-
tion decreases, and at the non-convex points, the marginal gain function
will increase. In theory, every possible partition should be compared to
obtain the optimal partition for non-convex miss-rate curves. However,
non-convex curves can be approximated by a combination of a few con-
vex curves. For example, the miss-rate of art can be approximated by
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two convex curves, one before the steep slope and one after that. Once a
curve only has a few non-convex points, the convex resource allocation
algorithm can be used to guarantee the optimal solution for non-convex
cases.

1. For each thread, i, compute the ρi non-convex points of its miss-rate
curve: {pi,1, pi,2, ..., pi,ρi}, gi(pi,j) < gi(pi,j + 1).

2. Execute the convex algorithm with ci initialized to 0 or pi,j , ∀j.
3. Repeat step 2 for all possible initializations, and choose the parti-

tion that results in the maximum
∑N

i=1 mi(ci).

3.3 Coarse granularity partitioning

Since it is rather expensive to control each cache block, practical par-
titioning mechanisms perform allocation of chunks of cache blocks, re-
ferred to as a partition block. We will use D to refer to the number of
cache blocks in a partition block. We allow the allocation of one par-
tition block to multiple threads and let the replacement policy decide
the cache block level partition.

First, consider the no sharing case where each partition block is al-
located to only one thread. The algorithm for cache block granularity
partitioning can be directly applied. Define the partition marginal gain
as gi(x) = mi(x · D) − mi((x + 1) · D) and use the greedy algorithm
to assign one partition block at a time, resulting in an optimal par-
tition without sharing. However, sharing a partition block is essential
to achieve high performance with coarse granularity partitioning. For
example, when there are many more threads than partition blocks. It
is obvious that threads must share partition blocks in order to use the
cache.

Knowing the number of misses for each thread as a function of cache
space, the effect of sharing partition blocks can be evaluated once the
allocation of the shared blocks by the LRU replacement policy is known.
Consider the case when Nshare threads share Bshare partition blocks.
Since each partition block consists of D cache blocks, the case can be
thought of as Nshare threads sharing Bshare · D cache blocks. Since
SMT systems tightly interleave memory references of the threads, the
replacement policy can be thought of as random.

Define Bdedicate,i as the number of partition blocks that are allo-
cated to the ith thread exclusively, and xi as the number of cache blocks
that belongs to the ith thread. Since the replacement can be considered
as random, the number of replacements for a certain cache region is
proportional to the size of the region.
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The number of misses that replaces the cache block in the shared
space mshare,i(x) can be estimated as follows.

mshare,i(x) =
Bshare

Bdedicate,i + Bshare
· mi(x). (3)

Under the random replacement, the number of cache blocks belong-
ing to each process for the shared area is proportional to the number of
cache blocks that each process brings into the shared area. Therefore,
xi can be written by

xi = Bdedicate,i · S +
mshare,i(xi)∑N

j=1 mshare,j(xj)
· (Bshare · S). (4)

Since xi is on both the left and right sides of Equation 4, an iterative
method can be used to estimate xi starting with a initial value that is
between Bdedicate,i · S and (Bdedicate,i + Bshare) · S.

3.4 Partitioning mechanisms

For set-associative caches, various partitioning mechanisms can be used
to actually allocate cache space to each thread. One way to partition
the cache is to modify the LRU replacement policy which has the ad-
vantage of controlling the partition at cache block granularity, but LRU
implementations can be expensive for high-associativity caches.

On the other hand, there are mechanisms that operate at coarse
granularity. Page coloring [1] can restrict virtual address to physical
address mapping, and as a result restrict cache sets that each thread
uses. Column Caching [3] can partition the cache space by restricting
cache columns (ways) that each thread can replace. However, it is rel-
atively expensive to change the partition in these mechanisms, and the
mechanisms support a limited number of partition blocks. In this sec-
tion, we describe the modified LRU mechanism and column caching to
be used in our experiments.

Modified LRU replacement In addition to LRU information, the
replacement decision depends on the number of cache blocks that be-
longs to each thread (bi). On a miss, the LRU cache block of the thread
(i) that caused the miss is chosen to be replaced if its actually allocation
(bi) is larger than the desired one (xi ≤ bi). Otherwise, the LRU cache
block of another over-allocated thread is chosen. For set-associative
caches, there may be no cache block of the desired thread in the set, so
the LRU cache block of a randomly chosen thread is replaced.
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Column caching Column caching is a mechanism that allows parti-
tioning of a cache at column or “way” granularity. A standard cache
considers all cache blocks in a set as candidates for replacement. As a
result, a process’ data can occupy any cache block. Column caching, on
the other hand, restricts the replacement to a sub-set of cache blocks,
which essentially partitions the cache.

Column caching specifies replacement candidacy using a bit vector
in which a bit indicates if the corresponding column is a candidate for
replacement. A LRU replacement unit is modified so that it replaces
the LRU cache block from the candidates specified by a bit vector. Each
partitionable unit has a bit vector. Since lookup is precisely the same
as for a standard cache, column caching incurs no performance penalty
during lookup.

4 Experimental results

This section presents the results of a trace-driven simulation system
in order to understand the quantitative effects of our cache allocation
scheme. The simulations concentrate on an 8-way set-associative L2
cache with 32-Byte blocks and vary the size of the cache over a range
of 256 KB to 4 MB. Due to large space and long latency, our scheme
is more likely to be useful for an L2 cache, and so that is the focus of
our simulations. We note in passing, that we believe our approach will
work on L1 caches as well.

Name Thread Description

Mix-1 art Image Recognition/Neural Network
mcf Combinatorial Optimization

Mix-2 vpr FPGA Circuit Placement and Routing
bzip2 Compression
iu Image Understanding

Mix-3 art1 Image Recognition/Neural Network
art2

mcf1 Combinatorial Optimization
mcf2

Table 1. The benchmark sets simulated. All but the Image Understanding
benchmark are from SPEC CPU-2000.

Three different sets of benchmarks are simulated, see Table 1. The
first set (Mix-1) has two threads, art and mcf both from SPEC CPU2000.
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The second set (Mix-2) has three threads, vpr, bzip2 and iu. Finally,
the third set (Mix-3) has four threads, two copies of art and two copies
of mcf, each with a different phase of the benchmark.

4.1 Hit-rate comparison

The simulations compare the overall hit-rate of a standard LRU re-
placement policy and the overall hit-rate of a cache managed by our
partitioning algorithm. The partition is updated every two hundred
thousand memory references (T = 200000), and the weighting factor is
set as δ = 0.5. These values have been arbitarily selected; more care-
fully selected values of T and δ are likely to give better results. The
hit-rates are averaged over fifty million memory references and shown
for various cache sizes (see Table 2).

Size L1 L2 Part. L2 Abs. Rel.
(MB) %Hits %Hits %Hits %Imprv. %Imprv.

art + mcf

0.2 15.6 15.3 -0.2 -1.5
0.5 17.2 16.4 -0.8 -4.6

1 71.9 26.2 36.9 10.6 40.4
2 50.0 51.1 1.1 2.2
4 76.7 75.0 -1.6 -2.2

vpr + bzip2 + iu

0.2 22.9 22.1 -0.8 -3.6
0.5 27.5 28.2 0.6 2.5

1 95.4 33.5 35.8 2.3 7.0
2 59.6 66.3 6.6 11.2
4 81.3 81.5 0.2 0.2

art1 + mcf1 + art2 + mcf2

0.2 12.0 12.6 0.6 5.3
0.5 14.2 14.3 0.1 0.7

1 71.5 16.9 19.0 2.1 12.5
2 26.6 34.9 8.2 31.0
4 50.5 51.3 0.7 1.5

Table 2. Hit-rate Comparison between the standard LRU and the parti-
tioned LRU.

The simulation results show that the partitioning can improve the
L2 cache hit-rate significantly: for cache sizes between 1 MB to 2 MB,
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partitioning improved the hit-rate up to 40% relative to the hit-rate
from the standard LRU replacement policy. For small caches, such as
256-KB and 512-KB caches, partitioning does not seem to help. We
conjecture that the size of the total workloads is too large compared to
the cache size. At the other extreme, partitioning cannot improve the
cache performance if the cache is large enough to hold all the work-
loads. The range of cache sizes for which partitioning can improve per-
formance depends on both the number of simultaneous threads and the
characteristics of the threads. Considering that SMT systems usually
support eight simultaneous threads, cache partitioning can improve the
performance of caches in the range of up to tens of MB.

The results also demonstrate that the benchmark sets have large
footprints. For all benchmark sets, the hit-rate improves by 10% to 20%
as the cache size doubles. This implies that these benchmarks need a
large cache, and therefore executing benchmarks simultaneously can
degrade the memory system performance significantly.

4.2 Effect of partitioning on IPC

Although improving the hit-rate of the cache also improves the per-
formance of the system, modern superscalar processors can hide mem-
ory latency by executing other instructions that are not dependent on
missed memory references. Therefore, the effect of cache partitioning
on the system performance, and in particular on IPC (Instructions Per
Cycle), is evaluated based on entire system simulations.

The simulation results in this section are produced by SimpleScalar
tool set [2]. SimpleScalar is a cycle-accurate processor simulator that
supports out-of-order issue and execution. Our processor model for the
simulations can fetch and commit 4 instructions at a time, and has 4
ALUs and 1 multiplier for integers and floating points respectively. To
be consistent with the trace-driven simulations, 32-KB 8-way L1 caches
with various sizes of 8-way L2 caches are simulated. L2 access latency
is 6 cycles and main memory latency is 16 cycles.

Figure 2 (a) shows the IPC of two benchmarks (art and mcf) as a
function of L2 cache size. Each benchmark is simulated separately and
is allocated all system resources including all of the L2 cache. L1 caches
are assumed to be 32-KB 8-way for all cases. For various L2 cache sizes,
IPC is estimated as a function of the L2 hit-rate (Figure 2 (b)).

The figures illustrate two things. First, the IPC of art is very sen-
sitive to the cache size. The IPC almost doubles if the L2 cache size is
increased from 1 MB to 4 MB. Second, the IPCs of these two bench-
marks are relatively low considering there are 10 functional units (5 for
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Fig. 2. IPC of art and mcf under 32-KB 8way L1 caches and various size
8-way L2 caches. (a) IPC as a function of cache size. (b) IPC as a function
of L2 hit-rate.

integer, 5 for floating point instructions). Since the utilizations of the
functional units are so low, executing these two benchmarks simulta-
neously will not cause many conflicts in functional resources.

When executing the threads simultaneously the IPC values are ap-
proximated from Figure 2 (b) and the hit-rates are estimated from the
trace-driven simulations (of the previous subsection). For example, the
hit-rates of art and mcf are 25.79% and 26.63%, respectively, if two
threads execute simultaneously with a 32-KB 8-way L1 cache and a
1-MB 8-way L2 cache, from trace-driven simulation. From Figure 2 (b)
the IPC of each thread for the given hit-rates can be estimated as
0.594 and 0.486. Assuming no resource conflicts, the IPC with SMT
can be approximated as the sum, 1.08. This approximation bounds the
maximum IPC that can be achieved by SMT.

Table 3 summarizes the approximated IPC for SMT with a L2 cache
managed by the standard LRU replacement policy and one with a L2
cache managed by our partitioning algorithm. The absolute improve-
ment in the table is the IPC of the partitioned case subtracted by the
IPC of the standard LRU case. The relative improvement is the im-
provement relative to the IPC of the standard LRU, and is calculated
by dividing the absolute improvement by the IPC of the standard LRU.
The table shows that the partitioning algorithm improves IPC for all
cache sizes up to 17%.
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Cache LRU Partition Abs. Rel.
Size Hit-rate(%) IPC Hit-rate(%) IPC Improv. Improv.

(MB) art mcf art mcf (%) (%)

art + mcf

0.25 8.8 20.4 1.064 8.0 20.5 1.065 0.001 0.09
0.5 10.3 22.2 1.067 14.5 17.8 1.070 0.003 0.28

1 25.7 26.6 1.080 61.6 19.5 1.167 0.087 8.06
2 63.7 40.3 1.189 76.8 33.1 1.347 0.158 13.29

art1 + mcf1 + art2 + mcf2

0.25 6.4/6.7 16.4/15.2 2.123 6.5/3.5 29.8/11.3 2.126 0.003 0.14
0.5 7.3/7.6 19.5/18.2 2.128 7.7/4.6 30.7/15.2 2.131 0.003 0.14

1 9.3/10.1 22.1/21.4 2.134 9.1/32.4 31.1/13.5 2.161 0.027 1.27
2 25.1/25.5 28.1/25.1 2.160 57.2/73.2 32.0/16.0 2.456 0.307 14.21
4 63.9/63.6 41.7/41.2 2.382 73.9/86.7 49.5/26.6 2.786 0.404 16.96

Table 3. IPC Comparison between the standard LRU and the partitioned
LRU strategy for the case of executing art and mcf simultaneously.

The experiment results also show that SMT should manage caches
carefully. In the case of four threads with a 2-MB cache, SMT can
achieve the overall IPC of 2.160 from Table 3. However, if you only
consider one thread (art1), its IPC is only 0.594 whereas it can achieve
an IPC of 1.04 alone (Figure 2). The performance of a single thread
is significantly degraded by sharing caches. Moreover, the performance
degradation by cache interference will become even more severe as the
latency to the main memory increases. This problem can be solved by
smart partitioning of cache memory for some cases. If the cache is too
small, we believe that the thread scheduling should be changed.

5 Conclusion

Low IPC can be attributed to two factors, data dependency and mem-
ory latency. SMT mitigates the first factor but not the second. We have
discovered that SMT only exacerbates the problem when the executing
threads require large caches. That is, when multiple executing threads
interfere in the cache, even SMT cannot utilize all the functional units
because not all required data is present in the memory.

We have studied one method to reduce cache interference among
simultaneously executing threads. Our on-line cache partitioning algo-
rithm estimates the miss-rate characteristics of each thread at run-time,
and dynamically partitions the cache among the threads that are exe-
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cuting simultaneously. The algorithm estimates the marginal gains as a
function of cache size and uses a search algorithm to find the partition
that minimizes the total number of misses.

The hardware overhead for the modifications proposed in this paper
are minimal. A small number of additional counters is required. The
counters are updated on cache hits, however, they are not on the crit-
ical path and so a small buffer can absorb any burstiness. To actually
partition the cache, we can modify the LRU replacement hardware in a
simple way to take the values of the counters into account. Or, we can
use column caching which requires a small number of additional bits in
the TLB entries, and a small amount of off-critical-path circuitry that
is invoked only during a cache miss.

The partitioning algorithm has been implemented in a trace-driven
cache simulator. The simulation results show that partitioning can im-
prove the cache performance noticeably over the standard LRU replace-
ment policy for a certain range of cache size for given threads. Using a
full-system simulator, the effect of partitioning on the instructions per
cycle (IPC) has also been studied. The preliminary results show that
we can also expect IPC improvement using the partitioning algorithm.
While we have not used a full SMT simulator to generate IPC num-
bers, the large improvements obtained in hit rates lead us to believe
that significant IPC improvements will be obtained using a full SMT
simulator, or on real hardware.

The simulation results have shown that our partitioning algorithm
can solve the problem of thread interference in caches for a range of
cache sizes. However, partitioning alone cannot improve the perfor-
mance if caches are too small for the workloads. Therefore, threads
that execute simultaneously should be selected carefully considering
their memory reference behavior. Cache-aware job scheduling is a sub-
ject of our ongoing work.

Even without SMT, one can view an application as multiple threads
executing simultaneously where each thread has memory references to a
particular data structure. Therefore, the result of this investigation can
also be exploited by compilers for a processor with multiple functional
units and some cache partitioning control.
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Abstract. We develop a new metric for job scheduling that in-
cludes the effects of memory contention amongst simultaneously-
executing jobs that share a given level of memory. Rather than
assuming each job or process has a fixed, static memory re-
quirement, we consider a general scenario wherein a process’
performance monotonically increases as a function of allocated
memory, as defined by a miss-rate versus memory size curve.
Given a schedule of jobs in a shared-memory multiprocessor
(SMP), and an isolated miss-rate versus memory size curve for
each job, we use an analytical memory model to estimate the
overall memory miss-rate for the schedule. This, in turn, can
be used to estimate overall performance. We develop a heuris-
tic algorithm to find a good schedule of jobs on a SMP that
minimizes memory contention, thereby improving memory and
overall performance.

1 Introduction

High performance computing is more than just raw FLOPS; it is also
about managing the memory among parallel threads so as to keep the
operands flowing into the arithmetic units. Hence, some high perfor-
mance job schedulers are beginning to consider the memory require-
ments of a job in addition to the traditional CPU requirements. But
memory is spread across a hierarchy, it is difficult to know the real re-
quirements of each job, and underallocation of space to one job can ad-
versely affect the performance of other jobs. Allocating a fixed amount
of space to a job regardless of the needs of the other concurrently ex-
ecuting jobs can result in suboptimal performance. We argue that a
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scheduler must compare the marginal utility or marginal gain accrued
by a job to the gains accrued by other jobs, when giving more memory
to a job.

Shared-memory multiprocessors (SMPs) [2, 8, 9], have become a ba-
sic building block for modern high performance computer systems, and
in the near future, other layers of the memory hierarchy will be shared
as well, with multiple processors (MPC) on a chip [3] and simultaneous
multithreading (SMT) systems [13, 10, 4]. So, in nearly all high per-
formance systems, there will be either threads, processes, or jobs that
execute simultaneously and share parts of the memory system. But how
many jobs should execute simultaneously? There is no magic number,
rather it depends on the individual memory requirements of the jobs.
Sometimes, it is even beneficial to let some processors remain idle so
as to improve the overall performance.

Although most research on job scheduling for high performance par-
allel processing is concerned only with the allocation of processors in
order to maximize processor utilization [5, 6], scheduling with memory
considerations is not new. Parsons [11] studied bounds on the achievable
system throughput considering memory demand of parallel jobs. Batat
[1] improved gang scheduling by imposing admission control based on
the memory requirement of a new job and the available memory of
a system. The modified gang scheduler estimates the memory require-
ment for each job, and assigns a job into a time slice only if the memory
is large enough for all jobs in the time slice. Although these works have
pointed out the importance of considering memory in job scheduling
problems, they did not provide a way of scheduling jobs to optimize
the memory performance.

Rather than assuming each job or process has a fixed, static memory
requirement, this paper considers a general scenario wherein a process’
performance monotonically increases as a function of allocated mem-
ory. The characteristics of each process’ memory usage are given by the
miss-rate as a function of memory size when the process is executed
in isolation (which can be easily obtained either in an on-line or off-
line manner). With this information, an analytical memory model for
time-shared systems [12] can be used to estimate the memory miss-rate
for each job and the processor idle time for a given schedule. There-
fore, our approach provides a good memory performance metric for job
scheduling problems.

The new approach based on the miss-rate curves and the analyti-
cal model can be used to evaluate a schedule including the effects of
memory performance. If multiple processors share the same memory,
our method can effectively schedule a given set of processes to minimize
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memory contention. Finally, the length of time slices can be determined
for time-shared systems so as to minimize pollution effects.

The paper is organized as follows. In Section 2, we present a case
study of scheduling SPEC CPU2000 benchmarks, which demonstrates
the importance and challenges of job scheduling with memory consid-
erations. Section 3 motivates isolated miss-rate curves, and describes
how an analytical memory model evaluates the effect of a given schedule
on the memory performance. Section 4 discusses new challenges that
memory considerations impose on parallel job scheduling, and suggests
possible solutions using the miss-rate curves and the model. Finally,
Section 5 concludes the paper.

2 Case Study: SPEC CPU2000

This section discusses the results of trace-driven simulations that es-
timate the miss-rate of main memory when six jobs execute on a shared-
memory multiprocessor system with three processors. The results demon-
strate the importance of memory-aware scheduling and the problem of
naive approaches based on footprint sizes.

Name Description Footprint (MB)

bzip2 Compression 6.2

gcc C Programming Language Compiler 22.3

gzip Compression 76.2

mcf Image Combinatorial Optimization 9.9

vortex Object-oriented Database 83.0

vpr FPGA Circuit Placement and Routing 1.6

Table 1. The descriptions and Footprints of benchmarks used for the simu-
lations. All benchmarks are from SPEC CPU2000 [7] benchmark suite.

Six jobs, which have various footprint sizes, are selected from SPEC
CPU2000 benchmark suite [7] (See Table 1). Here, footprint size repre-
sents the memory size that a benchmark needs to achieve the minimum
possible miss-rate. Benchmarks in the SPEC CPU2000 suite are not
parallel jobs, however, the insights obtained from the experiments are
also valid for parallel processing of multi-threaded jobs since all threads
(or processes) from a job can be considered as one large process from
the main memory standpoint.
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Concurrent execution of six jobs by three processors requires time-
sharing. We assume that there are two time slices long enough to render
context switching overhead negligible. In the first time slice, three out
of the six jobs execute sharing the main memory and in the second time
slice the three remaining jobs execute. Processors are assumed to have
4-way 16-KB L1 instruction and data caches and a 8-way 256-KB L2
cache, and 4-KB pages are assumed for the main memory.

Memory Average of Worst Case Best Case
Size (MB) All Cases

8 Miss-Rate(%) 1.379 2.506 1.019
Schedule (ADE,BCF) (ACD,BEF)

16 Miss-Rate(%) 0.471 0.701 0.333
Schedule (ADE,BCF) (ADF,BCE)

32 Miss-Rate(%) 0.187 0.245 0.148
Schedule (ADE,BCF) (ACD,BEF)

64 Miss-Rate(%) 0.072 0.085 0.063
Schedule (ABF,CDE) (ACD,BEF)

128 Miss-Rate(%) 0.037 0.052 0.029
Schedule (ABF,CDE) (ACD,BEF)

256 Miss-Rate(%) 0.030 0.032 0.029
Schedule (ABF,CDE) (ACD,BEF)

Table 2. The miss-rates for various job schedules. A schedule is represented
by two sets of letters. Each set represents a time slice, and each letter repre-
sents a job: A-bzip2, B-gcc, C-gzip, D-mcf, E-vortex, F-vpr.

All possible schedules are simulated for various memory sizes. We
compare the average miss-rate of all possible schedules with the miss-
rates of the worst and the best schedule. The miss-rate only considers
accesses to main memory, not accesses that hit on either L1 or L2
caches. The simulation results are summarized in Table 2 and Figure 1.
In the table, a corresponding schedule for each case is also shown. In
the 128-MB and 256-MB cases, many schedules result in the same miss-
rate. A schedule is represented by two sets of letters. Each set represents
a time slice, and each letter represents a job: A-bzip2, B-gcc, C-gzip,
D-mcf, E-vortex, F-vpr. In the figure, the miss-rates are normalized
to the average miss-rate.
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Fig. 1. The comparison of miss-rates for various schedules: the worst case,
the best case, and the average of all possible schedules. The miss-rates are
normalized to the average miss-rate of all possible schedules for each memory
size. Notice that even when the memory is large enough to hold all the
footprints of the executing jobs, the set of jobs that execute together has an
effect on the miss-rate.

The results demonstrate that job scheduling can have significant
effects on the memory performance, and thus the overall system per-
formance. For 16-MB memory, the best case miss-rate is about 30%
better than the average case, and about 53% better than the worst case.
Given a very long page fault penalty, performance can be significantly
improved due to this large reduction in miss-rate. As the memory size
increases, scheduling becomes less important since the entire workload
fits into the memory. However, the smart schedule can still improve the
memory performance significantly even for the 128-MB case (over 20%
better than the average case, and 40% better than the worst case).

Memory traces used in this experiment have footprints smaller than
100 MB. As a result, scheduling of simultaneously executing processes
is relevant to the main memory performance only for the memory up to
256 MB. However, many parallel applications have very large footprints
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often larger than main memory. For these applications, the memory size
where scheduling matters should scale up.

An intuitive way of scheduling with memory considerations is to use
footprint sizes. Since the footprint size of each job indicates its memory
space needs, one can try to balance the total footprint size for each
time slice. It also seems to be reasonable to be conservative and keep
the total footprint size smaller than available physical memory. The
experimental results show that these naive approaches do not work.

Balancing the total footprint size for each time slice may not work
for memory smaller than the entire footprint. The footprint size of each
benchmark only provides the memory size that the benchmark needs to
achieve the best performance, however, it does not say anything about
having less memory space. For example, in our experiments, executing
gcc, gzip and vpr together and the others in the next time slice seems
to be reasonable since it balances the total footprint size for each time
slice. However, this schedule is actually the worst schedule for memory
smaller than 128-MB, and results in a miss-rate that is over 50% worse
than the optimal schedule.

If the replacement policy is not ideal, even being conservative and
having larger physical memory than the total footprint may not be
enough to guarantee the best memory performance. Smart scheduling
can still improve the miss-rate by about 10% over the worst case even
for 256-MB memory that is larger than the total footprint size of any
three jobs from Table 1. This happens because the LRU replacement
policy does not allocate the memory properly. (For a certain job, the
LRU policy may allocate memory larger than the footprint of the job).

3 New approach based on miss-rate curves

The previous section pointed out that the conventional scheduling ap-
proaches based on static footprints are very limited. This section pro-
poses a new approach based on the isolated miss-rate curve, mi(x).
After defining the isolated miss-rate curve, an analytical model is de-
veloped that incorporates the effect of time-sharing and memory con-
tention based on the miss-rate curves. Using these curves and the
model, we show how to evaluate a given schedule.

3.1 Miss-rate curves

The isolated miss-rate curve for process i, namely mi(x), is defined
as the miss-rate when process i is isolated without other competing
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processes using the memory of size x. Effectively, this miss-rate curve
represents the miss-rate when a process occupies only a part of the
entire memory.
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Fig. 2. (a) Miss-rate curve for process PA (gcc). (b) Miss-rate curve for pro-
cess PB (swim). (c) Miss-rate curve for process PC (bzip2). Clearly, process
PA’s miss-rate does not reduce very much after the point marked xA. Sim-
ilarly, for process PB after the point marked xB. If xA + xB is less than
the total memory size available, then it is likely that processes PA and PB

can both be run together, achieving good performance, especially if they are
restricted to occupy an appropriate portion of the cache. On the other hand,
process PC has a different type of miss-rate curve, and will likely not run
well with either PA or PB .

The advantage of having a miss-rate curve rather than static foot-
prints is clear for the problem of scheduling processes for shared-memory
systems. Consider the case of scheduling three processes, whose miss-
rate curves are shown in Figure 2, on a shared-memory system with
two processors. Which two processes should run together? This ques-
tion cannot be answered based on the static footprints since the memory
is smaller than the individual footprints. However, from the miss-rate
curves, it is clear that running both PA and PB simultaneously and PC

separately will result in a lower miss-rate than running PA or PB with
PC .
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3.2 Estimating the miss-rate curves

The miss-rate curves can be obtained either on-line or off-line. Here,
an on-line method to estimate a miss-rate curve mi(x) is described. We
use the LRU information of each page and count the number of hits
in the kth most recently used page for each process (counteri[k]). For
example, counteri[1] is the number of hits in the most recently used
page of process i, and counteri[2] is the number of hits in the second
most recently used page. If we count hits for one time slice, mj(x) and
counterj [k] have the following relation.

counteri[k] = (mi(k − 1) − mi(k)) · ri. (1)

where ri is the number of memory accesses for process i over one time
slice. Since mj(0) = 1, we can calculate the miss-rate curve recursively.

3.3 Modeling memory contention

Although isolated miss-rate curves provide much more information than
static footprints, the miss-rate curves alone are still not enough to pre-
dict the effects of memory contention under a non-ideal replacement
policy or under the effects of time-sharing. This subsection explains
how a previously developed analytical model can be extended to accu-
rately estimate the overall miss-rate incorporating both space-sharing
effects and time-sharing effects. First, the original uniprocessor model
of [12] is briefly summarized. Then, we discuss how this original model
can be applied to parallel jobs on shared-memory multiprocessor sys-
tems.

Uniprocessor model The cache model from [12] estimates the overall
miss-rate for a fully-associative cache when multiple processes time-
share the same cache (memory) on a uniprocessor system. There are
three inputs to the model: (1) the memory size (C) in terms of the
number of memory blocks (pages), (2) job sequences with the length
of each process’ time slice (Ti) in terms of the number of memory
references, and (3) the miss-rate curve for each process (mi(x)). The
model assumes that the least recently used (LRU) replacement policy
is used, and that there are no shared data structures among processes.

Let us consider a case when N processes execute with a given sched-
ule (sequences of processes) and fixed time quanta for each process
(Ti). First, the number of misses for each process’ time quantum is
estimated. Then, the overall miss-rate is obtained by combining the
number of misses for each process.
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Define the footprint of process i, xi(t), as the amount of process i’s
data in the memory at time t where time t is 0 at the beginning of the
process’ time quantum. Then, xi(t) is approximated by the following
recursive equation, once xi(0) is known 1;

xi(t + 1) = MIN [xi(t) + mi(xi(t)), C], (2)

where C is the size of memory in terms of the number of blocks.
The miss-rate curve, mi(x), can be considered as the probability to

miss when x valid blocks are in the memory. Therefore, the number of
misses that process i experiences over one time quantum is estimated
from the footprint of the process xi(t) as follows;

missi =
∫ Ti

0

mi(xi(t))dt. (3)

Once the number of misses for each process is estimated, the overall
miss-rate is straightforwardly calculated from those numbers.

miss-rateoverall =
∑N

i=1 missi∑N
i=1 Ti

(4)

Extension to multiprocessor cases The original model assumes
only one process executes at a time. Here, we describe how the original
model can be applied to multiprocessor systems where multiple pro-
cesses can execute simultaneously sharing the memory. Although the
model can be applied to more general cases, we consider the situation
where all processors context switch at the same time; more complicated
cases can be modeled in a similar manner.

No matter how many processes are executing simultaneously shar-
ing the memory, all processes in a time slice can be seen as one big
process from the standpoint of memory. Therefore, we take a two-step
approach to model shared-memory multiprocessor cases. First, define
a conceptual process for each time slice that includes memory accesses
from all processes in the time slice, which we call a combined process.
Then, the miss-rate for the combined process of each time slice is es-
timated using the original model. Finally, the uniprocessor model is
used again to incorporate the effects of time-sharing assuming only the
combined process executes for each time slice.
1 The estimation of xi(0) and more accurate xi(t) can be found in our pre-

vious work [12].
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What should be the miss-rate curve for the combined process of a
time slice? Since the original model for time-sharing needs isolated miss-
rate curves, the miss-rate curve of each time-slice s is defined as the
overall miss-rate of all processes in time slice s when they execute to-
gether without context switching on the memory of size x. We call
this miss-rate curve for a time slice as a combined miss-rate curve
mcombined,s(x). Next we explain how to obtain the combined miss-rate
curves.

The simultaneously executing processes within a time slice can be
modeled as time-shared processes with very short time quanta. There-
fore, the original model is used to obtain the combined miss-rate curves
by assuming the time quantum is refs,p/

∑P
i=1 refs,i for processor p in

time-slice s. refs,p is the number of memory accesses that processor
p makes over time slice s. The following paragraphs summarize this
derivation of the combined miss-rate curves. Here, we use ms,p to rep-
resent the isolated miss-rate curve for the process that executes on
processor p in time slice s.

Let xs,p(ks,p) be the number of memory blocks that processor p
brings into memory after ks,p memory references in time slice s. The
following equation estimates the value of xs,p(ks,p):

ks,p =
∫ xs,p(ks,p)

0

1
ms,p(x′)

dx′. (5)

Considering all P processors, the system reaches the steady-state after
Ks memory references where Ks satisfies the following equation.

P∑
p=1

xs,p(α(s, p) · Ks) = x. (6)

In the above equation, x is the number of memory blocks, and α(s, p) is
the length of a time slice for processor p, which is equal to refs,p/

∑P
i=1 refs,i.

In steady-state, the combined miss-rate curve is given by

mcombined,s(x) =
P∑

p=1

α(s, p) · ms,p(xp(α(s, p) · Ks)). (7)

Now we have the combined miss-rate curve for each time-slice. The
overall miss-rate is estimated by using the original model assuming
that only one process executes for a time slice whose miss-rate curve is
mcombined,s(x).
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Dealing with shared memory space The model described so far
assumes that there is no shared memory space among processes. How-
ever, processes from the same parallel job often communicate through
shared memory space. The analytical model can be modified to be used
in the case of parallel jobs synchronizing through shared memory space,
as described below.

The accesses to shared memory space can be excluded from the miss-
rate curve of each process, and considered as a separate process from the
viewpoint of memory. For example, if P processes are simultaneously
executing and share some memory space, the multiprocessor model
in the previous subsection can be used considering P + 1 conceptual
processes. The first P miss-rate curves are from the accesses of the
original P processes excluding the accesses to the shared memory space,
and the (P + 1)th miss-rate curve is from the accesses to the shared
memory space. Since the P +1 conceptual processes do not have shared
memory space, the original model can be applied.

3.4 Evaluating a schedule

A poor schedule has lots of idle processors, and a schedule can be better
evaluated in terms of a processor idle time rather than a miss-rate. A
processor is idle for a time slice if no job is assigned to it for that time
slice or it is idle if it is waiting for the data to be brought into the
memory due to a “miss” or page fault. Although modern superscalar
processors can tolerate some cache misses, it is reasonable to assume
that a processor stalls and therefore idles on every page fault.

Let the total processor idle time for a schedule be as follows:

Idle(%) = {
S∑

s=1

N(s)∑
p=1

miss(p, s) · l

+
S∑

s=1

(P − N(s) · T (s)}/{
S∑

s=1

T (s)}

= {(total misses) · l

+
S∑

s=1

(P − N(s)) · T (s)}/{
S∑

s=1

T (s)}

(8)

where miss(p, s) is the number of misses on processor p for time slice
s, l is the memory latency, T (s) is the length of time slice s, and N(s)
is the number of processes scheduled in time slice s.
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In Equation 8, the first term represents the processor idle time due
to page faults and the second term represents the idle time due to
processors with no job scheduled on. Since the number of idle processors
is given with a schedule, we can evaluate a given schedule once we know
the total number of misses, which can be estimated from the model in
the previous subsection.

4 The effects of memory performance on
scheduling

This section discusses new considerations that memory performance
imposes on parallel job scheduling and their solutions based on the
miss-rate curves and the analytical model. First, we discuss schedul-
ing problems to optimize memory performance for the space-shared
systems. Then, scheduling considerations for time-sharing the memory
are studied.

4.1 Processes to space-share memory

In shared-memory multiprocessor systems, processes in the same time
slice space-share the memory since they access the memory simulta-
neously. In this case, the amount of memory space allocated to each
process is determined by the other processes that are scheduled in the
same time slice. Therefore, the performance (execution time) of each
process can be significantly affected by which processes are scheduled
to space-share the memory (see Section 2). The main consideration of
memory-aware schedulers in space-shared systems is to group jobs in
a time slice properly so as to minimize the performance degradation
caused by the memory contention.

A schedule can be evaluated using the isolated miss-rate curves
and the analytical model. Effectively, the model provides a new cost
function of memory performance, and any scheduler can be modified
to incorporate memory considerations by adding this new cost func-
tion from the model. As an example, here we show how a simple gang
scheduler can be modified to consider the memory performance. The
modification of more complicated schedulers is left for future studies.

Consider the problem of scheduling J jobs on a Ptot processor sys-
tem, which consists of SMPs with Pnode processors. Gang scheduling
is assumed, i.e., all processes from one job are scheduled in the same
time slice, and context switch at the end of the time slice. All Ptot pro-
cessors are assumed to context switch at the same time. A processor
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does not context switch even on a page fault, but only when the time
slice expires. The problem is to determine the number of time slices
S to schedule all jobs, and assign each job to a time slice so that the
processor idle time is minimized. Also, each process should be mapped
to a SMP node considering memory contention.

The most obvious way of scheduling with memory consideration is
to use the analytical model detailed in Section 3. If the isolated miss-
rate curves are obtained either on-line or off-line, the model can easily
compare different schedules. The problem is to search for the optimal
schedule with the given evaluation method. For a small number of jobs,
an exhaustive search can be performed to find the best schedule. As
the number of jobs increases, however, the number of possible sched-
ules increases exponentially, which makes exhaustive search impracti-
cal. Unfortunately, there appears to be no polynomial-time algorithm
that guarantees an optimal solution.

A number of search algorithms can be developed to find a sub-
optimal schedule in polynomial time using the analytical model di-
rectly. Alternately, we can just utilize the miss-rate curves and incor-
porate better memory considerations into existing schedulers. Although
the analytical model is essential to accurately compare different sched-
ules and to find the best schedule, we found that a heuristic algorithm
based only on the miss-rate curves is often good enough for optimizing
memory performance for space-sharing cases. The following subsection
presents the heuristic search algorithm.

A heuristic algorithm For most applications, the miss rate curve
as a function of memory size has one prominent knee (See Figure 2).
That is, the miss rate quickly drops and then levels off. As a rough
approximation, this knee is considered as a relative footprint of the
process. Then, processes are scheduled to balance the total size of rela-
tive footprints for each node. Although this algorithm cannot consider
the complicated effects of memory contention, it is much cheaper than
computing the model and often results in a reasonable schedule.

The algorithm works in three steps; First, the relative footprints are
determined considering the number of processes and the size of memory.
At the same time, we decide the number of time slices S. Then, jobs
are assigned to a time slice to balance the total relative footprints for
each time slice. Finally, processes are assigned to a node to balance the
relative footprints for each node.

In the explanation of the algorithm, we make use of the following
notations:
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– Ptot: the total number of processors in the entire system.
– Pnode: the number of processors in a node.
– J : the total number of jobs to be scheduled.
– Q(j): the number of processors that job j requires.
– mj : the miss-rate curve for job j.
– rj : the number of memory references of job j for one time slice.
– S: the number of time slices to schedule all jobs.

The relative footprint for job j, fp(j) is defined as the number of
memory blocks allocated to the job when the memory with C · S ·
P/Pnode blocks is partitioned among all jobs so that the marginal gain
for all jobs is the same. Effectively, the relative footprint of a job rep-
resents the optimal amount of memory space for that job when all jobs
execute simultaneously sharing the entire memory resource over S time
slices.

To compute the relative footprints, the number of time slices S
should also be decided. First, make an initial, optimistic guess;

S = �∑J
j=1 Q(j)/P �.

Then, compute the relative footprints for that S and approximate
the processor idle time using Equation 8 assuming that each job ex-
periences mj(fp(j)) · rj misses over a time slice. Finally, increase the
number of time slices and try again until the resultant idle time in-
creases. For a given S, the following greedy algorithm determines the
relative footprints.

1. Compute the marginal gain gj(x) = (mj(x − 1)− mj(x)) · rj . This
function represents the number of additional hits for the job j, when
the allocated memory blocks increases from x − 1 to x.

2. Initialize fp(1) = fp(2) = ... = fp(J) = 0.
3. Assign a memory block to the job that has the maximum marginal

gain. For each job, compare the marginal gain gj(fp(j) + 1) and
find the job that has the maximum marginal gain jmax. Increase
the allocation for the job fpjmax by one.

4. Repeat step 3 until all memory blocks are assigned.

Once the relative footprints are computed, assigning jobs to time
slices is straightforward. In a greedy manner, the unscheduled job with
the largest relative footprint is assigned to a time slice with the smallest
total footprint at the time. After assigning jobs to time slices, we assume
that each process from job j has the relative footprint of fp(j)/Q(j).
Then, assign processes to nodes in the same manner.

Notice that the analytic model is not used by this algorithm. How-
ever, the model is needed to validate the heuristic. For jobs that have
significantly different miss-rate curves, new heuristics are needed and
the model will be required to validate those as well.
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Fig. 3. The performance of the model-based scheduling algorithm and the
heuristic scheduling algorithm. The miss-rates are normalized to the average
miss-rate of all possible schedules for each memory size.

Experimental validation The model-based algorithm and the heuris-
tic algorithm are applied to solve a scheduling problem in Section 2.
The problem is to schedule six SPEC CPU2000 benchmarks using three
processors and two time slices. Figure 3 compares the miss-rates of the
model-based algorithm and the heuristic algorithm with miss-rates of
the best schedule and the worst schedule, which are already shown
in Section 2. The best schedule and the worst schedule are found by
simulating all possible schedules and comparing their miss-rates. For
the model-based algorithm, the average isolated miss-rate curves over
the entire execution are obtained by trace-driven simulations. Then,
the schedule is found by an exhaustive search based on the analytical
model. The heuristic algorithm uses the same average isolated miss-rate
curves, but decides the schedule using the algorithm in the previous
subsection. Once the schedules are decided by either the model-based
algorithm or the heuristic algorithm, the actual miss-rates for those
schedules are obtained by trace-driven simulations.

The results demonstrate that our scheduling algorithms can effec-
tively find a good schedule. In fact, the model-based algorithm found
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the best schedule except for the 16-MB and 64-MB cases. Even for
these cases, the model-based schedule found by the algorithm shows a
miss-rate very close to the best case.

The heuristic algorithm also results in good schedules in most cases
with significantly less computation than the model-based algorithm.
However, the heuristic algorithm shows worse performance than the
model-based algorithm because it cannot accurately estimate the effects
of the LRU replacement policy.

4.2 The length of time slices

When available processors are not enough to execute all jobs in par-
allel, processors should be time-shared amongst jobs. In conventional
batch processing, each job runs to completion before giving up the pro-
cessor(s). However, this approach may block short jobs from executing
and significantly degrade the response time. Batch processing may also
cause significant processor fragmentation. Therefore, many modern job
scheduling methods such as gang scheduling use time slices shorter than
the entire execution time to share processors.

Unfortunately, shorter time slices often degrade the memory per-
formance since each job should reload the evicted data every time it
restarts the execution. To amortize this context switching cost and
achieve reasonable performance in time-shared systems, schedulers should
ensure that time slices are long enough to reload data and reuse them.
Time slices should be long to reduce the context switch overhead, but
short to improve response time and processor fragmentation.

The proper length of time slices still remains as a question. Conven-
tionally, the length of time slices are determined empirically. However,
the proper length of time slices depends on the characteristics of con-
current jobs and changes as jobs and/or memory configuration vary.
For example, a certain length of time slice may be long enough for jobs
with a small working set, but not long enough for larger jobs. Since
the proposed analytical model can predict the miss-rate for a given
length of time slices, it can be used to determine the proper length
once another cost function such as response time or fragmentation is
given.

Figure 4 shows the overall miss-rate as a function of the length of
time slices when three SPEC CPU2000 benchmarks, gzip, vortex, and
vpr, are concurrently executing with a round-robin schedule. The solid
line represents the simulation results, and the dashed line represents
the miss-rates estimated by the model. The figure shows a very inter-
esting fact that a certain range of time slices can be very problematic
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Fig. 4. The overall miss-rate when three processes (gzip, vortex, vpr) are
sharing the memory (64 MB). The solid line represents the simulation results,
and the dashed line represents the miss-rates estimated by the analytical
model. The length of a time quantum is assumed to be the same for all three
processes.

for memory performance. Conventional wisdom assumes that the miss-
rate will monotonically decrease as the length of time slices increase.
However, the miss-rate may increase for some cases since more data of
processes that will run next are evicted as the length of time slices in-
crease. The problem occurs when a time slice is long enough to pollute
the memory but not long enough to compensate for the misses caused
by context switches.

It is clear that time slices should always be long enough to avoid the
problematic bump. Fortunately, the analytical model can estimate the
miss-rate very close to the simulation results. Therefore, we can easily
evaluate time slices and choose ones that are long enough.

5 Conclusion

Modern multiprocessor systems commonly share the same physical
memory at some levels of memory hierarchy. Sharing memory provides
fast synchronization and communication amongst processors. Sharing
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memory also enables flexible management of the memory. However,
it is clear that sharing memory can exacerbate the memory latency
problem due to conflicts amongst processors. Currently, users of high
performance computing systems prefer to “throw out the baby with
the bathwater” and fore-go virtual memory and sharing of memory
resources. We believe such extreme measures are not needed. Memory-
aware scheduling can solve the problem.

This paper has studied the effects of the memory contention amongst
processors that share the same memory on job scheduling. The case
study of SPEC CPU2000 benchmarks has shown that sharing the mem-
ory can significantly degrade the performance unless the memory is
large enough to hold the entire working set of all processes. Further,
memory performance is heavily dependent on job scheduling. We have
shown that the best schedule that minimizes memory contention cannot
be found based on conventional footprints.

Miss-rate curves and an analytical model has been proposed as a
new method to incorporate the effects of memory contention in job
scheduling. The analytical model accurately estimates the overall miss-
rate including both space-sharing effects and time-sharing effects from
the miss-rate curves. Therefore, they provide a new cost function of
memory performance, and any scheduler can be modified to incorporate
memory considerations by adding this new cost function.

As an example, a simple gang scheduler is modified to optimize the
memory performance. Applying theory to practice is not straightfor-
ward: First, some mechanism is needed to estimate the miss-rate char-
acteristics at run-time since it is unreasonable to expect the user to
provide an accurate function. Second, a heuristic algorithm is required
to find a solution in polynomial time. Simulation results have validated
our approach that can effectively find a good schedule that results in
low miss-rates. Both a model-based algorithm and a heuristic algo-
rithm were simulated and evaluated. Although the exhaustive search
algorithm based on the model showed slightly better performance than
the heuristic algorithm, the difference is minimal. Therefore, we believe
that anything more than an inexpensive heuristic is overkill.

The paper is mainly focused on optimizing the performance for si-
multaneously executing processes. However, the approach based on the
miss-rate curves and the analytical model is also applicable to schedul-
ing problems related to time-sharing. In time-shared systems, there is
a tradeoff in the length of time slices. Our model provides the metric of
memory performance for this tradeoff. Especially, it is shown that a cer-
tain range of time slices can be very harmful for memory performance
and this range can be avoided using the model.
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The development of more realistic memory-aware schedulers is left
for future studies. Practical schedulers have many considerations other
than memory performance, thus it is more complicated to incorporate
memory considerations into these schedulers as compared to a simple
gang scheduler. However, we believe that the miss-rate curves and the
analytical model provide a good metric for memory performance and
existing schedulers can be modified to optimize the memory perfor-
mance utilizing the given degrees of freedom.
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SpeechBuilder: Facilitating Spoken

Dialogue System Development
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Abstract. In this paper we report our attempts to facilitate
the creation of mixed-initiative spoken dialogue systems for
both novice and experienced developers of human language
technology. Our efforts have resulted in the creation of a util-
ity called SpeechBuilder, which allows developers to specify
linguistic information about their domains, and rapidly create
spoken dialogue interfaces to them. SpeechBuilder has been
used to create domains providing access to structured informa-
tion contained in a relational database, as well as to provide
human language interfaces to control or transaction-based ap-
plications.

1 Introduction

As anyone who has tried to create a mixed-initiative spoken dialogue
system knows, building a system which interacts competently with
users, while allowing them freedom in what they can say and when
they can say it during a conversation, is a significant challenge. For
this reason, many systems avoid this tactic, and instead take a more
strategic approach which focuses on a directed dialogue. In fact, many
researchers argue that conversational, mixed-initiative dialogue systems
may not be worth pursuing, both for practical and philosophical rea-
sons. Certainly, there are many technical difficulties to overcome, which

� This research was supported by DARPA under contract N66001-99-1-8904
monitored through Naval Command, Control and Ocean Surveillance Cen-
ter and under an industrial consortium supporting the MIT Oxygen Al-
liance.
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include recognizing and understanding conversational speech, generat-
ing reasonable and natural responses, and managing a flexible dialogue
strategy.

Over the past decade, the Spoken Language Systems Group at the
MIT Laboratory for Computer Science has been actively developing
the human language technologies necessary for creating such conversa-
tional human-machine interfaces. In recent years we have created sev-
eral systems which have been publicly deployed on toll-free telephone
numbers in North America, including systems providing access to in-
formation about weather forecasts, flight status, and flight schedules
and prices [12, 9].

Although these applications have been successful, there are limited
resources at MIT to develop a large number of new domains. To address
this issue, we have recently set out to make it easier to rapidly prototype
new mixed-initiative conversational systems. Unlike other portability
efforts that we are aware of, which tend to employ directed-dialogue
strategies (e.g., [10]), our goal is to enable the kinds of natural, mixed-
initiative systems which are now created manually by a relatively small
group of expert developers.

In this paper we describe our initial efforts in developing a utility
called SpeechBuilder. The next section describes the architecture
we have adopted. This is followed by a description of the human lan-
guage technologies which are deployed in SpeechBuilder, and the
knowledge representation it uses. We then describe the current state of
development, followed by ongoing and future activities in this project.

2 System architecture

The approach that we have adopted for developing the Speech-
Builder utility has been to leverage the basic technology which is
deployed in our more sophisticated conversational systems. There are
many reasons for doing this. First, in addition to developing a pro-
grammable client-server architecture for conversational systems [8], we
have devoted considerable effort over the last decade to improving hu-
man language technology (HLT) in speech recognition, language un-
derstanding, language generation, discourse and dialogue, and most
recently, speech synthesis. By employing these HLT components we
minimize duplication of effort, and maximize our ability to adopt any
technical advances which are made in any of these areas. Second, by
using our most advanced HLT components, we widen the pool of po-
tential developers to include both novices and experts, since the latter
can use SpeechBuilder to rapidly prototype a new domain (a very
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useful feature) and subsequently modify it manually. Third, since we
are not limiting any of the HLT capabilities in any way, we allow for
the potential for SpeechBuilder-created systems to eventually scale
up to the same level of sophistication as our most capable systems.
Lastly, by focusing attention on portability as a major issue, we can
potentially identify weaknesses in some of our existing HLT compo-
nents. This can lead to better solutions, which will ultimately benefit
all of our conversational systems.

We have made a conscious decision to have as simple an interface as
possible for the user, while providing mechanisms to incorporate any
needed complexities. For example, developers do not specify natural
language grammars for their domain. Instead, they specify the basic
semantic concepts (called keys), and provide examples of user utter-
ances which trigger different system behaviors (called actions). The
system then uses these inputs to configure the language understanding
grammar automatically. The developer can optionally create additional
hierarchy in the grammar by using bracketing to label portions of the
example sentences as being subject to a particular structure. Table 1
contains example sentences and their corresponding key/action repre-
sentations encoded as CGI parameters (which are used for one kind of
SpeechBuilder configuration).

2.1 SpeechBuilder Configurations

There are currently two ways in which a SpeechBuilder application
can be configured. The first configuration can be used by a developer
to create a speech-based interface to structured data. There is no pro-
gramming required. As shown in Figure 1, this model makes use of
the galaxy architecture and all of the associated HLT components to
access information stored in a relational database which is populated
by the developer. This database table is used along with the seman-
tic concepts and example utterances to automatically configure the
speech recognition, language understanding, language generation (in-
cluding both SQL and response generation), and discourse components
(described in Section 3). A generic dialogue manager handles user in-
teractions with the database. Armed with a table of structured data, an
experienced developer can use SpeechBuilder to create a prototype
system in a matter of minutes.

The second possible SpeechBuilder configuration provides the
developer with total control over the application functionality, as well as
the discourse, dialogue, and response generation capabilities [6]. In this
model, the developer creates a program implementing domain-specific
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Fig. 1. SpeechBuilder configuration for database access.

turn on the lights in the kitchen
action=set&frame=(object=lights,room=kitchen,value=on)

will it be raining in Boston on Friday
action=verify&frame=(city=Boston,day=Friday,property=rain)

show me the Chinese restaurants on Main Street
action=identify&frame=(object=(type=restaurant,
cuisine=Chinese,on=(street=Main,ext=Street)))

I want to fly from Boston to San Francisco arriving before ten a m
action=list&frame=(src=BOS,dest=SFO,
arrival time=(relative=before,time=(hour=10,xm=AM)))

Table 1. Example sentences and their CGI representations.

functionality and deploys it on a CGI-enabled web server. As shown in
Figure 2, this configuration uses a subset of the galaxy components.
The semantic frame is converted to the CGI parameter representation
shown in Table 1 by means of the language generation component and
is sent to the developer CGI application using http.

Since the developer CGI application is stateless, the Speech-
Builder server maintains a dialogue state variable which is exchanged
with the CGI application on every turn. It is the responsibility of the
application to decide what information, if any, to inherit from this state
variable, and what information to retain for the next dialogue turn. Ta-
ble 2 shows how the state information can be used to keep track of local
discourse context.
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Fig. 2. Alternative SpeechBuilder configuration.

what is the phone number of John Smith
action=identify&frame=(property=phone,name=John+Smith)

what about his email address
action=identify&frame=(property=email)
&history=(property=phone,name=John+Smith)

what about Jane Doe
action=identify&frame=(name=Jane+Doe)
&history=(property=email,name=John+Smith)

Table 2. Example interaction using the dialogue state variable.
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2.2 Web-based interface

SpeechBuilder employs a web-based interface, and is implemented
via a number of Perl CGI scripts. The web interface allows the devel-
oper to manipulate all of the domain specifics, such as keys and actions,
query responses, and vocabulary word pronunciations. These domain
specifics are stored in an XML document, and the developer has the
ability to edit this file manually without using the online interface. The
web interface contains a facility for downloading and uploading the
XML representation of a domain, and for uploading CSV (comma sep-
arated value) representations of data tables. The developer also uses the
web interface to compile the domain (that is, to configure the galaxy
servers according to domain specifics), and to start and stop the run-
time modules of the domain. Once a domain has been compiled, the
developer can also examine the parse tree and semantic frame produced
for each example sentence. The interface makes it very easy for a devel-
oper to continually modify, recompile, and redeploy a domain during
the development cycle.

3 Human language technologies

As shown in Figure 1, SpeechBuilder makes use of all the major
galaxy components [8]. The programmable hub executes a program
which was created specifically for the SpeechBuilder application, al-
though it contains all of the functionality of the programs used by our
main systems. A specific version of the hub program is configured for
each developer.

The speech recognizer is configured to use generic telephone-based
acoustic models, and is connected to the language understanding com-
ponent via an N -best interface [4]. Since users may speak words which
are not specified in the vocabulary, we have incorporated an out-of-
vocabulary model [2]. Baseform pronunciations which do not occur in
our large on-line dictionaries are generated by rule [3]. SpeechBuilder
provides an editing facility for developers to modify pronunciations.
The recognizer deploys a hierarchical n-gram grammar derived from
the language understanding grammar rules and the example sentences
provided by the developer.

For language understanding, SpeechBuilder configures a gram-
mar file as well as a file for converting full or partial parses into a
meaning representation [7]. Language understanding is configured to
back off to robust parsing (i.e., concept spotting) when no full parse
is available. The discourse server is based on a new component which
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performs inheritance and masking after an internal electronic ‘E-form’
has been generated from the semantic frame [9].

The dialogue management server was modeled after the function-
ality of our main systems [9]. Since this component still tends to be
extensively customized for every domain, we created a simple generic
server which is intended to handle the range of situations which can
arise in database query domains. We fully expect this component to
increase in complexity as we consider a wider range of domains.

The language generation component is actually used for generating
three different outputs, as it is in our main systems [1]. The first use
of generation is for creating the ‘E-form’ representation used by the
discourse and dialogue components. The second use is to generate an
SQL query for use by the database server. The third use is to generate
a response to the user which is vocalized using the speech synthesizer.

4 Knowledge representation

Linguistic constraints are specified by a developer in terms of a set of
concept keys and sentence-level actions via the web interface. Each is
described in more detail in the following.

4.1 Concept keys

Concept keys usually define classes of semantically equivalent words or
word sequences. All the entries of a key class should play the same role
in an utterance. Concept keys can be extracted from the database table
or can be manually specified by the developer through the web-based
interface. In order to appear in the semantic frame a concept must be a
member of a concept key class. A regularization mechanism allows the
developer to specify variations on the spoken form (e.g., “Philadelphia,”
vs. “Philly”) that map to a standardized form (e.g., “PHL”). Table 3
contains examples of concept keys.

Key Examples

color red, green blue
day Monday, Tuesday, Wednesday
room living room, dining room, kitchen
Table 3. Examples of concept keys.
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4.2 Sentence-level actions

Actions define classes of functionally equivalent sentences, so that all
the entries of an action class perform the same operation in the appli-
cation. Actions are example queries that one might use in talking to the
domain. Action labels determine the clause name of the semantic frame
produced by the language understanding component. SpeechBuilder
generalizes all example sentences containing particular concept key en-
tries to accept all the entries of the same key class, and thus builds the
natural language template. SpeechBuilder also tries to generalize
the non-key words in the example sentences so that it can understand
a wider variety of user queries than was provided by the developer.
Table 4 contains example actions.

Action Examples

identify what is the forecast for Boston
what will the temperature be on Tuesday
I would like to know today’s weather in Denver

set turn the radio on in the kitchen please
can you please turn off the dining room lights
turn on the TV in the living room

Table 4. Examples of actions.

The system created by SpeechBuilder can potentially understand
a larger set of queries than are defined by the set of sentence examples,
since the examples are converted into a hierarchical n-gram for the rec-
ognizer, and the understanding component backs off to concept spot-
ting when a complete parse is not found. However, the system performs
better if given a richer set of examples.

4.3 Hierarchical concept keys

SpeechBuilder allows the developer to build a structured grammar
when this is desired. This is done by “bracketing” example sentences
within the actions – using parentheses to enforce a structure on the way
that each particular sentence is parsed. The semantic frame created by
the natural language processor reflects the hierarchy specified by the
bracketing.

To bracket a sentence, the developer encloses the substructure which
they wish to separate in parentheses, preceded by a name for the
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substructure followed by either == or =, depending on whether the
developer desires to use strict or flattened hierarchy. Strict hierarchy
maintains the key/value structure of all concept keys present in the
bracketed text. In contrast, flattened hierarchy collapses all internal
key/values into a single concept value. Table 5 shows examples of brack-
eted example sentences which make use of the hierarchical concept keys.

Put object==(the blue box) location==(on the table)
object=(color=blue,item=box),location=(item=table)

Put object=(the blue box) location=(on the table)
object=(blue box),location=(table)

Put the box location==(on the table location==(in the kitchen))
item=box,location=(relative=on,item=table,
location=(relative=in,room=kitchen))

Table 5. Examples of strict (==) and flattened (=) hierarchy.

4.4 Responses

In addition to configuring ways of asking about information, the devel-
oper must also specify how the system will present information to the
user. When a database is provided by the developer, SpeechBuilder
configures a generic set of replies for each appropriate database query
which could be requested by a user. In addition, responses are generated
to handle situations common to all database applications (e.g., no data
matching the input constraints, multiple matches to a user query, too
many matches, etc.). Each of these default responses can be modified
by the developer, as desired, to customize the domain.

5 Current status

SpeechBuilder has been accessible from within MIT and limited
other locations for beta-testing since November 2000, and it has been
used to create several different domains. The LCSinfo domain, for ex-
ample, provides access to contact information for the approximately 500
faculty, staff, and students working at the MIT Laboratory for Com-
puter Science (LCS) and Artificial Intelligence Laboratory (including
phone numbers, email addresses, room locations, positions, and group
affiliations) and is able to connect the caller to any of the people in the
database using call bridging. Applications similar to LCSinfo domain



476 James Glass and Eugene Weinstein

are under development by novice developers elsewhere at MIT, as well
as at the Space and Naval Warfare Systems Center in San Diego, CA.
SpeechBuilder has also been used to create a simple appliance ap-
plication which controls various physical items in an office (e.g. lights,
curtains, projector, television, computer, etc.). This domain is now be-
ing used within LCS. SpeechBuilder has also been used by members
of our group, as well as our industrial partners to create small mixed-
initiative database access applications (e.g., schedule information, mu-
sic queries, stock quotes).

In order to allow developers to test out their systems, we have set up
a centralized telephone access line, which developers can use to access
their deployed domains. In addition, we have provided a local-audio
setup so that those developers with access to the galaxy code distri-
bution can run their domains on their own machines independently of
any MIT hardware.

6 Ongoing and future activities

There are many ongoing and future activities which will improve the
SpeechBuilder infrastructure. For example, in order to be able to
handle more complicated schema for information access, we plan to
introduce the ability to access multiple intersecting database tables
from one domain. Currently, all database cells are treated as strings, but
in the future we plan to implement functionality for handling Boolean
and numerical values as well.

Although we have created an initial database query dialogue man-
ager, we plan to continue to add features which will provide the de-
veloper more control for their particular application. A related area of
future research will be to improve the current communication protocol
for non-database applications.

In areas of speech recognition and understanding, we plan to incor-
porate our recent work in confidence scoring [5]. In the longer term we
would like to introduce unsupervised training of acoustic and linguis-
tic models. Currently, developers can only upload transcriptions, which
are used as training data for these components.

The current configuration of the system defaults to using a com-
mercial speech synthesizer. We would like to provide a facility to devel-
opers whereby they can configure a simple concatenative speech syn-
thesizer [11].

The work we have done thus far has been restricted to American
English. However, as we have ongoing research efforts in multilingual
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conversational systems (e.g., Japanese, Mandarin Chinese, and Span-
ish), we have begun to modify the SpeechBuilder interface so that
multilingual systems can be configured as well.

The systems developed thus far have been prototypes that have
not been rigorously evaluated. In order to demonstrate the usefulness
of the currently deployed architecture, we plan to configure a weather
information domain within SpeechBuilder, and evaluate at least the
speech recognition and understanding components on our standard test
sets [12]. By demonstrating at least compatible performance with our
manually created systems, we hope to show the potential for creating
robust, yet rapidly configurable, spoken dialogue systems.

7 Summary

This paper has provided an overview of our efforts to facilitate the
creation of mixed-initiative spoken dialogue systems. If successful, we
believe this research will benefit others by allowing people interested
in spoken dialogue systems to rapidly configure applications for their
particular interests. We have successfully deployed two distinct config-
urations of the SpeechBuilder utility which connect to applications
located on a remote web-based server, or to a local database. Several
prototype systems have been created with this utility, which are cur-
rently in active use. In the near future, we hope to extend the current
framework so as to allow for the creation of more complex and powerful
spoken dialogue systems.
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Abstract. This paper introduces orion, a conversational sys-
tem that performs off-line tasks and initiates later contact with
a user at a pre-negotiated time. Orion has two major episodes
of activity: the enrollment of new tasks and the execution of
pending tasks. The task manager periodically checks the pend-
ing tasks and updates their status, sending off requests to other
servers for information and possibly launching a phone call
when a particular task has reached its trigger time. A sepa-
rate user interface engages in a dialogue with a user to enroll
new tasks and/or update existing tasks. Orion is still in an
early stage of its development cycle, but it has introduced sev-
eral interesting new research issues, such as continuous state
maintenance and contact verification.

1 Introduction

For more than a decade, the Spoken Language Systems (SLS) Group
at the MIT Laboratory for Computer Science has been conducting re-
search leading to the development of conversational interfaces: inter-
faces that will enable naive users to access and manage information
using spoken dialogue. To realize such systems, several language-based
input and output technologies, including speech recognition/synthesis
and language understanding/generation have been developed and inte-
grated. Typically, these systems engage the user in a dialogue to retrieve
information from databases.
� This work was supported by DARPA under contract N66001-99-1-8904
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Until now, all of our systems have assumed that each task is com-
pleted as soon as the user hangs up the phone. However, it seems rea-
sonable to suppose in principle that a conversational system could per-
form certain tasks off-line, i.e., that the user could delegate information-
dependent activities to the system, which would later inform them of
the outcome, either through e-mail or through system-initiated tele-
phone contact.

This paper describes our newest conversational domain, called orion,
which for the first time begins to address the idea of delegation. The
user can request a task to be executed at some later time, and orion
must then initiate a follow-up contact with the user, once the assigned
task has been completed. Some of the tasks involve monitoring a dy-
namically changing database over time. Others involve a single look-up
at the designated call-back time.

The Orion system is configured using the Galaxy Communicator
architecture, in which all servers communicate via a common hub.
Orion consults other domain servers to retrieve critical information.
The Orion server plays two distinct roles, each implemented as a sep-
arate stream. One is devoted to the enrollment of new tasks and the
other is concerned with the execution of existing tasks. Users first enroll
by providing critical information about their name, appropriate phone
numbers, and e-mail address. To edit existing tasks or add new tasks,
the user interacts with orion at a Web site, in conjunction with con-
versation through speech over the telephone, or through typing at the
GUI interface. Pending tasks are displayed in the graphical interface,
and orion engages the user in a mixed-initiative conversation until a
new task is fully specified, or a pre-existing task is appropriately mod-
ified. If a new task needs to be executed today, it is sent to the agent
stream for an immediate update. Orion can currently handle a number
of types of requests, as suggested by the examples given in Figure 1.

Call me at 4 p.m. tomorrow to remind me to pick up my son
at soccer practice.

Call me every weekday morning at 6:30 a.m. and tell me the
weather in Boston.

Call me an hour before American flight 93 lands in Dallas.

Call me at work between 5 and 6 p.m. if the traffic on route
93 is at a standstill.

Fig. 1. Examples of the types of tasks that Orion can currently handle.
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A unique aspect of orion is that it behaves like a user in request-
ing information from other domains. Orion finds it convenient to make
these requests using standard English as a natural and intuitive script-
ing language.

The notion of off-line delegation is a radical departure from our prior
research activities, and it opens up a number of interesting research
issues, such as continuous maintenance of state information, dealing
with the termination of or corrections to previously assigned reiterant
tasks, and verification that the call-back was successful. A domain of
the degree of complexity of orion would not have been feasible for
us to develop prior to the introduction of the galaxy Communicator
architecture [2].

In the remainder of this paper, we will first describe the task ne-
gotiation phase, followed by the task execution phase. We will then
discuss a number of issues that have emerged as a consequence of our
explorations with orion. We conclude with a discussion of some of our
future visions.

2 Task negotiation phase

The first step in task negotiation is to enroll a new user. This is done at
a graphical interface where orion asks a series of questions and the user
types the responses into a GUI type-in window integrated into a Web
browser. Orion seeks three phone numbers (home, work, and cell) as
well as the user’s name and e-mail address. Once the user has enrolled,
they can type, “call me now at work,” to initiate an immediate call-
back for spoken interaction, or they can continue to interact through
typed queries.

Orion then launches a mixed initiative dialogue to invite the user
to specify a task, or to edit any existing tasks, should this be a follow-
up interaction. In the latter case, all pre-existing tasks are displayed to
the user in the graphical interface. The user could, for example, click
on a given task and say, “Edit this task.”

If the user intends a new task, they can simply specify it through
speech. They might say, for example, “Call me to remind me to call my
sister.” Orion will prompt the user for a date, time, and phone num-
ber, where “work,” “home,” and “cell” are all possible, in addition to a
unique newly introduced task phone number. Figure 2 shows an exam-
ple dialogue between a user and orion, where the user is requesting a
wake-up call the following morning.

If the user cannot remember the particulars of a task, he/she can
ask to talk to one of the other domains. The user might, for example,
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Orion: Welcome to the Orion planning system. Please type your
user name, or, if you have not enrolled, type ’new user’.

User: Stephanie Seneff

Orion: Here is your personal information in our database,
Stephanie Seneff. What is the task that you have in mind?
(wakeup call,reminder, flight status, or traffic update)
<shows user profile and list of prior tasks>

User: Call me at six thirty tomorrow morning and tell me
the weather in Boston.

Orion: What phone number should I call you at?
User: Call me at home.

Orion: You have entered all the necessary data, stephanie seneff.
Is the following information correct? <shows task>

User: Yes.

Orion: You will receive a call at the appropriate time.
Thank you for using Orion.

Fig. 2. Example dialogue between a user and Orion negotiating a wake-up
call, in the context of a graphical interface.
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find out from the pegasus flight status domain or the mercury flight
reservations domain [3] the flight number of a flight they are interested
in monitoring. In the same phone conversation, the user can return
to orion, and orion will be able to obtain directly from mercury’s
dialogue state all the information concerning the flight in focus, which
orion then assumes is of relevance to the conversation.

Fig. 3. The graphical interface for Orion, showing the task under negotiation,
the user’s profile, and a list of three previously specified tasks.

Figure 3 shows a GUI interaction with orion. Once the new task
is fully specified and confirmed, orion updates the user’s personalized
file of pending tasks. If the task is scheduled for today, orion wakes
up the agent stream via a special hub-mediated operation devoted to
newly introduced tasks, as will be more fully described in the next
section.

If the user asks to be called at some future time, but does not
mention a particular task, orion by default invites them to pre-record
a message to be played back at the designated time. This is a very



484 Stephanie Seneff, Chian Chuu and D. Scott Cyphers

general device with wide utility, that allows the user to say anything
at all in the recording, subject to a length constraint.

QUERY: ”Call me at six a m and tell me the weather in Boston”

LINGUISTIC FRAME:

{c call_me

:domain "Orion"

:reason

{c inform

:topic {q weather

:quantifier "def"

:pred {p in

:topic

{q city

:name "boston"

}

}

}

}

:pred {p at :topic {q time :hour 6

:xm "am" } } }

E-FORM:

{c eform :action “call me” :time “6:00 am” :clause “inform”
:task label “weather” :in “boston” }

Fig. 4. Example linguistic frame and e-form for a user query in the orion
domain.

In order to plan its interactions with the user and the other servers,
Orion makes use of a dialogue control table, as described more fully
in [3]. The genesis-ii [1] generation server is invoked to paraphrase
users’ requests into an appropriate electronic form (henceforth e-form)
format, which is used to initialize the dialogue state at each new turn.
Figure 4 shows the query, the semantic frame, and the derived e-form
obtained via genesis-ii for the sentence, “Call me at six a m and
tell me the weather in Boston.” The dialogue state is consulted to
determine which functions to call to carry out the task-specification
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phase, using dialogue control procedures that are common to all of our
domain servers.

Genesis-ii is also responsible for altering the pronominal references
from first to second person, so that “call me to remind me to call
my sister” becomes “This is orion calling to remind you to call your
sister.”

3 Agent activities

The agent stream currently maintains information about all of its users
in data structure files that are reloaded every day at midnight. It first
determines which tasks are possible on the current day, including re-
iterant tasks (e.g., “every weekday”). It then creates an internal data
structure for each pending task that includes slots for various temporal
events such as the next update time or the estimated (or exact) trigger
time (time to contact the user).

To execute its various plans, the system consults a second dialogue
control table [3], distinct from the one used to plan new tasks. It iter-
ates through the dialogue table repeatedly until all tasks are completed
as fully as possible. At midnight, this would typically include consult-
ing the mercury flight information server to determine the scheduled
departure and arrival times of any flights being monitored.

Once all tasks have been initiated, the orion agent stream goes
into a sleep cycle until the minimum next update time of its set of
pending tasks. However, it could be awakened at any time by a new
request from a user who has just finished specifying all the particulars
of this request, or who may have altered a previous request that now
needs immediate attention. These interruptions are implemented as a
separate operation, invoked by a rule in a hub script, according to the
galaxy Communicator design [2].

When the next update time has been reached, orion consults a dia-
logue control table to determine which functions to call. Functions may
involve module-to-module subdialogues with other domains to look up
information about weather [5], flights [3], or traffic. These subdialogues
are controlled by a separate hub program appropriately named orion,
and they involve calls to the natural language server to parse orion’s
request, and calls to the designated turn manager to fully interpret the
parsed frame and produce a reply frame. This is accomplished via a
database request initiated in a nested module-to-module subdialogue
(through normal channels used for all user requests). Selected rules
from the orion program are shown in Figure 5.



486 Stephanie Seneff, Chian Chuu and D. Scott Cyphers

PROGRAM: orion

RULE: :call request → dispatch to main
IN: (:input string :call request) :domain :recording

RULE: !:request frame & :input string → create frame
IN: :input string :domain
OUT: :request frame :domain

RULE: :request frame & :domain Jupiter → jupiter.turn management
IN: :request frame
OUT: :reply frame

RULE: !:reply string & :reply frame → paraphrase reply
IN: :reply frame :domain (:out lang english)
OUT: :reply string :reply frame

Fig. 5. Example rules from the orion program used by the galaxy hub.
Note: “!” stands for “NOT”, and “&” is a logical “AND.”

For example, if orion has been requested to call the user at some
designated time relative to the arrival of a flight, it monitors the flight
at appropriate intervals throughout the period of time that the flight is
in the air. Its algorithm is to cut the time by half between the current
time and the currently estimated arrival time to determine when to next
check the flight status. Checking the status involves a contact with the
pegasus flight status domain. As soon as the estimated callback time
is reached, orion delegates to pegasus the task of actually calling the
user.

When a trigger time is reached, orion executes the function named
“call user now,” but only after it has prepared a frame containing an
appropriate welcome message. If the task involves a particular domain
of expertise, orion currently delegates the phone call to the appro-
priate domain server1. From orion’s standpoint, this is easy to do: it
just prepares a query of the form “<domain name> call me at <task
phone number>.” The orion hub program dispatches the query to the
main program2, along with the welcome message, which might be pre-
recorded. It follows normal channels, modelled after the pre-existing

1 Although the user can ask to speak to orion should they have further
tasks in mind.

2 see the dispatch to main operation in the example rules of Figure 5.
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feature that a user can type a call-back request into a GUI interface.
For reminders that don’t invoke any of the other domains, e.g., “call
me to remind me to pick up my son,” orion itself initiates the call,
and is then prepared to negotiate further tasks if the user so desires.

4 Unresolved issues

Orion is an early prototype of a conversational intelligent agent (IA)
that interacts with the real world. We have barely tapped into the
large body of research in IAs at this time [4]. Special considerations are
required when IAs are exposed to the real world, several of which are
discussed here.

Security Orion must be protected from hackers who could po-
tentially use it to place unwanted calls, change other users’ tasks, etc.
We must devise secure mechanisms for user authentication, and extend
existing access control mechanisms to conversational systems.

Reliability Orion must be dependable. Tasks must survive system
crashes. Infrastructure must be developed to reduce the complexity
of our existing system development and support the new capabilities
required by orion.

Efficiency Orion currently uses a polling mechanism to track ac-
tions. Polling is complex and innefficient, and will not scale as the
number of users and tasks increases.

In the future, we expect galaxy to make use of daemon agents
to update system data such as weather and flight information as we
receive it from our data sources. For example, a user agent can tell
the flight information update daemon to notify it whenever flight in-
formation about United flight 805 changes, and then sleep until thirty
minutes before arrival. If the flight information changes, the daemon
agent notifies the user agent which wakes up, reschedules its future
wakeup, and goes back to sleep. This approach reduces complexity be-
cause it allows the same user agent code to be used for weather and
flight notifications, and it increases efficiency because the agent only
runs when it has something to do.

Resource Management To satisfy Orion’s future needs, galaxy
will need to support an additional layer of distributed operations that
provide common services like speech recognition, virtual device man-
agement (such as a pool of phone lines), and persistence to agents.
Systems such as jupiter and mercury will be collections of related
agents that orion interacts with.

Common Sense If a user asks for a wakeup call every day at 6:00
a.m., orion should be aware that this means local time for the user.
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If orion knows a particular user will be travelling during a certain
time interval, it should be able to pro-actively enquire whether the
call should still happen, and, if so, perhaps suggest calling on the cell
phone. Also, how should orion negotiate day by day monitoring of such
reiterant tasks? If, on Friday, the user says, “Don’t call me Monday,”
should orion then enquire about Tuesday, or assume that Tuesday is
the next time to call?

Customization We expect that in the future orion will become
increasingly capable of managing an experienced user’s tasks. Orion
should be able to accumulate information on patterns based on past
experience, such that it will be increasingly able to take the initiative
in proposing or even executing specific plans. Thus, for example, in
the future, an expert user might be able to ask orion to make travel
arrangements to Chicago, and orion would be able to make decisions
about the flights, hotel, and rental car, calling back only to specify a
fully executed solution.

Verification If the user fails to answer the phone when orion calls,
then orion would need to recognize that the call is incomplete, and
perhaps try again ten minutes later, and/or send e-mail informing the
user of the failed contact. A more serious problem is a pick up by an
answering machine. How should orion be made aware of this situation,
and what should it do? Another problem is the recognition of the voice
of the user, or a verbal verification that the person answering the phone
is indeed the intended user.

Social Users will be reluctant to depend on a system like orion for
important tasks, particularly if the agents will be searching for infor-
mation, making decisions, or spending the user’s money. We will need
to provide ways for users to check the reasoning process and to verify
that orion is really planning to do what they think it will do.

5 Summary and future plans

This paper introduces orion, a system devoted to off-line delegation
as a new paradigm in conversational systems. Orion was made feasible
as a consequence of the powerful capabilities of the galaxy Communi-
cator architecture. We found that it was straightforward to leverage off
of pre-existing mechanims with only minor modifications to carry out
both the server initiated queries to other domains and the user call-
back procedures. Thus far orion has been used only by researchers
in our group and their families, as well as in live demonstrations. We
have not yet begun the task of data collection from naive users, as the
system is not sufficiently mature.
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We expect that orion represents the early stages of an ambitious
long-term project. In the future, we envision that people will be able
to take advantage of available on-line information systems such that
routine tasks can be delegated to the computer as much as possible,
thus freeing humans to attend to tasks that truly need their attention.
We will explore how we can build systems that can easily customize
and adapt to the users’ needs and desires. In the process, we will also
examine how a system such as orion could be made more intelligent by
incorporating into its decision-making process all available information
at its disposal, both about the domain and about the individual user.
We believe that orion has tremendous potential, although we are still
working out the details of some of the more difficult aspects of its
design, including user identification, customization, resource allocation,
and task completion verification.
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Abstract. In a known environment, objects may be tracked
in multiple views using a set of background models. Stereo-
based models can be illumination-invariant, but often have un-
defined values which inevitably lead to foreground classification
errors. We derive dense stereo models for object tracking using
long-term, extended dynamic-range imagery, and by detecting
and interpolating uniform but unoccluded planar regions. Fore-
ground points are detected quickly in new images using pruned
disparity search. We adopt a “late-segmentation” strategy, us-
ing an integrated plan-view density representation. Foreground
points are segmented into object regions only when a trajec-
tory is finally estimated, using a dynamic programming-based
method. Object entry and exit are optimally determined and
are not restricted to special spatial zones.

1 Introduction

Tracking people in known environments has recently become an active
area of research in computer vision. Several person tracking systems
have been developed to detect the number of people present as well as
their 3-D position over time. These systems generally use a combination
of foreground/background classification, clustering of novel points, and
trajectory estimation in one or more camera views [18, 16, 10, 13, 7, 17,
5]

Many color-based approaches to background modeling have consid-
erable difficulty with fast illumination variation due to changing light-
ing and/or video projection. To overcome this, several authors have
advocated the use of background shape models based on stereo range
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data [7, 5, 11]. Unfortunately, the background models built by these sys-
tems are often sparse, due to the many regions of uniform brightness
where stereo estimation fails in a typical background training sequence.
Additionally, most of these systems are based on exhaustive stereo dis-
parity search.

In contrast, we show here how dense, fast range-based tracking can
be performed with modest computational complexity. We recover dense
depth data using multiple-gain imaging and long-term observation ap-
proaches. We match uniform but unoccluded planar regions in the scene
and interpolate their interior range values. We apply ordered disparity
search techniques to prune most of the disparity search computation
during foreground detection and disparity estimation, yielding a fast,
illumination-insensitive 3-D tracking system.

When objects are moving on a ground plane and are observed from
multiple widely-separated viewpoints, rendering an orthographic ver-
tical projection of foreground activity is useful [13, 3, 2, 17]. A “plan-
view” image facilitates correspondence in time since only 2D search is
required. Typically, previous systems would segment foreground data
into regions prior to projecting into a plan-view, followed by region-level
tracking and integration, potentially leading to sub-optimal segmenta-
tion and/or object fragmentation. (But see [12] for a way to smooth
fragmented trajectories.)

Instead, we develop an approach which altogether avoids any early
segmentation of the foreground data. We merge the plan-view images
from each viewpoint and estimate over time a set of trajectories that
best accounts for the integrated foreground density. Trajectory esti-
mation is performed using a dynamic programming-based algorithm,
which can optimally estimate the position over time as well as the en-
try and exit locations of an object. This contrasts previous approaches,
which generally used instantaneous measures, and/or specific object
creation zones to decide on the number of objects per frame [3, 13].

In the next section, we detail our new algorithm for computing
dense range-based foreground estimates and for fast estimation of fore-
ground disparities. Following that, we introduce a plan-view tracking
representation and our algorithm for optimally estimating trajectories
with limited temporal extent. We show how this method can accu-
rately detect the entry and exit of objects without constraints on the
spatial location of such events. We finish with a discussion of the overall
system’s performance and implications, as well as possible avenues for
future work.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. The problem with sparse range backgrounds. Given a sparse back-
ground model (e) of a scene (a), a new range image with a foreground person
(b), and a new range image with no foreground object but a changed illumina-
tion condition (f), we see that a conservative segmentation (c,g) misses many
foreground points on the object. However the alternative approach (d,h), has
many false positives when the illumination changes, and erroneously includes
background points in the foreground. To achieve illumination invariance one
must adopt a conservative approach and obtain very dense range background
models.

2 Range-based foreground detection

Segmentation of foreground regions using range measurements is in-
herently robust to the illumination variation that disrupts most color-
based approaches. However, when range data is used directly to build
background models, experience shows that the models are often sparse
and are well-defined at fewer points than in a color model [7, 5]. These
background models will have pixels which are set to an “unknown”
depth value.

With a sparse depth map, one has to decide whether to detect fore-
ground pixels when the background is invalid and a new range value is
observed. The conservative option–not declaring the pixel foreground–
will forever prevent detection of any valid foreground points in the
empty regions of the background. This will lead to Type I errors (Fig-
ure 1(c).) The alternative approach, declaring a pixel to be foreground
even when the background is undefined, leads to Type II errors. If
imaging condition changes such that a previously uniform background
region suddenly has contrast and a defined range value, then a back-
ground point will incorrectly be declared a foreground point. (Figure
1(h)). This can commonly happen when the illumination level changes
and pixels de-saturate, or when shadows or other projections are cast
on a uniform surface.



494 Trevor Darrell, David Demirdjian, et al.

To overcome this problem we construct dense background mod-
els with long-term and extended dynamic-range data. We can resolve
depth values within unoccluded, uniform, and planar regions using a
constraint on the appearance of these regions in two views. We also
use predictive disparity search to prune unnecessary computation and
quickly estimate foreground regions of new images.

(a)

(b) (c)

Fig. 2. Stages in building a dense background model. (a) Examples of vari-
able gain and illumination conditions for a scene. (b) Map of valid disparity
values for each condition. (c) Map of valid disparity values for integrated
disparity map.

2.1 Extended dynamic range stereo

Variable gain (or equivalently, variable aperture or extended dynamic
range) imaging has been developed for intensity model acquisition with
wide dynamic range [6, 15], but has not to our knowledge been applied
to stereo range estimation. This particularly benefits disparity estima-
tion, since different regions of a scene likely will have maximal contrast
at different camera gain settings. With any single gain setting, a large
portion of the image may be (de-)saturated, yielding unknown depth
values.

Correspondence matching with extended range intensity images is
straightforward–one can simply apply traditional matching algorithms
to floating point pixel intensity data. However, acquiring extended
range intensity images from a conventional camera requires a relatively
precise photometric calibration of each camera. If photometric cali-
bration is not available, we can approximate the result by separately
computing disparity at each gain setting, and integrating the results
over multiple observations.
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Our basic stereo engine is based on classic window-based robust
correspondence. If IL

g,t(x) and IR
g,t(x) are the rectified left and right

intensity images acquired at time t and gain level g, indexed by pixel
location x = [x y]T , we denote the quality of a disparity match using
a match function

D(IL
g,t, I

R
g,t,x, d) =

−
∑

n∈N
||Tx,n(IL

g,t(x + n) − Tx,n(IR
g,t(x + n + [d 0]T ))||r

for some suitable neighborhood N and robust transform T (e.g., [19])
and/or robust norm || · ||r (e.g., [4]).

At each pixel, we can apply the standard technique of evaluating D
across all disparities, testing whether these values can be approximated
well by a single mode. If so we set the match value d̂(x, g, t) to be
the disparity with the highest match, and D̂(x, g, t) to be the match
value. When the distribution is not approximated by a single mode
of sufficient height, we declare the pixel invalid d̂(x, g, t) = null. We
compute a global estimate of σD, the standard deviation of D̂, based
on D̂ values when the same d̂ is chosen in two consecutive frames.

2.2 Long term observation

To acquire background models online without an training sequence of
foreground-free observations, we use a variant of the algorithms pre-
sented in [7] and [9]. During background training, we incrementally
compute a histogram of disparity values across a range of time and
gain conditions. Given a new range observation d̂(x, g, t), we increment
a histogram HB(x, d̂(x, g, t)). After a period of background training,
we determine the background disparity values by inspecting HB to
find modes which are large and far. We note that choosing the farthest
modes helps to reduce problems of disparity ambiguity in periodic tex-
tures.

We choose the background values to be those which are less than
the median valid disparity over time, dB(x).1 We then set a background
weight map WB to have the same values as HB, except that any values
greater than dB are set to zero. We require that the ratio of valid
to invalid range observations at a pixel be sufficiently large to keep a
background value. If this ratio is not greater than a threshold (typically
β = 0.1), then we set the background to be undefined, dB(x) = null,
and WB , HB to be uniformly zero.
1 For scenes where the background is covered more than half the time, we

could use a rank filter with lower threshold.
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Gathering background observations over long-term sequences has
the advantage that lighting variation can be included in the background
training set. Extreme lighting variation is useful, since it can cause
previously uniform regions to have apparent contrast. Either the overall
(ambient) or relative (shadow or projected texture) illumination level
can cause contrast to appear where previously the image region was
uniform. As with variable gain, each illumination condition will likely
yield a different pattern of valid/invalid range.

We generally choose to observe the natural variation of illumina-
tion, e.g., from natural outdoor light entering through windows, and
from users’ regular actuation of indoor lighting appliances. However, it
is also possible to specifically train the background using active illumi-
nation if desired. During a background training period we also set the
camera parameters to cycle through the range of possible gain settings.
Figure 2(a) shows a set of images taken under different gain and illumi-
nation conditions, and Figure 2(b) shows the map of valid range pixels
computed from stereo pairs in each of these conditions. Figure 2(c)
shows the map of valid disparity values for an integrated background
recovered from the set of variable gain and illumination training data.

2.3 Detection of unoccluded uniform planar regions

In indoor environments there are many planar uniform regions on which
disparity is difficult to obtain, even with long-term, variable-gain ob-
servations. In general, determining whether to interpolate range values
within such surfaces without inferring global structure in the scene is
difficult.

However, there is one special case that is locally computable and
proves to be particularly useful for our purposes. When a planar uni-
form region is unoccluded in two views, the extent of the homogeneous
patch in each view will be equivalent, according to the homography
determined by the stereo viewing geometry and the orientation of the
patch in the world. This condition often happens in practice–for exam-
ple in saturated pixels in dark or light clothing worn by a person in the
scene (e.g., Figure 3).

If the correspondences at the border of the region are well approx-
imated by a homography and are consistent with the epipolar stereo
constraint, we can test to see whether the shape of the homogeneous
patch in each view is related by the appropriate warping function. We
can compute a boolean image indicating the extent of the uniform re-
gion in each image, warp one according to the given homography, and
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compare the overlap of the resulting images. If they agree, then we
mark this to be a uniform solid plane hypothesis.

There are two degenerate cases: a region from a window looking out
to a completely featureless background, and a solid but non-planar re-
gion with no apparent texture. By maintaining the hypothesis through-
out an extended time period, we can alleviate the impact of the former
and only keep the hypothesis if no object is ever seen further in depth at
any point within the region. The latter degeneracy seems unavoidable,
but has not been a problem in practice.

Our method is related to the classic idea of region stereo, however
we do not attempt to perform a dense color segmentation of the image
as a pre-processing step, and only opportunistically apply the technique
when there are large uniform connected components in the scene. We
also make explicit use of planar homographies and the epipolar con-
straint to constrain possible matches.

2.4 Fast foreground disparity estimation

Fast foreground detection is necessary to detect rapidly moving ob-
jects and dynamic activity patterns. Traditional approaches to tracking
with stereo-based backgrounds usually have relied on general-purpose
stereo computation, which exhaustively searches for the best disparity
matches at each frame. However most of this computation is unneces-
sary for scenes with predictable backgrounds, as pointed out by [11].
They demonstrated how disparity testing could find foreground silhou-
ettes, given a previously computed static background model. We have
extended their method to the case of dynamic backgrounds with mul-
tiple range modes, and to predict the entire range image, including
disparities in foreground regions.

We use our background disparity weights, WB together with similar
weights corresponding to short-term foreground predictions, WF , to
guide the disparity search in a new frame. For each new range match
we increment WF as we increment WB above, but only after we reduce
the previous values of WF by a constant factor (typically γ = 0.9):

WF (x, d) = γWF (x, d) + δ(d− d̂(x, g, t))

where δ(x) is the impulse function at x = 0.
We maintain a separate WB and WF for each pixel in the image.

Given a new frame at gain g and time t we find those (d∗i , w
∗
i ) with

sufficiently large value:

||D(IL
g,t, I

R
g,t,x, d

∗
i ) − D̂(x, g, t)||2 <? ρσ2

D
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(a) (b)

(c) (d)

Fig. 3. Disparity estimation with uniform planar unoccluded regions. We
match a candidate homography between connected components of uniform
regions in two views. Unoccluded planes will yield connected component
shapes that exactly match according to the given homography. Occluded
planes, such as the computer monitor under the user’s arm in the far back-
ground, or non-planar objects, such as the plant in the foreground, will not
have equivalent shapes and will not be matched. In this example uniform
regions were determined by saturated pixels, and the plane was restricted to
be fronto-parallel so that image plane translation would determine equivalent
matches. (a) shows a stereo pair, (b) saturated pixels in each view, (c) con-
nected components that exactly match in both views for some translation,
(d) computed disparity values for each region, shown in grayscale.
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and whose background or foreground weight is also above a threshold,
typically α = 0.25. (Usually ρ = 2.) If no such candidate is confirmed,
we compute all disparity values and estimate d̂ using the conventional
approach described above. If the selected disparity is less than dB(x),
we label it foreground. Points for which dB = null or d̂ = null are
by definition not foreground. During a foreground detection phase we
have the option of using the automatic gain control setting, or search-
ing through the range of gain levels. If run-time speed is the primary
concern, we choose the former approach.

This search pruning optimization can dramatically reduce run-time
costs when the foreground regions of a scene are relatively small or are
moving slowly. The final result of range-based foreground detection is a
map of foreground pixels pj = (cj , xj , yj , tj, dj), each from a particular
location x, y in camera c at time t with disparity d.

3 Plan-view trajectory estimation

We combine information from multiple stereo views to estimate the
trajectory of objects over time. The true extent of an individual object
in a given image is generally difficult to identify. An optimal trajectory
segmentation ought to consider the assignment of an individual pixel to
all possible trajectories estimated over time. Systems which perform an
early segmentation and grouping of foreground data before trajectory
estimation preclude this possibility.

We adopt a late-segmentation strategy, finding the best trajectory in
an integrated spatio-temporal representation that combines foreground
pixels from each view. By assuming that objects move on a ground
plane and do not overlap in the vertical dimension in our environment,
a “plan-view assumption” allows us to completely model instantaneous
foreground information as a 2-D orthographic density projection. Over
time, we compute a 3-D spatio-temporal plan-view volume.

We project (xj , yj, dj) from each foreground point pj into world
coordinates (Uj , Vj ,Wj) using the calibration given by camera cj . (See
Figure 4.) U, V are chosen to be orthogonal axes on the ground plane,
and W normal to the ground plane. We then compute the spatio-
temporal plan view volume, with P (u, v, t) =

∑
{pj |Uj=u,Vj=v,tj=t} 1.

3.1 Distance transform-based dynamic programming

We characterize the quality of a trajectory by its smoothness over time,
and the support of the object track in each time frame. Given P (u, v, t)
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Fig. 4. Foreground points are projected from each view individually to a
plan view representation, then are integrated into a single spatio-temporal
sequence before segmentation into individual trajectories is performed.
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and a set of possible poses and positions of the object at each time step,
we characterize a single optimal trajectory over all time as,

L∗ = argmax
L

∑

0<t≤T

M(lt) −
∑

0<t<T

d(lt, lt+1) (1)

where lt is one of the possible discrete 2-D location, size and pose
parameters of the object in frame t, L = {lt | 0 < t < T } is the object
trajectory, M(lt) is the support of the object track at location lt, and
d(lt, lt+1) is cost of matching lt with lt+1. We compute support to be
the integral of the plan-view density within the shape given by S(lt):

M(lt) =
∑

(x,y)∈S(lt)

P (x, y, t)

Fig. 5. Plan view diagram of office environment used for example in previous
figure. Workstations are shown as rectangles, and a sitting area is shown
as chairs and couch around an oval table. Three trinocular stereo cameras,
shown as black triangles with three circles, are drawn at the approximate
location where they are mounted in the ceiling.

Classically, it is possible to solve equation (1) with complexityO(m2T )
using dynamic programming techniques [1]. Unfortunately, m is the
number of discrete configurations, so m2 can grow prohibitively large.
Using the distance transform formulation introduced in [8], we can re-
duce this complexity to O(mT ), by restricting the form of d to be the
norm or norm squared of transformed location values. We simply set
d(lt, lt+1) = (lt − lt+1)TV−1(lt − lt+1), where V is a diagonal matrix
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Fig. 6. (a) (U,V,T) plot of plan-view foreground density over time for a
sequence with three moving people. The third person enters around frame
20. (b) Segmentation using dynamic programming method described in text.
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of variances for each pose parameter. This simply says that each pose
parameter should change slowly over time.

To solve equation (1), we first compute the best value of the final
lT , as a function of the location at the previous time using dynamic
programming:

BT (lT−1) = max
lT

(M(lT ) − d(lT−1, lT ))

Recursively, we then compute the best value of lt as a function of lt−1

Bt(lt−1) = max
lt

(M(lT ) − d(lt−1, lt) +Bt+1(lt))

and finally B0 = maxl0(M(l0) + B1(l0)). The optimal trajectory is
then given by replacing max with argmax in the above equations and
reversing the recursion to compute the optimal location at each time,
l∗t . This method finds a single optimal trajectory from the initial time
0 to the final time T .

3.2 Trajectory start/end determination

A difficult challenge in person tracking systems has been the estima-
tion of the number of people a given environment under general entry
and exit conditions. Previous systems [13] have relied on specific spatial
zones to delimit the start and end of person trajectories, while other
systems generally use instantaneous criteria to initiate or terminate a
new track. We take advantage of our spatio-temporal plan-view repre-
sentation to optimally estimate trajectory extent as well as shape in a
single dynamic programming optimization.

We extend the above method to find trajectories with explicit start
and end points. Let

(L∗, s∗, e∗) = argmax
L,s,e

∑

s≤t≤e

(M(lt) − ψ) +
∑

s≤t<e

d(lt, lt+1) (2)

where ψ is the cost of extending (s∗, e∗) per time unit.
Fortunately, we can solve equation 2 by modifying the recursive

algorithm above. First we replaceM(l) with (M(l)−ψ) in the equations
above. After computing each Bt, we inspect each location to check if
Bt(lt−1) is negative. If so, we mark that location, indicating that if
the object goes through lt−1, that should be the end of the trajectory.
The start of the trajectory is given by the location maximizing Bs(ls),
over all locations and time frames. The trajectory can be found by
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tracing back from l∗s∗ until reaching a location marked as a trajectory
end. The estimation of L∗, s∗, e∗ for a single trajectory is optimal in
that the dynamic programming method computes a global maxima of
equation 2.

3.3 Implementation and examples

Figure 5 shows the configuration of cameras in our test environment.
To align multiple views, we expect to use an automatic calibration
process where objects moving on the plane are used to determine the
orientation of each camera view [14, 13]. However, this section’s results
were obtained with an approximate manual calibration based on hand
selected correspondences in each camera view.

We collect variable gain and illumination images in our environ-
ment during a background acquisition phase. When there are multiple
objects in the scene, we solve for a set of trajectories by first finding
the trajectory with highest quality given by Equation 2, removing the
points that contributed to its support in the plan-view sequence, and
repeating until no further trajectory can be found with positive quality.

For the examples shown in this section, we used a simplified shape
model of rectangular regions with fixed size and pose, given by aver-
age human torso dimensions. We expect to extend our implementation
shortly to include varying size and pose, which will allowing extended
arm position tracking, etc. We discretized ground plane position to a
320x240 grid, and set ψ to be the median value of d̂(l) evaluated at
random locations. (Again, assuming that our scene is on average more
than half background.) We truncate the time history at 50 frames. Fig-
ure 6 shows the result on a sequence of 3 people moving within our test
environment.

4 Discussion and future work

While the results are appealing, a problem remains: when the trajectory
of two objects or people overlap, it is not possible from a foreground
density representation to disambiguate trajectories if they subsequently
separate. Appearance information can resolve this, as shown by [10].
Unfortunately, including this in the dynamic programming optimiza-
tion would greatly increase the size of the state space of locations at
each time frame, making the solution for the optimal trajectory im-
practical. Resolving this is a topic of ongoing and future work. We
plan to use a trajectory-level correspondence process that uses a graph
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based on the overall trajectory data, computes aggregate appearance
information along each edge (e.g., using color histograms), and then
matches these features to resolve identity along each edge.

Our system currently uses an iterative approach to estimating mul-
tiple trajectories, and for each person solves a batch trajectory estima-
tion problem. This is clearly impractical for real-time, on-line use. To
overcome this limitation we are developing an incremental version of
the algorithm that maintains an more compact representation of prior
trajectory state.

Finally, we have left open the issue of what schedule of gain set-
tings to use when building a background model and when detecting
foreground points. A topic of future work is to determine the minimum
number of samples needed to obtain a maximally dense integrated range
image for a given scene or scene class.

5 Conclusions

This paper presents new algorithms which make tracking objects in
widely varying illumination conditions possible. There are two main
contributions presented.

First, we formulate stereo range estimation using extended dynamic-
range imagery and show how a dense background model can be built
with long-term observations. Without this, stereo range data is too
sparse to construct a useful background model for tracking. We de-
rive a constraint on the projection of planar uniform surfaces in stereo
views and use this to interpolate range within such regions. We imple-
ment our scheme with a predictive, ordered disparity search technique,
that prunes most of the computation typically required to process new
images.

Second, we developed an optimal method for estimating trajecto-
ries without performing an initial segmentation of foreground points.
Foreground points from multiple views are projected into a plan-view
density representation, and are segmented into object regions as part of
a globally optimal dynamic programming optimization. Estimation of
trajectory extent (object entry/exit) is included in the global optimiza-
tion, and does not require any spatial constraints. We demonstrated our
prototype system estimating the trajectory of several people moving in
an environment.
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Abstract. Visibility constraints can aid the segmentation of
foreground objects observed with multiple range images. In our
approach, points are defined as foreground if they can be deter-
mined to occlude some empty space in the scene. We present
an efficient algorithm to estimate foreground points in each
range view using explicit epipolar search. In cases where the
background pattern is stationary, we show how visibility con-
straints from other views can generate virtual background val-
ues at points with no valid depth in the primary view. We
demonstrate the performance of both algorithms for detecting
people in indoor office environments.

1 Introduction

Object segmentation is an important preliminary step for many high-
level vision tasks, including person detection and tracking. State-of-
the-art systems [14, 2, 1, 5] use foreground/background classification fol-
lowed by pixel clustering and analysis. These systems commonly main-
tain a background model and label all pixels that differ significantly
from this model as foreground.

Ideally, these systems should be robust to rapid illumination varia-
tion, such as from outdoor weather or indoor video projection systems.
Several segmentation methods have been proposed which use back-
ground models based on color/intensity [14, 13, 12], stereo range [7,
1] or both [6]. Generally, non-adaptive color-based models suffer from
varying illumination. Adaptive color models [12] are more stable un-
der lighting changes, but can erroneously incorporate objects that stop
moving into the background model. Range-based background models
can be illumination invariant, but are usually sparse. To avoid ambi-
guity at undefined background values (and the resulting illumination
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dependence [3]), they have been either used in conjunction with color
models [6], or are built using observations from widely varying illumi-
nation and imaging conditions [3]. In this paper we show how visibility
constraints from other range images can aid segmentation.

Our approach to foreground segmentation is to combine free space
constraints found from multiple stereo range views. We decide if a given
pixel is “foreground” by checking whether there is any free space behind
it, as seen from other range views. We scan the set of epipolar lines in
the other views corresponding to the given pixel, and test whether
there are range points on the epipolar lines which indicate empty space
behind the given point.

This is a similar computation to algorithms proposed for the ren-
dering of image-based visual hulls [9]. The key difference is that our
method takes as input unsegmented noisy range data and evaluates 3-
D visibility per ray, while the visual hull method presumes segmented
color images as input and simply identifies non-empty pixels along the
epipolar lines in other views. Also related are space carving and col-
oring methods [8, 11], which split the space into voxels and use color
consistency across multiple cameras to locate opaque voxels and to de-
tect free space. These methods are quite general, and work with an
arbitrary set of monocular views. They also require the construction of
a volumetric representation of the scene for reconstruction or segmenta-
tion. We are interested in algorithms that perform segmentation solely
in the image domain, without computing a volumetric reconstruction.
We believe ours is the first method for range image segmentation using
image-based (non-voxel) freespace computation.

In this paper we develop two complimentary segmentation algo-
rithms that use visibility constraints. The first is an instantaneous
foreground detection algorithm, which is independent of previous time
points and does not presume scene or illumination constancy. The sec-
ond assumes a stationary scene and a background range model per
view, and generates virtual background values at pixels which would
otherwise have had insufficient contrast to have valid range.

In the next section we describe our method for using “complimen-
tary” camera(s) to determine whether a single 3-D point, visible by a
“primary” camera, occludes any free space. We describe how to cluster
such points, and to determine whether two clusters provably belong to
separate objects. We then propose a method for creating dense virtual
backgrounds for stationary scenes. Finally, we demonstrate the results
using our algorithm tracking people in an indoor office environment.



Range Segmentation Using Visibility Constraints 511

2 Foreground segmentation

We wish to segment objects that are not attached to any “background”
surface other than the floor, by detecting pixels that occlude some
empty space.

When a 3D point P is imaged by a range sensing device (e.g. stereo
camera) C1 (Figure 1), we know that there exists a nontransparent
material at that point, and that all points between it and the camera’s
center of projection are transparent. But C1 is unable to provide any
information about what lies behind P on the same projection ray. On
the other hand, we can use the observation B of the appropriately
located range sensor C2 to discover that P, which is occluded by P in
C1’s view is transparent.

An ideal (rectified) stereo rig may be completely described by the
baseline B, focal length f and the image coordinates of the principal
point (cx, cy). The following equations describe a relation between point
(x, y) in the disparity image ID and the corresponding 3-D location
(X, Y, Z).




x = x − cx = f
X

Z

y = y − cy = f
Y

Z

d = ID(x, y) = f
B

Z

(1)

As has been shown in [4], the disparity space is a projective space,
and we can write the transformation from disparity to camera-centered
Euclidean projective coordinates as


X
Y
Z
W


 = TC(f, B, cx, cy)




x
y
d
w


 (2)

where

TC(f, B, cx, cy) =




B 0 0 −cxB
0 B 0 −cyB
0 0 0 fB
0 0 1 0


 (3)

In the rest of the paper we refer to (x y d)T and (X Y Z)T

((x y d w)T and (X Y Z W )T ) as disparity and Euclidean (projec-
tive) spaces, and denote them D and E respectively.
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Fig. 1. Visibility-based segmentation. Observation of B in C2 allows us to
infer that P in C1 is foreground. Point B visible in I2 (projecting to C2 dis-
parity point b) lies behind point P relative to C2, and thus provides evidence
for existence of free space behind P (projecting to b) by demonstrating that
P is transparent. Line l contains the oversilhouette for the part of an object
lying along ray [C1,P)

The general setup of the imaging system assumed in our algorithm
is presented in the Figure 1. There are two calibrated stereo rigs, C1

(“primary”) and C2 (“complimentary”), with disparity-to-Euclidean
camera coordinate transforms TE1

D1 = TC(f1, B1, c1
x, c1

y) and TE2

D2 =
TC(f2, B2, c2

x, c2
y), image planes I1 and I2, and disparity images I1

D and
I2
D respectively. The Euclidean coordinate transform between views is

TE2

E1 .

2.1 Pixel-level segmentation

The first stage of our foreground segmentation algorithm applied to
the disparity image of the camera Ci is to determine which 3-D points
visible by Ci occlude some free space. That is, for each disparity point
p = (px py Ii

D(px, py) 1)T , where Ii
D(px, py) is valid, we check whether

there is some free space behind the point P,


X
Y
Z
1


 = P � TEi

Dip (4)
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where � denotes equality up to a scale factor.
We say that point P is behind point P relative to rig Ci, if P lies

on the optical ray [Ci,P), and |P− Ci| > |P − Ci|.
Let point P be behind P relative to camera Ci. We project P into

Dj , i �= j to obtain point b, such that




bx

by

bd

1


 = b � (TEj

Dj )−1TEj

EiP (5)

The points (bx, by), corresponding to all possible Ps, form a ray of the
line epipolar to (px, py) in Ij (passing through projection of the Ci to
Ij and b).

If the disparity value Ij
D(bx, by) corresponding to any of such bs is

valid and is smaller than bd (i.e. some point B behind P relative to
camera Cj is visible by Cj), then point P is transparent, and may be
assumed to belong to free space. When we can find cases where

Ij
D(bx, by) < bd (6)

we consider that point to be evidence for P (correspondingly p) be-
longing to foreground.

In the current implementation of the algorithm, we use the number
of found evidence pixels as a measure of certainty that point p belongs
to foreground. If more than one “complimentary” camera is available,
then the results from each of them may be combined to provide more
robust output. We compute a map of the number of observed occluded
free-space points:

θ(b) =

{
1 Ij

D(bx, by) is valid and λIj
D(bx, by) < bd

0 otherwise

OFS(p) =
∑
b,

for all P

θ(b)
(7)

Where the factor λ > 1 is introduced to deal with noise inherent
in disparity computation. Since we expect the stereo-based range to be
less robust for locations that are far from the camera, we can classify
p as foreground if OFS(p) > TOFS(pd), where TOFS(d) ∼ 1/d.
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Fig. 2. Segmenting multiple objects. The silhouettes S1 and S2 of objects
O1 and O2 are adjacent in I1, but the I2 oversilhouettes, OS1 and OS2,
which are computed from S1 and S2 (and the first freespace points found
behind them) do not overlap, so we may conclude that O1 and O2 are indeed
separate objects.

2.2 Range cluster generation

The method described in the previous section provides us with a mea-
sure of how much free space is occluded by each pixel in a given view.
We use this information to estimate the extent and connectivity of fore-
ground regions in each view, and then link regions across views based
on their projected overlap. Individual pixels are first clustered in each
view, and we then determine whether two clusters belong to separate
objects (Figure 2).

A naive approach would be to cluster the points based on proxim-
ity in either disparity or Euclidean space, and assume that each such
cluster corresponds to a separate object. Such assumptions are correct
in cases such as one in Figure 3(a), but lead to oversegmentation in the
example in Figure 3(b), where components S1 and S2 actually corre-
spond to parts of the same object. To resolve this ambiguity, we use
the visibility information computed for each pixel (Section 2.1).

In Figure 2 we cannot separate O1 and O2 using only information
from I1 (S1 and S2). If the actual silhouettes of the objects in the
second image were available, we could see that in fact they are non-
overlapping, and thus objects are unconnected. In practice we do not
have a set of complete silhouettes when range data is sparse. Instead,
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we compute an approximation of the silhouette in I2 using the free
space visibility constraints found for I1. We define an “oversilhouette”
to be the projection into I2 of 3-D line segments formed by observed
points P from I1 and the first confirmed freespace point they occlude.
If such “oversilhouettes” of two components do not overlap in I2, then
we conclude these components belong to different objects (Figure 2).

If the components’ “oversilhouettes” overlap, we assume that com-
ponents correspond to parts of the same object (Figure 3(b)). This
can lead to undersegmentation (e.g. Figure 3(c)) if there are insuffi-
cient views to observe the segmentation between disjoint objects. With
additional cameras this could be resolved as shown in Figure 3(d).

3 Virtual background generation

While the algorithm described in the previous section is capable of
semi real-time performance (2fps on full resolution images) on current
hardware, our tracking applications require much faster segmentation
algorithms. The common range background subtraction algorithms pro-
vide high-speed performance, but are unreliable in the absence of the
dense range data [3, 1]. While some improvement may be obtained using
statistical training, the range images obtained in the indoor environ-
ment would generally be sparse (Figures 4(d), 5(d)). In this section we
describe a method for generating dense virtual background images.

When the common range background subtraction methods are used,
each pixel in the “background” image represents an upper limit on
the depth (lower limit on the disparity) of free space visible along the
corresponding optical ray when no foreground objects are present. Such
upper limit may be obtained by, for example, taking the minimum of
the observed valid disparity values at the pixel over time [3].

If no range data is available at the point, we can estimate this limit
from visibility constraints obtained from “complimentary” cameras. For
each point in Ii with invalid range we search the corresponding optical
ray to detect all free space points along it that are visible by other
cameras Cjs, and select the one with the greatest depth as the virtual
background.

In order to simplify the algorithm we inverse the order of computa-
tion. Instead of searching along the optical rays of Ci, we compute all
free space points visible by Cj , i �= j, using the computation described
in the next section.
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Fig. 3. Connected components configurations. (a) the components S1, and
S2 belong to separate objects, as the oversilhouettes computed from them in
I2 do not overlap. (b) the components belong to the same object. (c) The
algorithm undersegments the scene, assuming that S1 and S2 belong to the
same object, since their “oversilhouettes” overlap in I2, but the same scene
may be correctly segmented (d) if an extra view (I3) is available.
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For each valid range point p = (px py Ij
D(px, py) 1)T , all points on

the optical ray between P � TEj

Djp and Cj are transparent and may
be assumed to belong to free space. Thus any point P ∈ (P,Cj) is a
candidate virtual background for the corresponding point in Ii, (bx, by),
such that 


bx

by

bd

1


 = b � (TEi

Di )−1TEi

EjP (8)

After a set of candidates for a single (discrete) image location ({b̃i =
(b̃x b̃y b̃di 1)T }) is computed, we select

v = min
i

b̃di (9)

as the virtual background value at the location (b̃x, b̃y).
If both virtual and statistically trained background images are avail-

able, we may combine them to increase robustness by using data from
statistically trained background when it is available (as it represents
the true limit), and using virtual background data otherwise (Figure
7(a-f)).

4 Experimental results

The foreground segmentation algorithm as implemented currently con-
sists of several parts. The first part performs per-pixel computation
described in Section 2.1 with λ = 1.05. We then cluster the pixels
using techniques from Section 2.2, and finally pass the connected com-
ponents through a size filter (accepting components greater than 1% of
the image). The algorithm, running on 700MHz Pentium III, achieved
the performance of 2 frames per second on the full resolution images.

To test our algorithms we used an installation with two Point Grey
Digiclops cameras [10]. One camera used 6mm lenses, and another had
3.8mm lenses (wide-angle) (Figures 4 and 5), with approximately per-
pendicular viewing directions. The cameras were calibrated offline. We
used the Triclops SDK [10] to produce rectified reference and disparity
images. High surface and texture validation thresholds were specified to
produce much more reliable (although more sparse) disparity output.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Intensity and disparity pairs obtained from camera C1. (a, d) – empty
room. (b, e) – empty room under different lighting conditions. (c, f) room
with two people. The pixels with invalid disparity are shown in white.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Intensity and disparity pairs obtained from camera C2. (a, d) – empty
room. (b, e) – empty room under different lighting conditions. (c, f) room
with two people. The pixels with invalid disparity are shown in white.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Foreground detection results. (a, d) Non-conservative disparity back-
ground subtraction result for the views of the empty room under different il-
lumination. This approach detects many false positives, when new valid range
data becomes available in the background regions as illumination changes.
(b, e) Conservative disparity background subtraction result between views
of empty room and room with two people. This approach never detects fore-
ground points when they appear in parts of the model with invalid range
data. (c, f) Results of applying foreground segmentation algorithm described
in this paper. Note that only instantaneous range information is used (Fig-
ures 4(f) and 5(f). The connected components are shown in different colors.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Results of applying virtual backgrounds algorithm. The background
disparity images from Figures 4(d) and 5(d) were used to generate virtual
backgrounds (a) and (d). (b) and (e) are the background images obtained by
combination of direct observations and virtual backgrounds.The (unfiltered)
results of applying conservative background subtraction to images 4(f) and
5(f) are shown in (c) and (f) respectively. Compare the results from our fore-
ground segmentation algorithm (Figure 6(c, f)), and conservative background
subtraction results using background model obtained via direct observations
(Figure 6(b, e)) and combined direct and virtual observations (e, f).
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In Figures 6(a, d) we show the results of nonconservative back-
ground subtraction (i.e. labeling new pixel as foreground if a valid range
was detected where the background model is invalid) between range
views of the same scene under different lighting conditions. Figures
6(b, e) show the results of conservative background subtraction (i.e.
labeling new pixel as foreground only if background model contained
valid value different from the new one) when trying to segment two peo-
ple in the room. As can be seen neither method produces acceptable
results under the conditions we expect the segmentation algorithm to
handle. Nonconservative background subtraction produces large num-
ber of false positives when illumination changes, and contrast (and thus
valid range data) become available on previously uniform background
regions. A conservative approach, on the other hand, never detects fore-
ground objects where no valid range data is available in the background
model.

Figures 6(c, f) demonstrate the results of applying our foreground
segmentation algorithm to the same data as in figures 6(b, e). Note
that the algorithm was able to correctly segment people where no back-
ground range data was available (cf. Figures 6(a) and 6(c)). Classifying
parts of the table as foreground is, in fact, correct behavior of the al-
gorithm, as there is empty space detectable behind them.

The output of the virtual background generation algorithm applied
to the same data is shown in Figure 7. The dense pure virtual back-
ground images (a, d) were generated from the disparity images in Fig-
ures 4(d), 5(d). The background models (b, d) used in our conservative
background subtraction, were obtained by combining direct observa-
tions and virtual range images. The resulting (unfiltered) segmentations
are shown in (c, f).

5 Conclusions

We have presented two novel range-based segmentation algorithms,
that take advantage of availability of multiple, widely spaced stereo
views. The semi real-time foreground segmentation algorithm relies on
the visibility information obtained from other views to locate points
that occlude free space. Since the algorithm does not maintain an ex-
plicit background model and uses only immediately available reliable
range information, it is able to handle variable lighting conditions.
We further extended the algorithm to use visibility constraints to im-
prove clustering of the object points. The virtual backgrounds algo-
rithm uses the visibility information to create dense range background
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images which can then be used with common real-time conservative
background subtraction methods.
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Abstract. We develop a view-normalization approach to multi-
view face and gait recognition. An image-based visual hull
(IBVH) is computed from a set of monocular views and used to
render virtual views for tracking and recognition. We determine
canonical viewpoints by examining the 3-D structure, appear-
ance (texture), and motion of the moving person. For optimal
face recognition, we place virtual cameras to capture frontal
face appearance; for gait recognition we place virtual cameras
to capture a side-view of the person. Multiple cameras can be
rendered simultaneously, and camera position is dynamically
updated as the person moves through the workspace. Image
sequences from each canonical view are passed to an unmodi-
fied face or gait recognition algorithm. We show that our ap-
proach provides greater recognition accuracy than is obtained
using the unnormalized input sequences, and that integrated
face and gait recognition provides improved performance over
either modality alone. Canonical view estimation, rendering,
and recognition have been efficiently implemented and can run
at near real-time speeds.

1 Introduction

Person tracking and recognition systems should ideally integrate infor-
mation from multiple views, and work well even when people are far
away. Two key issues that make this challenging are varying appearance
due to changing pose, and the relatively low resolution of images taken
at a distance. We have designed a system for real-time multi-modal
recognition from multiple views that substantially overcomes these two
problems.
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To address the first issue we adopt a view-normalization approach
and use an approximate shape model to render images for recognition
at canonical poses. These images are sent to externally provided recog-
nition modules which assume view-dependent input. For distant ob-
servations view-normalization must not presume accurate 3-D models
are available; our system is designed for environments where relatively
coarse-disparity stereo range images or segmented monocular views are
provided. We have chosen to use shape models derived from silhouette
information since they are practically computable in real time from
these types of input data.

To overcome the second issue, we adopt a multi-modal recognition
strategy. Low-resolution information makes it less likely that recogni-
tion using any single modality will be accurate enough for many desired
applications. By combining cues together, we can obtain increased per-
formance. A typical drawback of multi-modal approaches is that they
presume different types of imagery as input. Face recognition usually
works best with front-parallel images of the face, whereas gait recog-
nition often requires side-view sequences of people walking. It can be
difficult in practice to simultaneously acquire those views when the
person is moving along a variable path. We propose a method for view-
normalization which performs this automatically, generating appropri-
ately placed virtual views for each modality.

We have implemented a system for integrated face and gait recog-
nition using a shape model based on an image-based visual hulls. Our
recognition algorithms were separately developed for view-dependent
recognition. In our system a small number of static calibrated cameras
observe a workspace and generate segmented views of a person; these
are used to construct a 3-D visual hull model. Canonical virtual camera
positions are estimated, and rendered images from those viewpoints are
passed to the recognition methods.

In the following section we will review some of the previous work
related to multi-view, pose-invariant face and gait recognition. We will
consider different approximate shape models for virtual view rendering,
and argue for the use of the image-based visual hull algorithm due
to its appealing tradeoff of accuracy and computational efficiency. We
will then present new methods for estimating canonical frames given
visual hull representations, based on shape, appearance, and motion
cues. Finally, we will show recognition results integrating face and gait
cues with separately developed view-dependent recognition modules.
The particular modules we have used for our current experiments are
based on principle components analysis and spatio-temporal templates,
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for face and gait respectively, but our framework is applicable to any
view-dependent face or gait recognition method.

2 Previous work

To achieve pose-invariance, recognition models generally must incor-
porate information from multiple views of an object’s pose. Broadly
speaking, there are several classes of techniques for view-independent
face recognition, including modular learning, elastic matching, view-
interpolation, and geometric warping. Our visual hull approach is an
instance of the last category, using multiple views and silhouette inputs.

Several authors have developed methods for recognition using a set
of distinct view categories. The well-known eigenfaces paradigm was ex-
tended to recognize a set of different poses using an eigenspace for each
view [17]. Rather than using replicated classifiers for distinct views,
several authors have investigated elastic matching or view interpolation
methods [21, 22]. Beymer and Poggio introduced a method for interpo-
lating face views for recognition given dense correspondences, using a
Radial Basis Function paradigm [2]. Seitz [19] developed a view mor-
phing technique which used dense correspondences to interpolate rigid
views of an object, but did not apply this technique to recognition.

Generalizing the notion of elastic matching, recognition based on
principle components analysis of shape and texture distributions has
been shown to be able to model and recognize a range of object poses[8].
When a model has been constructed fast optimization of shape and
texture coefficients is possible. However, all these methods have gener-
ally presumed either knowledge of face pose and/or an accurate, dense
depth or correspondence field during model training. This can be dif-
ficult to acquire in practice, so we have focused on geometric warping
methods.

2.1 Geometric models

If we presume a model of the underlying geometry of the object, we can
use that geometry to warp one view onto another view. For tracking
faces, previous authors have used planar [3] and ellipsoidal [1] mod-
els to bring images into a canonical view. Several authors have used
affine, cylindrical and ellipsoidal models for warping views during mo-
tion tracking [9, 6, 1].

Simple shape models are often inaccurate for view warping. More
complex models may be used, such as warping with a depth map ob-
tained from a laser range scanner. But as model detail increases, it
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becomes difficult to precisely align a static model with dynamically
changing observations. This negates the value of the detailed features.
To overcome these problems, we would like to use a dynamic model
of actual object shape, computed in real-time from the object being
tracked. Dynamic models can be recovered from a variety of sources,
but we will restrict ourselves to models recovered from a set of regular
cameras.

We know the relative camera positions between the views, so if
we accurately knew the depth at each pixel we could simply apply
view morphing or traditional rigid motion warping. However, our source
views are monocular and widely separated, so it is difficult to determine
correspondences using traditional methods for multi-view matching.

With a rich statistical 3-D shape model of the object class, such
as developed in [4], we could estimate a 3-D shape directly from the
set of 2-D appearance images, and use that to render a high-quality
image from the desired view. While this is an appealing idea, we would
like our method to be general, and will not in practice assume such a
statistical range model is available.

An equally appealing approach would be to apply voxel coloring or
carving techniques [19, 11], to recover a discrete 3-D volumetric repre-
sentation, and then use volume rendering techniques to generate the
canonical view. However, these systems are computationally expensive,
and require a specified discretization in 3-D which may not be optimal
to re-render a given viewpoint.

We are interested in dynamic 3-D shape models that are computable
without requiring dense correspondence or volumetric reconstruction.
We will use a model which is computable solely from silhouette input,
which we can obtain either from monocular analysis or segmentation
of coarse-disparity range data.

2.2 Visual hulls

The concept of visual hull (VH) was introduced in [12]. A VH of an
object is the maximal volume that creates all the possible silhouettes of
the object. The VH is known to include the object, and to be included
in the object’s convex hull. In practice, the VH is usually computed
with respect to a finite (often small) number of silhouettes.

An efficient technique consists of computing an image-based VH
(IBVH) ([15]). For a desired viewpoint, for each pixel in the resulting
image the intersection of the corresponding viewing ray and the VH
is computed. The computation can be performed in 2D image planes,
resulting in an algorithm that renders a desired view of n2 pixels in
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(a) Input

(b) Output

Fig. 1. (a) An example of rendering virtual views with an image-based visual
hulls: the images obtained at the 4 cameras (top row) and their segmentation
(bottom row). (b) The polyhedral VH model built from the input silhouettes
in (a) (top pair), and synthetic views (bottom pair) rendered by a “virtual
camera” corresponding to a frontal viewpoint. The view from the back has
poor texture but reasonable shape.
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Fig. 2. An example of tracking body position and orientation using a Kalman
Filter: input from one of the cameras (top row), synthetic frontal view (middle
row) and synthetic side-view (bottom row).

O(kn2) where k is the number of input images (the number of views).
A variant of this algorithm provides a polyhedral 3D approximation of
the VH [14]. This O(k2n2) algorithm represents contour of each silhou-
ette as a polygon set, and computes in 2D image planes the pairwise
intersections between every pait of cones, resulting in k − 1 polygon
sets for each silhouette. Intersection of these polygons set at each cone
face defines the 3D polyhedron; this is the approximation of the surface
of the VH with a polygonal mesh.

After the VH is constructed, its surface is texture-mapped based on
the original images ([14]). Let θi be the angle between the viewing ray
of the virtual camera for a given pixel p, and the viewing ray of the
i-th camera for p. Then each view is assigned a weight 1 − θi/maxiθi,
and the value of p in the synthetic view is a weighted sum of the values
in the original images.

Figure 1 shows an example of the original images, and the resulting
VH without and with texture. The VH allows us to render a synthetic
view of the object from desired viewpoints, at a moderate computa-
tional cost, and also provides information about the object’s 3D loca-
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tion and shape. We use this information to track the position and pose
of a user in the environment, and to reduce the complex task of view-
invariant recognition to the simpler one of view-normalized recognition.

3 Tracking and estimating canonical views

To render virtual views for recognition, we need to determine the canon-
ical pose of the camera which will generate the most discriminative
view. In general, one could formulate the view selection process as part
of the overall recognition framework, as in [5]. Indeed, given freedom
to design the recognition method as well as to select the optimal view,
a general optimization would be necessary. In our current work, how-
ever, we presume the use of external, black-box recognition engines for
face and gait recognition. These methods have been constructed with
the explicit assumption of a canonical view, so we use them directly.
For faces we place the camera in the plane fronto-parallel to the face,
and for gait sequences we place the camera so that it observes a side-
view of the walking sequence. We have developed algorithms based on
motion analysis and pattern detection to estimate these viewpoints. A
strong assumption that we make is that the person is walking and gen-
erally facing forward; this allows us to use trajectory analysis to help
constrain the search for canonical views.

3.1 Trajectory analysis

Without loss of generality we presume that the XZ-plane of our co-
ordinate system is the ground plane, and the Y axis is the normal to
the ground. We estimate the location of the centroid of the subject by
taking the center of gravity of the VH c = 〈cx, cy, cz〉. The method of
computing c depends on the VH algorithm. For the polyhedral VH, it
is simply the centroid of the polyhedral model, which can be computed
while building the model. This method was used in all the experiments
described in this paper. For the sampled VH, one estimates the VH
by integrating the volume enclosed within the endpoints of the ray in-
tervals, and computes the zero-th moment of that volume. A third,
more ad-hoc approach consisting of computation of the 3D bounding
prism (which can be done directly from the silhouettes) and taking its
centroid, was found by us to be inferior in practice.

Given the estimated centroids of the VH in two consecutive frames
ct and ct+1, we estimate the motion of the object between t and t + 1
by ∆c = ct+1 − ct. Under the assumption that the motion is parallel
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Fig. 3. Trajectory estimated from sequence in Figure 2. Frames shown in
top row of Figure 2 are marked with an asterisk. Virtual views are generated
along the tangent and normal to this trajectory for face and gait recognition,
respectively.

to the XZ plane, we consider the projection of ∆c on that plane as the
motion vector.

We shall call the set of the synchronized views obtained at time t
a multiframe ft. The VH computed from ft will be denoted by V Ht.
Instantaneously, we need to fit a straight line z = mx+ b to the (noisy)
centroid observations. This is done by solving a linear least-squares
optimization problem, for the 〈xt, zt〉 in each multiframe V Ht. This
gives us the unit vector vt in the estimated direction of the person at
time t. Once we have established the direction, we can place a “virtual
camera”, say, in front of the person, at a desired distance δ:

Ot = ct + δvt (1)

For a general trajectory, we use a constant-velocity Kalman filter to
recover the centroid path.

Figures 2 and 3 demonstrates the results of the method. Input from
only one camera out of four is shown for reference. While the orientation
estimate is not perfect, we keep track of the orientation after the person
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turns at about 60 degrees, and can automatically produce synthetic
frontal (middle row of Figure 2) and profile (bottom row) views. (Note
that there are some texture rendering artifacts present in the profile
sequence–these are visually distracting but do not cause problems for
our silhouette based gait algorithm.)

The assumption of fronto-parallel motion implicit in our trajectory
analysis can be relaxed by combining the motion-based orientation esti-
mate with one based on face-detection, as described in the next section.

3.2 Detection-based view estimation

Fig. 4. View-normalized gait and face recognition features based on trajec-
tory in Figure 3.

A pattern detection approach can be applied to a set of rendered
virtual views to find those that are most “canonical” relative to a de-
sired class. For faces, we use a real-time face-detection method [20]
to detect the frontal view condition. This implementation, which uses
small number of highly-relevant features, can process images of 400x300
pixels in roughly .07 seconds. However, we need to apply it to much
smaller images. Given the VH of a person, and assuming roughly up-
right body pose, we need to consider only the top part of the VH. In
our experiments we chose to look at the top 1.5 feet. We place the vir-
tual camera at the distance that would produce the desired resolution
of the image (in the described setup, 60x60 pixels).

If no trajectory information is available, we can search a circle of
views around the 3-D location of a users head (Figure 5). If trajectory
information is available, the head area is then rendered for a small
range of spatial angles around the currently estimated face orientation.
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Fig. 5. Virtual views can also be generated based on the position of the users
head and a ground plane constraint.

A set of 25 such images has the same total size as one 300x300 image,
and takes similar time for a face detector to process.

We also reduce the scale space, since the virtual camera is placed
at a known distance from the VH, thus leading only a small range of
possible sizes of the face.

4 Recognition on virtual sequences

We take the virtual sequences rendered from canonical viewpoints and
input them to view-dependent face and gait recognition algorithms.
Typically these methods are based on 2-D or 2.5-D (XY+T) analysis.

4.1 Gait recognition

Human gait can serve as a discriminative feature for visual recognition,
as suggested by theoretical biometric ([10]) and empirical ([7, 16, 18])
results. Here we applied a simple gait recognition scheme based on sil-
houette extent analysis, which was developed separately from our work.
The basic method is reported in [13] and was successfully demonstrated
on sequences where the direction of motion was explicitly parallel to
the camera plane.
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(a) Partition
of a silhou-
ette

(b) Fitting
an ellipse to
each region

Fig. 6. Computing the feature vector for gait recognition. From [13].

The gait dynamics feature vector consists of smoothed versions of
moment features in image regions containing the walking person. For
each silhouette of a gait video sequence, we find the centroid of the
whole silhouette and divide it into 7 regions using the centroid. For
each of the regions, we fit an ellipse to describe the centroid, the aspect
ratio and the orientation of the portion of foreground object visible
in that region(Figure 6(b)). These silhouette–based features are com-
puted for each frame of a video sequence. These time-varying signals
from a video sequence are compressed across time using the mean and
standard deviation of the centroid, aspect ratio, and orientation of each
region. The time-compressed features from all 7 regions together form
a gait feature vector. A diagonal covariance Gaussian model is used
for each of these features, and a nearest neighbor classifier is used to
decide which person has walking dynamics closest to the query fea-
ture vector. This method is surprisingly simple, but works in a range
of realistic conditions [13]. More complex models, including those that
recover kinematic biometrics and/or periodic features, could also be
easily integrated into our framework.

The features used in this gait recognition algorithm are clearly view-
dependent, and it is generally impractical to collect data for each person
across all possible views. Recognition using a sequence rendered from a
virtual viewpoint in canonical position is an appealing alternative. For
each sequence of multiframes x, two silhouette sequences are produced
- a synthetic view from the left and from the right can be created for
each frame, relative to the estimated motion vector. We denote those by
sL and sR. Figure 4(top) shows an example view-normalized silhouette
input to the recognition method.
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Fig. 7. A rank-threshold plot for gait recognition using view-normalization
(solid line) versus using only the raw input silhouettes (dotted line).

We maintain an ID-tagged database of silhouette sequences, ob-
tained from the VH of the previously observed people. To recognize a
new sequence, we compute the distances between the feature vector of
sL and sR and those of all the silhouette sequences s in the database.
We exclude sL and sR themselves, and choose the minimum between
the two values as the distance between x and the other silhouettes.
Then, we normalize the vector

pg(x) =
[
1/ min

label(s)=1
dist(s,x), . . . , 1/ min

label(s)=K
dist(s,x)

]
(2)

The estimated confidence that x is actually from person k is denoted
pgk(x). Choosing k which maximizes this confidence gives our classifi-
cation decision.

4.2 Face recognition

When a scene is viewed by a small number of far-placed cameras, often
there is no view close enough to frontal to allow face recognition, and
even detection. For example, on all of the original textures in Figure
8(a) face detection fails. However, faces are easily detected in the frontal
virtual views, such as that shown in Figure 4(bottom) and Figure 8(b).
Figure 8(c) shows a sample of view-normalized model faces.

We consider face recognition algorithms that are trained on a database
with certain amount of view-dependence. Typically such a database
includes frontal views of faces. So far, we tested our approach with
eigenfaces.

For each multiframe xt, we render synthetic views of the top part
of VH for a small range of spatial angles around the estimated motion
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(a) Original (b)
VN

(c)

Fig. 8. Face detection typically fails on the input views due to varying pose
(a), but succeeds on the visual hull-based view-normalized image (b). Pairs
of view-normalized faces from the same individual are shown in (c). Con-
ventional view-dependent face recognition methods can match (b) to the
appropriate individual in (c) (top row, right or bottom row, second right).

vector. These images are processed by a face detector, and the ones
where a face was detected are included in a set of Facest(x). After
having seen n frames, the set Faces(x) =

⋃n
i=1 Facesi(x). If Faces(x)

is non-empty, we can use all the face images in it for recognition. Let
m = |Faces(x)|. Let D be an m×K matrix of distances between each
Ii ∈ Faces(x) and each one of the K eigenspaces represented in the
database:

Dij = |Ii − SjIi|, (3)

Then we compute for each image Ii a weight vector
wi = [1/Di1, . . . , 1/DiK ], which is further normalized to produce a

confidence vector. This vector describes the estimated confidence that
Ii belongs to the Kth person. We have m images, so for the whole
sequence x we compute the confidence vector

pf (x) =
1
m

m∑
i=1

wi. (4)

Our classification is then done by selecting
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x = argmax
j

pf j(x).

4.3 Multi-modal recognition

Finally, we combine the face and gait recognition results in order to
establish a higher confidence level. Since empirically the success rates
of face and gait classifiers were similar (c.f. Table 1(d)), we assigned
an equal weight of .5 when combining confidence vectors. Given pf (x)
and pg(x) for the observed sequence of multi-views x, we compute the
multi-modal confidence vector

pc(x) =

{
pg(x), if Faces(x) = ∅
(pg(x) + pf (x)) /2, otherwise.

(5)

(a)

5 0 0 0 0 0 0 0 0 1 0 0
0 4 0 0 0 0 0 0 1 0 0 1
0 0 3 0 0 0 0 1 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 1 0 0
0 0 0 0 0 3 0 0 0 0 1 0
0 0 0 0 0 0 6 0 0 0 0 0
0 0 0 1 0 0 0 4 0 0 1 1
0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 1 2 0
0 0 0 0 0 0 0 0 0 0 0 4

(b)

5 0 1 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 2 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 1
0 0 1 0 0 0 5 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 0 0 0 4

(c)

6 0 0 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0
1 0 3 0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 1 0 0
0 0 0 0 0 3 0 0 0 0 1 0
0 0 0 0 0 0 6 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 1 1
0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 0 0 0 4

(d)
Modality (chance) No VH-face No VH-gait No VH-gait VH-face VH-gait VH-gait

and face only only and face
Recognition rate .08 .31 .52 .44 .8 .87 .91

Table 1. Confusion matrices for (a) gait-only, (b) face-only, and (c) inte-
grated recognition using VH. Note that there was no face data obtained for
subject 8, who was wearing a hat during the experiments. (d) Summary of
the recognition results.

5 Results

We tested our methods using an installation with four monocular cam-
eras. Each were located at roughly the same height, approximately 45
degrees apart, yielding set of images like that in Figure 1. The inter-
section of their fields of view defines the working space of our system.
The cameras were calibrated off-line and temporally synchronized in
hardware.
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Silhouettes were computed using a simple color background model.
For each pixel, the mean and variance of its values are computed over
a large number of frames when the scene is known to contain no ob-
ject. Segmentation is performed with three steps. First, each pixel in
the data image is labelled ’background’ if its value is within two stan-
dard deviations from the mean, and ’foreground’ otherwise. Second, a
normalized correlation analysis is then computed for a small window
around each foreground pixel, and it is reset to background if the corre-
lation score is sufficiently high. Finally, a morphological close operation
is performed. The last two steps reduce the impact of shadows.

For 12 subjects we collected between 2 and 6 VH sequences as they
walked in an arbitrary direction through the visual hull workspace,
which was approximately 3m in diameter. The accuracy of gait clas-
sification was estimated using leave-one-out cross-validation. Figure 7
compares gait recognition performance using normalized vs. unnormal-
ized views. Accuracy vs. rank threshold is plotted for the each approach,
indicating the percentage of trials where the correct label was within
the top n predicted labels (where n is the rank-threshold value). As can
be seen, recognition with the unnormalized sequences was substantially
worse than with our view-normalization approach. A confusion matrix
for n = 1 is shown in Table 1(a)

View-normalized face recognition was also performed on these data,
using the method described above. Table 1(b) shows the results of clas-
sification using only the face observations. Finally, Table 1(c) shows the
confusion matrix for integrated recognition. Table 1(d) summarizes the
overall recognition rates for face-only, gait-only, and integrated recogni-
tion. Integrated recognition reduced the rank-threshold=1 recognition
error rate from 13% to 9%.

Note the significantly inferior performance of the recognition in both
modalities with the same data, but when no view-normalization is ap-
plied (Table 1 (d)). In this experiment, we used the images from all the
four cameras, where segmented silhouettes were fed to the gait classifier,
and face detection was used to extract faces from the textured camera
inputs (with silhouettes defining the search regions). Face recognition
performed especially poorly. In many sequences not a single face was
detected, which is not surprising after looking at Figure 8. In addition,
some false detections further decrease the performance.

6 Conclusions and future work

We have described a view-normalization approach for integrated track-
ing and recognition of people. Our system combines face and gait recog-
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nition methods, and information from multiple views. An image-based
visual hull is used for shape modeling and for trajectory tracking. Re-
sults were shown using view-dependent face and gait recognition mod-
ules, and were better than the unnormalized or single modality results.
Each component of the system runs at real-time speeds.

Currently the implementation uses monocular silhouettes based on
color segmentation with static backgrounds, but could be extended to
accommodate more sophisticated segmentation algorithms. Our system
works within the strict intersection of the field of view of all cameras,
but we expect this to be relaxed as a more general visual hull algorithm
is developed. Finally, our confidence integration method is clearly prim-
itive in present form, and should be extended to an explicit probabilistic
framework.
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Abstract. Steerable microphone arrays provide a flexible in-
frastructure for audio source separation. In order for them to
be used effectively in perceptual user interfaces, there must
be a mechanism in place for steering the focus of the array
to the sound source. Audio-only steering techniques often per-
form poorly in the presence of multiple sound sources or strong
reverberation. Video-only techniques can achieve high spatial
precision but require that the audio and video subsystems be
accurately calibrated to preserve this precision. We present an
audio-video localization technique that combines the benefits
of the two modalities. We implement our technique in a test en-
vironment containing multiple stereo cameras and a room-sized
microphone array. Our technique achieves an 8.9 dB improve-
ment over a single far-field microphone and a 6.7 dB improve-
ment over source separation based on video-only localization.

1 Introduction

Many current perceptual user interface applications require high-quality
audio signals for acceptable performance. Examples include automated
speech recognition (ASR) and smart teleconferencing. When hands-free
operation is required, the most common ways to obtain audio signals
for these applications are to use close-talking microphones that are at-
tached to the speakers of interest or to use single-element directional
microphones pointed at the speakers of interest.

However, both of these techniques leave much to be desired. Close-
talking microphones require that each user be equipped with his own
microphone, while directional microphones are often bulky and are lim-
ited to a fixed beam pattern, thus restricting their ability to track mul-
tiple users.
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An alternate technique that has become more attractive with the
decreasing cost of computation and digital communication is the mi-
crophone array. A microphone array consists of several microphones in
fixed locations relative to each other. The microphones’ audio signals
can be filtered and summed to perform spatial filtering of the audio
sources in the room. By altering the filters applied to the individual
microphones’ signals, sounds coming from different regions of the room
can be selectively amplified or attenuated.

Microphone arrays address many of the problems inherent in more
passive audio capture techniques. Unlike close-talking microphone sys-
tems, microphone arrays do not require users to remember to wear
special equipment when they anticipate that they will interact with
the environment. Instead, microphone arrays have, as a fundamental
property, an explicit notion of the spatial relationships among sound
sources.

This association between sound and location makes a microphone
array a powerful tool in the context of perceptive environments. In com-
bination with additional sensors and contextual information from the
environment, a microphone array can effectively amplify and separate
sounds of interest from complex background noise.

To focus a microphone array, the location of the speaker(s) of in-
terest must be known in order for the microphone array to modify its
filter response to amplify the selected speakers. A number of techniques
exist for localizing sound sources using the array data itself [12], but the
performance of these localization techniques tends to degrade signifi-
cantly in the presence of reverberation and/or multiple sound sources.
Unfortunately, most common office and meeting room environments
are highly reverberant, with reflective wall and table surfaces, and will
normally contain multiple speakers.

In our application, we can take advantage of other sensors in the
perceptive environment domain to perform multimodal localization of
multiple speakers despite reverberation. Because the wavelength of visi-
ble light is much smaller than the wavelength of audible sound, cameras
can be much more precise in their localization, and multiple users can
be more easily segmented in space.

Cameras, however, are not perfect for steering a microphone ar-
ray. It may be difficult to obtain a precise joint calibration between
the cameras and the microphone array. In addition, the features that
a camera-based system can most easily track, such as extremities of
the body, are not directly relevant to the microphone array; the micro-
phone array requires information about the location of the speaker’s
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mouth, which is difficult to obtain from wide-angle camera views of the
environment.

Because of these issues, a microphone array aimed using only in-
formation from a set of cameras will likely be incorrectly aimed, re-
sulting in a loss of several decibels of performance and an undesirable
spectral coloration of the signal of interest. In spite of these problems,
video localization information is accurate enough to restrict the range
of possible acoustic source locations to a region small enough to allow
for acoustic localization techniques to operate without severe problems
with reverberation and multiple speakers.

As far as we are aware, our system is the first visually guided large-
aperature microphone array. This paper demonstrates the use of 3-D
visual localization in combination with acoustic localization to acquire
high-quality audio speech signals from moving users in a perceptually
enabled environment.

2 Background

This work brings together techniques from array signal processing with
techniques from vision-based person tracking to implement a system
that can selectively amplify audio from a selected speaker as he moves
through the room. Much work has been done in both of these areas.
The relevant background is summarized below.

2.1 Microphone arrays

Microphone arrays are a special case of the more general problem of
sensor arrays, which have been studied extensively in the context of
applications such as radar and sonar [11]. The Huge Microphone Array
project[10] is investigating the use of very large arrays containing hun-
dreds of microphones. Their work concentrates on audio-only solutions
to array processing. Another related project is Wang and Brandstein’s
audio-guided active camera[13], which uses audio localization to steer
a camera on a pan/tilt base.

Many problems can be addressed through array processing. The two
array processing problems that are relevant to our system are beam-
forming and source localization.

Beamforming is a type of spatial filtering in which the signals from
individual array elements are filtered and added together to produce
an output that amplifies signals coming from selected regions of space
and attenuates sounds from other regions of space. In the simplest form
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of beamforming, delay-and-sum beamforming, each channel’s filter is a
pure delay. The delay for each channel is chosen such that signals from
a chosen “target location” are aligned in the array output. Signals from
other locations will tend to be combined incoherently. For example, if
a three element array consists of elements that are 2, 4, and 7 meters
away from a target location, the elements’ signals should be delayed by
the time that it takes for sound to travel 5, 3, and 0 meters, respectively.
This type of beamforming is simple and robust to small uncertainties
in microphone and target locations.

Source localization is a complementary problem to beamforming
whose goal is to estimate the location of a signal source. One way
to do this is to beamform to all candidate locations and to pick the
location that yields the strongest response. This method works well,
but the amount of computation required to do a full search of a room
is prohibitively large. Another method for source localization consists
of estimating relative delays among channels and using these delays to
calculate the location of the source. Delay-estimation techniques are
computationally efficient but tend to perform poorly in the presence of
multiple sources and/or reverberation.

A number of projects [2–4] have used vision to steer a microphone
array, but because they use a single camera to steer a far-field array,
they cannot obtain or make use of full 3-D position information; they
can only select sound coming from a certain direction.

For microphone arrays that are small in size compared to the dis-
tance to the sources of interest, incoming wavefronts are approximately
planar. Because of this, only source direction can be determined; source
distance remains ambiguous. When the array is large compared to the
source distance, the sphericity of the incoming wavefronts is detectable,
and both direction and distance can be determined. These effects of ar-
ray size apply both to localization and to beamforming, so if sources
at different distances in the same direction must be separated, a large
array must be used.

As a result, with large arrays the signal-to-noise ratio (for a given
source) at different sensors will vary with source location. Because of
this, signals with better signal-to-noise ratios should be weighted more
heavily in the output of the array. Our formulation of the steering
algorithm presented below takes this into account.

2.2 Person tracking

Tracking people in known environments has recently become an active
area of research in computer vision. Several person-tracking systems
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have been developed to detect the number of people present as well
as their 3D position over time. These systems use a combination of
foreground/background classification, clustering of novel points, and
trajectory estimation over time in one or more camera views [6, 9].

Color-based approaches to background modeling have difficulty with
illumination variation due to changing lighting and/or video projection.
To overcome this problem, several researchers have supported the use
of background models based on stereo range data [6, 8]. Unfortunately,
most of these systems are based on computationally intense, exhaustive
stereo disparity search.

We have developed a system that can perform dense, fast range-
based tracking with modest computational complexity. We apply or-
dered disparity search techniques to prune most of the disparity search
computation during foreground detection and disparity estimation, yield-
ing a fast, illumination-insensitive 3D tracking system. Details of our
system are presented in [5]; here we review the details of our visual
tracking system which are relevant to the integration with audio pro-
cessing in our microphone array.

When tracking multiple people, we have found that rendering an or-
thographic vertical projection of detected foreground pixels is a useful
representation (see also [1, 9]). A ”plan view” image facilitates corre-
spondence in time since only 2D search is required. Previous systems
would segment foreground data into regions prior to projecting into a
plan-view, followed by region-level tracking and integration, potentially
leading to sub-optimal segmentation and/or object fragmentation. In-
stead, we develop a technique that altogether avoids any early segmen-
tation of foreground data. We merge the plan-view images from each
view and estimate over time a set of trajectories that best represents
the integrated foreground density. Trajectory estimation is performed
by finding connected components in a spatio-temporal filtered volume.

To estimate the trajectory of objects over time, we combine infor-
mation from multiple stereo views. The true extent of an individual
object in a given image is generally difficult to identify. An optimal
trajectory segmentation should consider the assignment of an individ-
ual pixel to all possible trajectories estimated over time. Systems which
perform an early segmentation and grouping of foreground data before
trajectory estimation preclude this possibility.

We adopt a late-segmentation strategy that finds the best trajec-
tory in an integrated spatio-temporal representation by combining fore-
ground pixels from each view. By assuming that objects move on a
ground plane, a “plan-view assumption” allows us to completely model
instantaneous foreground information as a 2-D orthographic density
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Fig. 1. Detecting locations of users in a room using multiple views and plan-
view integration. Three people are standing in a room, though not all are
visible to each camera. Foreground points are projected onto a ground plane.
Ground plane points from all cameras are then superimposed into a single
data set before clustering the points to find person locations.
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projection. Over time, we compute a 3-D spatio-temporal plan-view
volume.

We project (xj , yj, dj) from each foreground point pj into world co-
ordinates (Uj , Vj , Wj). (See Figure 4.) U, V are chosen to be orthogonal
axes on the ground plane, and W normal to the ground plane. We then
compute the spatio-temporal plan view volume (Figure 1), with

P (u, v, t) =
∑

{pj |Uj=u,Vj=v,tj=t}
1

Each independently moving object in the scene generates a contin-
uous volume in the spatio-temporal plan view volume P (u, v, t). When
the trajectories of moving objects do not overlap, the trajectory esti-
mation is easy and consists in running a connected-component analysis
in P (u, v, t) (each component is then a trajectory).

When the trajectories of moving objects overlap (e.g. crossing of
two people), the volume associated with these trajectories in P (u, v, t)
also overlap and make the extraction of trajectories more difficult. In
order to overcome this, a graph is built from a piece-wise connected-
component analysis of P (u, v, t). Nodes correspond here to trajectory
crossing and branches to non-ambiguous trajectories between two cross-
ing. A color histogram is then estimated for each branch of the graph
(using all images associated with this branch). Trajectories are esti-
mated by finding in the graph the paths consisting of branches having
the most similar color histograms. This may be done instantaneously
using a greedy search strategy or using the slower but optimal dynamic
programming technique described in [5].

3 Large-array volume selection

Our system performs both audio localization and beamforming with a
large, ceiling-mounted microphone array. Localization uses information
from both audio and video, while beamforming uses only the audio
data and the results of the localization processing. A large array gives
the ability to select a volume of 3-D space, rather than simply form a
2-D beam of enhanced response as anticipated by the standard array
localication algorithms. However, the usual assumption that of con-
stant target signal-to-noise ratio (SNR) across the array does not hold
when the array geometery is large (array width on same scale as target
distance.) As described below, we need to model the SNR term in the
array localization algorithm.
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3.1 Localization

Our system uses the location estimate from the vision tracker as the
initial guess from which to begin a gradient ascent search for a local
maximum in beam output power. Beam power is defined as the integral
over a half-second window of the square of the output amplitude.

It is difficult to characterize the error in the tracker’s estimate be-
cause this error depends on the person’s position in the room, the per-
son’s appearance, and a number of other characteristics of the situation.
However, experience leads us to believe that the vision tracker is accu-
rate to within less than one meter. Gradient ascent to the nearest local
maximum can therefore be expected to converge to the location of the
speaker of interest when no other speakers are very close by.

Gradient ascent is complicated by the fact that there are many high-
spatial-frequency ripples superimposed on the large-scale peak whose
maximum we wish to find. These small ripples in the response result in
many undesirable local maxima that must be avoided. Because speech
is a broadband signal, it is possible to start the gradient ascent using a
low-passed version of the speech signal. As the peak is approached, the
cut-off frequency of the filter can be raised, thus incorporating more of
the signal into the location estimate. This technique is similar to one
used in [7] as part of an exhaustive search for a power maximum.

3.2 Source separation

For small microphone arrays, the relative SNRs of the individual chan-
nels do not vary significantly as a function of source location. This is,
however, not true for larger microphone arrays. For our array, which is
roughly 4 meters across, we must take into account the fact that some
elements will have better signals than others. Specifically, if we assume
that we have signals x1 and x2 which are versions of the unit-variance
desired signal, s, that have been contaminated by unit-variance uncor-
related noise, we can analyze the problem as follows:

x1 = a1s + n1

x2 = a2s + n2

In this model, the signal to noise ratios of x1 and x2 will be a2
1 and

a2
2, respectively. Their optimal linear combination will be of the form

y = bx1 + x2. Because of the uncorrelated noise assumption, the SNR
of this combination will be
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Fig. 2. Array power response as a function of position (single speaker close-
up). This plot shows the array output power as the array’s focus is scanned
through a plane centered on a speaker.
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Fig. 3. Array power response as a function of position (two speakers). This
plot shows the array output power as the array’s focus is scanned through a
plane centered on one speaker while another speaker is nearby. The central
speaker is easily discernible in the plot, but the peak corresponding to the
weaker speaker is difficult to distinguish among the sidelobe peaks.
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SNR(y) =
(ba1 + a2)2

b2 + 1

By taking the derivative of this expression with respect to b and
setting the result equal to zero, one finds that the optimal value of b is:

b =
a1

a2
=

SNR(x1)
SNR(x2)

Because of the symmetry of the signals, this result implies that,
in general, individual elements’ signals should be scaled by a constant
proportional to the square root of their SNRs.

Ideally, we would like to have complete knowledge of the strengths
and statistical relationships among the noise signals at the individual
sensors. This information is not easy to obtain, but because of our large
array and multiple stereo cameras, it is easy for us to use our location
estimate to weight individual channels assuming a 1/r attenuation due
to the spherical spreading of the source. Assuming 1/r attenuation
from a source to each microphone, we have an = 1/rn in the above
equations, so the optimal weighting factor for channel n is 1/rn. This
is intuitively appealing since it means that microphones far from the
source contribute relatively little to the array output.

 

Fig. 4. The test environment. On the left is a schematic view of the envi-
ronment with stereo cameras represented by black triangles and microphones
represented by empty circles. On the right is a photograph of the environment
with microphones and camera locations highlighted.
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4 Results

Our test environment, depicted in Figure 4, is a conference room
equipped with 32 omnidirectional microphones spread across the ceiling
and 2 stereo cameras on adjacent walls.

The audio and video subsystems were calibrated independently, and
for our experiments, we performed a joint calibration by finding the
least-squares best-fit alignment between the two coordinate systems.

Table 1. Audio-video localization performance comparison

Localization Technique SNR (dB)

Single microphone −6.6

Video only −4.4

Audio only 2.0

Audio-Video 2.3

Figure 3 is an example of what happens when multiple speakers are
present in the room. Audio-only gradient ascent could easily find one
of the undesirable local maxima. Because our vision-based tracker is
accurate to within one meter, we can safely assume that we will find
the correct local maximum even in the presence of interferers.

To validate our localization and source separation techniques, we
ran an experiment in which two speakers spoke simultaneously while
one of them moved through the room. We tracked the moving speaker
with the stereo tracker and processed the corresponding audio stream
using three different localization techniques. For each, we used a refer-
ence signal collected with a close-talking microphone to calculate both
a time-averaged SNR (Table 1) and a sequence of short-time SNRs
(Figure 5).

As a reference for performance comparison, we use the signal from a
single microphone near the center of the room. This provides no spatial
selectivity, but for our scenario it tends to receive the desired speech
more strongly than the interfering speech. The SNR for this case is
negative because of a combination of the interfering speaker and diffuse
noise from the room’s ventilation system.

To evaluate the video-only approach, we steer the microphone ar-
ray directly to the location returned by the stereo tracker. If the stereo
tracker could reliably return the location of the speaker’s mouth, this
method would work quite well. For our system, this technique improves
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the SNR by 2.2 dB, which, while noticeable, is not close to the theoret-
ical performance of a 32 element array (15 dB in uncorrelated noise).
Figure 5 shows large fluctuations in SNR for this and other methods.
For some t, all three curves are low, corresponding to times when the
speaker pauses between words. Other fluctuations for this technique,
however, are due to stereo tracking errors and other biases of the stereo
system or microphone array.

To evaluate the audio-only approach, we search the room for the
location of maximum acoustic power and steer the array to that loca-
tion. For our test scenario, this worked quite well when tracking the
louder speaker. Even so, there are several points in time where the ar-
ray locks onto the interfering speaker. When attempting to track the
quieter speaker, this method fails completely.

The fourth entry in Table 1 and Figure 5 uses the stereo tracker’s
location estimate as the initial guess from which to perform gradient
ascent in the signal output power. This technique’s average SNR is well
above that of either the single-microphone or video-only methods, and
its short-time SNRs are consistently highest or nearly the highest of
any of the four techniques.

These experiments demonstrate that audio-video localization is su-
perior to video alone in our environment. We believe our approach
improves upon audio-only localization in cases where there are multi-
ple simultaneous speakers and the reverberant energy is nearly equal or
greater than the direct path energy. The initial position estimate pro-
vided by video localization reduces the amount of computation required
compared to an unconstrained audio-only search.

5 Conclusion

We have implemented a computationally efficient hybrid sound source
localization scheme. This scheme makes use of the complementary in-
formation available in the audio and video streams available in our test
environment and is suitable for use as part of perceptive environments
requiring high-quality audio signals for higher-level applications such
as automated speech recognition.

In the future, we plan to incorporate more sophisticated beamform-
ing techniques into our system to further improve the SNR of the out-
put. In addition, we hope to be able to feed the final results of the
audio-video localization back to the vision subsystem to allow it to
refine its location and trajectory estimates.
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Abstract. We develop a class of differential motion trackers
that automatically stabilize when in finite domains. Most dif-
ferential trackers compute motion only relative to one previ-
ous frame, accumulating errors indefinitely. We estimate pose
changes between a set of past frames, and develop a proba-
bilistic framework for integrating those estimates. We use an
approximation to the posterior distribution of pose changes as
an uncertainty model for parametric motion in order to help
arbitrate the use of multiple base frames. We demonstrate this
framework on a simple 2D translational tracker and a 3D, 6-
degree of freedom tracker.

1 Introduction

Tracking the pose of an object requires that image transformation pa-
rameters be recovered for each frame of a video sequence. A common
class of approaches for estimating these parameters involves accumu-
lating motion parameters between pairs of temporally adjacent frames.
These differential techniques suffer from accumulated drift which limits
their effectiveness when dealing with long video sequences. The pro-
posed method reduces this drift by anchoring each frame to many past
frames. We then use a maximum likelihood formalism to fuse these pose
change estimates to obtain poses which exhibits less error.

Various methodologies for avoiding drift have been proposed. For
example, [2] and [5] compute the pose of an object by bringing it into
registration with the first frame in the video sequence. This approach
restricts the range of appearances to be near the initial pattern unless
complicated model acquisition techniques are employed. Another ap-
proach is to use subject-independent models that are refined over time
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([1, 9]), but the accuracy of these methods is often limited by the coarse-
ness of their models, though strong prior motion models can sometimes
be used to obtain better accuracy (eg, [14]).

In this paper we show how typical differential tracking algorithms
can be stabilized without changing the core structure of the tracker. We
relax the restriction that only temporally adjacent frames will be used
for differential tracking, allowing high-quality pose change measure-
ments to compensate for poor quality ones. We compute pose changes
between each frame and several anchor frames that are close in pose
and appearance to it. These differential motion estimates are then com-
bined to provide a robust estimate of pose for each frame. Conceptually,
previous frames are used as an image-based model of the object being
tracked, alleviating the need to construct an explicit model of the scene
as is done in [11] and [4], for example.

The next section provides a maximum likelihood framework for dif-
ferential tracking. We then augment this model to incorporate addi-
tional anchor frames. In order to find the maximum likelihood poses
in this augmented model, it is necessary to measure the uncertainty
in each pose estimate, so we develop an error measure for parametric
pose estimation. We then discuss details involved in implementing our
algorithm and apply our framework to a simple 2D tracking problem
where camera motion is restricted to fronto-parallel translation over a
synthetic planar object. Expeirments in sections 4.1 and 4.2 show how
to augment the 6-DOF tracker of [3] with our framework and demon-
strate its use in tracking heads through large rotations and computing
egomotion in long sequences.

2 Differential tracking as maximum likelihood

We propose a measurement model suitable for representing differential
trackers. We then frame our drift-reduced tracker in this model by
adding additional measurement nodes. In order to cast tracking as a
maximum likelihood problem, we develop an error model for estimating
parametric pose change.

2.1 A measurement model

Consider a sequence of images y0 · · · yt with associated object poses
ξ0 · · · ξT . Let δ1

0 = d(ξ1, ξ0) be the pose change between frames with
pose ξ0 and ξ1. If the parametrization is additive, d just subtracts ξ0

from ξ1. In the affine case, d computes A−1[A(ξ1)A(ξ0)−1], where A
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returns a 3x3 affine matrix given a 6 dimensional vector, and A−1

returns the six parameters of the affine transformation given an affine
matrix. We also define d−1 such that d−1(d(ξ1, ξ0), ξ0) = ξ1. Estimating
the pose change between frames yt−1 and yt results in a pose difference
δt
t−1 with distribution p(δt

t−1|yt−1, yt).
Assuming that pose governs everything about appearance, δt

t−1 is
conditionally independent of yt−1 and yt given ξt−1 and ξt,
so p(δ|yt−1, yt) = p(δ|ξt−1, ξt)1. Figure 1 depicts the resulting inde-
pendence diagram for a differential tracker. The joint density of mea-
surements {δ} and poses {ξ} is

p({ξ}, {δ}) = p({ξ})
T∏

t=1

p(δt
t−1|ξt−1, ξt)

Finding the set of ML poses {ξ} involves computing

arg max
{ξ}

p({ξ}|{δ})

= arg max
{ξ}

T∑
t=1

ln p(δt
t−1|ξt−1, ξt) (1)

We can show that the traditional method of computing pose changes
and updating pose estimates is in fact the ML solution by assuming that
the performance of the tracker depends only on pose change and not
on absolute pose. As a result, p(δ|yt−1, yt) = p(δ|d(ξt, ξt−1)). Making a
final Gaussianity assumption on the posterior, we obtain:

p(δ|ξt, ξt−1) = N(δt
t−1; d(ξt, ξt−1), Λt,t−1). (2)

Equation (1) can now be rewritten as

arg min
{ξ}

T∑
t=1

‖δt
t−1 − d(ξt, ξt−1)‖Λt,t−1 . (3)

The minimum value for this problems is 0, and occurs when

δt
t−1 = d(ξt, ξt−1)
ξt = d−1(δt

t−1, ξt−1), (4)
1 This implies that given the pose, there is no other source of uncertainty in

the appearance of a frame. As will be shown later, imager noise is funnelled
into p(δ|yt−1, yt) by other means, alleviating the need for a cumbersome
integration step here.
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Fig. 1. Independence diagram for a simple pose tracker. The tracker measures
pose differences {δ} between adjacent frames.

confirming that the traditional update equation does indeed maximize
likelihood given the simplifying assumptions we’ve made. Note that
Λt,t−1 drops out of the optimization, and so it is not necessary to com-
pute the error in pose changes.

2.2 Using multiple base frames to reduce drift

To improve pose estimation, we invoke two principal insights:

1. When the trajectory comes close to crossing itself (ie, ξt ≈ ξs, t >
s), tracking should be performed between frames yt and ys as well.

2. Information about the pose of future frames can be used to adjust
the pose estimate of past frames.

Proposition 1) provides redundant reliable information which allows
us to better estimate pose. Proposition 2) is appealing since returning
near a previously visited point can disambiguate measurements if in-
formation from the future is allowed to affect the past. Hence, in figure
2, we would do well to compute a pose change estimate between yt and
all frames that lie in the shaded region, and allow these measurements
to influence the pose of frames y1 · · · yt.

We augment the measurement model laid out in the previous sec-
tion to incorporate these additional measurements. To improve perfor-
mance, we can also incorporate knowledge about the dynamics of the
pose parameters. Figure 3 shows how to update the graphical model of
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Fig. 2. When estimating the pose of frame yt, we should take into account
the pose change between yt and yt−1 as well as all other frames which are in
the shaded region.

Fig. 3. The measurement model when multiple base frames are used. A dy-
namical model for pose change is also added (horizontal arrows).
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the differential tracker to incorporate the added information. The joint
of the poses and observations becomes

p({ξ}, {δ}) = p(ξ0)
T∏

t=1

p(ξt|ξt−1)
∏

(f,g)∈ D

p(δg
f |ξf , ξg)

where D is the set of pairs of frames between which we have calculated
the pose change. Using the Gaussian uncertainty model of (2), the ML
poses are

arg min
{ξ}

∑
(f,g)∈ D

‖δt
t−1 − d(ξt, ξt−1)‖Λt,t−1

+
T∑

t=1

‖d(ξt, ξt−1)‖Λd
(5)

where we have assumed that the pose dynamics are Brownian with
covariance Λd. The optimization problem can be thought of as relaxing
a spring system where the natural length of a spring between nodes ξf

and ξg is δg
f and its stiffness is Λ−1

f,g.
Unlike the minimization problem of the traditional tracker, we now

need to know Λf,g. An approximation to Λf,g is derived in the following
two sections.

2.3 Estimating pose change

The simplest pose change tracker computes the maximum likelihood
pose difference δ̂t

t−1 by assuming that yt can be warped back to yt−1.
Camera noise and any change in appearance that is not modelled by
warping is modelled with identically distributed and independent Gaus-
sian noise of unspecified variance added to every pixel. The generative
model of yt−1 is then:

yt−1(x) = yt(x − u(x; δt
t−1)) + w(x)

p(yt−1(x)|yt(x), δt
t−1) = N (yt−1(x); (6)

yt(x − u(x; δt
t−1)), σ

2
w)

where w(x) is Gaussian and white over space and time, and has con-
stant variance σ2

w over the image. N (x; µ, σ2) is a Gaussian distribution
with means µ and variance σ2. u(x; δ) is the warping function: it is used
to displace a pixel at location x to location x + u(x; δ) in the target
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image. The ML estimate, δ̂, maximizes the posterior p(δ|yt, yt−1). This
is equivalent to minimizing a sum-of-squared error function over δ:

δ̂ = argmax
δ

p(δ|yt, yt−1) (7)

= argmin
δ

∑
x

[yt−1(x) − yt(x − u(x; δ))]2

This is the traditional least squares formulation for tracking, derived
in a probabilistic framework. Various total-least squares formulations
which allow yt to be noisy as well have been proposed [13, 8]. We have
demonstrated that pose change estimation computes the mode of the
distribution p(δ|yt, yt−1). To fully qualify this distribution, we still need
to compute its covariance Λt,t−1.

2.4 Uncertainty in motion estimates

Probabilistic methods for computing uncertainty in optical flow have
been proposed in [12, 8]. We approximate the posterior p(δ|yt, yt−1) by
fitting a Gaussian distribution at the mode δ̂ computed by the pose esti-
mator. The derivation is based on the approximation made in Laplace’s
method (see [6] for a note on the subject).

Using Bayes rule, we can rewrite the log-posterior:

log p(δ|yt, yt−1) = log p(yt−1|δ, yt) (8)
+ log p(δ|yt) − log p(yt−1|yt)

Since δ̂ is taken to be the ML estimate, the first derivative of (8) van-
ishes at δ̂. Assuming uniform p(δ|yt) (this is the case if p(δ) is itself
uniform, since we can glean nothing about future poses from a single
image), the Hessian of (8) becomes

H =
∂2

∂δ2
log p(δ|yt, yt−1) =

∂2

∂δ2
log p(yt−1|yt, δ)

The Taylor expansion of (8) about its mode is therefore:

log p(δ|yt, yt−1) ≈ log p(δ̂|yt, yt−1)

+
1
2
∆δT ∂2

∂δ2
log p(yt−1|yt, δ̂)∆δ

+ H.O.T.,

where ∆δ = δ − δ̂. Dropping high order terms and exponentiating, we
obtain a Gaussian approximation to the posterior:

p(δ|yt, yt−1) ≈ α exp
(

1
2
(δ − δ̂)TH(δ − δ̂)

)
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This Gaussian has mean δ̂ as expected, and its variance is Λt,t−1 =
−H−1. In this case, H is the Hessian of the log of

p(yt−1|yt, δ̂) =
∏
x

p(wt(x))

=
∏
x

N(yt−1(x); yt(x − u(x; δ̂)), σ2
w),

which is found to be

H =
1

σ2
w

∑
x

∂u

∂δ

T

(ỹt−1∇2
xŷt−1 −∇ŷt∇ŷT

t )
∂u

∂δ
,

where ˆyt−1 = yt(x − u(x; δ̂)) is the reconstructed yt−1 and ỹt−1(x) =
yt−1(x) − ŷt−1(x) is the reconstruction residual2. Since in practice the
reconstruction error is small, we can further approximate H by:

H = − 1
σ2

w

∑
x

∂u

∂δ

T

∇yt−1(x)[∇yt−1(x)]T )
∂u

∂δ
,

Finally, σ2
w can be estimated as

σ̂2
w =

1
N

∑
x

[yt−1(x) − yt(x − u(x; δ̂))]2. (9)

Our final estimate of the variance of p(δ|yt, yt−1) is:

Λt,t−1 = σ̂2
w

[∑
x

∂u

∂δ

T

∇yt−1(x)∇yt−1(x)T ∂u

∂δ

]−1

.

This expression has an intuitive interpretation which makes it suitable
as an approximation of the posterior covariance. σ̂2

w can be interpreted
as the RMS reconstruction error after warping according to the recov-
ered pose change. H can be interpreted as the average sensitivity of
each component of δ, weighted by the strength of the features in the
image. This is because ∇y(x)∇y(x)T represents the strength of a fea-
ture at location x (see [10]), and ∂u

∂δ (x; δ) is a measure of the sensitivity
of δ at various points in the image.

To illustrate this point, we compute the sensitivity of a transla-
tional and an affine tracker. In the translational case, u(x; δ) = δ. So
2 In deriving this expression, we have assumed that ∂2u/∂δ2 = 0. ie, u is

linear wrt δ.
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∂
∂δ u(x; δ) = I. The covariance becomes

Λtranslation = σ̂2
w

[∑
x

∇y∇yT

]−1

, (10)

which is just the reconstruction error weighted by a measure of how
textured the image is.

In the case of an affine tracker, the partial of u is:

∂

∂δ
u(x; δ) =

[
x y 1 0 0 0
0 0 0 x y 1

]
.

If we set ∇yt−1(x)∇yt−1(x)T = I, effectively assigning to all points the
same feature properties, the covariance becomes

Λaffine = σ̂2
w



∑

x




x2 xy x
xy y2 y
x y 1

0

0
x2 xy x
xy y2 y
x y 1







−1

.

According to this expression, points away from the center of the coor-
dinate system reduce the uncertainty in the multiplicative portion of
the affine transformation more than the central points. In addition all
points contribute equally to the translation parameters. Both observa-
tions are consistent with our expectation.

3 Results: a simple 2D tracker

We first show results when tracking the position of an aperture moving
over an image. ξt represents the current pixel location of the aperture
and yt denotes the image captured through the aperture. Since ξ only
parametrizes translation, a simple motion model with u(x; δ) = δ is
adequate. Figure 4 shows the pose estimates from a differential tracker
which finds pose changes by minimizing (8) using gradient descent. The
update is according to (4) and is additive.

The algorithm estimates the pose change between consecutive 50x50
pixel windows which translate by an average of 5.6 pixels each step
along a spiral path. The average error in estimating δ is around 0.66
pixels, which after 626 iterations, results in approximately 55 pixels of
drift.
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To measure the uncertainty of the pose change estimator, we used
the pose covariance from equation (10). Figure 4 displays tracking per-
formance on the same aperture trajectory. The previous frame was
always used as an anchor frame, along with the 3 past frames which
were closest in pose to the previous frame. In 626 frames, tracking drifts
by at most 2.44 pixels and is off by 0.11 pixels at frame 623. Figure 5
compares the pose error of the two trackers over time. The the drift-
reduced tracker stops accumulating error after about 50 frames, while
the unenhanced tracker continues drifting.

To find the poses which maximize equation (5), we computed the
derivatives of the log-likelihood with respect to each pose:

0 =
∂

∂ξi
p({δ}|{ξ})

= −
∑

(f=i,g)∈D

Λi,g(δ
g
i − ξi + ξg)

+
∑

(f,g=i)∈ D

Λf,i(δi
f − ξf + ξi) (11)

Equation (11) is a sparse linear system in terms of the poses. Given a
fixed value for ξ0, this system can be solved very efficiently (Matlab’s
backslash operator, which uses simple Gaussian elimination solves the
above 626 frame problem in less than a second).

4 Stabilized 3D tracking

Our method can also be applied to 3D tracking. We show results using
a rigid motion tracker with integrated intensity and depth constraints,
but our method is applicable to any parametric motion formulation,
with or without depth constraints.

Depth constraints have been shown to increase the accuracy of
gradient-based rigid motion tracking [3]. A depth constancy constraint
analogous to the traditional brightness constancy constraint can be
derived and yields:

−It =
[
Ix Iy

]
u(x; δ)

−Zt =
[
Zx Zy

]
u(x; δ) − Vz(x, δ) (12)

where Ix, Zx, etc, are the partials of yt or yt−1. Together, these equa-
tions constrain the local motion δt

t−1 by using the image gradients.
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Fig. 4. Estimates of the position of a 50x50 pixel aperture as it follows a
spiral path on the image. The position estimate is based solely on the im-
age acquired through the aperture. Top: traditional tracker. The estimated
trajectory (solid) terminates (marked by ’×’) with more than 55 pixels of
error relative to ground truth (dotted). Bottom: drift-reduced tracker, using
at most 4 past frames. The estimated trajectory ends less than 1 pixels from
the ground truth.
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Fig. 5. Comparison of position error between simple tracker and drift-
reduced tracker.

When the camera model is perspective, a velocity [VX , VY , VZ ]T at a
location in the real world results in image flow

[
vx

vy

]
=

1
Z

[
f 0 −x
0 f −y

] 
VX

VY

VZ


 .

In the case of 3D motion, we define δ = [δωδ∆] where the three com-
ponents of δω specify infinitesimal rotation and the three components
of δ∆ specify translation. The warping function becomes:

u(x; δ) =
1
Z

[
f 0 −x1

0 f −x2

]
(δω × X + δ∆)

where X is the world coordinate of the image point x. Isolating δ and
plugging u back into (12):

−Zt =
1
Z

[
fZx fZy −(Z + xZx + yZy)

]
Qδ

−It =
1
Z

[
fIx fIy −(xIx + yIy)

]
Qδ (13)

with
Q =

[
I −X̂

]
,
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where X̂ is the 3x3 skew symmetric matrix formed by the real-world
coordinates corresponding to x and I is the 3x3 identity matrix. The
system of equation (13) is linear and highly overconstrained and can
be easily solved for δ.

For infinitesimal 3D updates, d(ξ1, ξ0) should be the real eigenvector
of eξ̂1e−ξ̂0 [7], but we have found that d(ξ1, ξ0) = ξ1 − ξ0 is adequate in
practice. Drift reduction then consisted in solving equation (11) using
a sparse linear system solver.

4.1 Results: 6-DOF head tracker

We demonstrate the performance of the drift reduction algorithm on
this 3D tracker. Figure 6 describes the direction of a head as the subject
looks around the room. The nose moves by at most 20 cm throughout
the sequence and the head yaws by up to 80 degrees in each direc-
tion and pitches by up to a total of 55 degrees. The sequence is 800
frames long and corresponds to about 1.2 minutes of video. The face
was segmented from the background using the depth information only.
Pose changes were computed using the combined constraints of (13).
As shown in figure 7, after about 600 frames, the traditional tracker
has accumulated noticeable drift in its estimate of rotation, whereas the
drift-reduced tracker shows the pointer on the subject’s nose whenever
he returns to a near-frontal pose. Only appearance was used in finding
suitable anchor frames. Figure 8 plots the index of anchor frames used
for each frame. The protrusions from the diagonal line are produced as
the subject returns from a rotation. Note that the first frame is never
reused. The robustness is entirely due to recovering from drift accumu-
lated during each rotation by using frames observed while going into
the rotation.

4.2 Results: egomotion

The sequence summarized in figure 9 demonstrates that the drift re-
duced tracker can also be used for computing ego-motion. The task is
to hold the pointer in the same location relative to the real world as
the camera scans the room. Between frames 400 and 600, almost none
of the original scene is visible. By frame 610, the drift-reduced tracker
shows significant improvement over the traditional tracker, despite the
dearth of back frames before frame 630. The superior performance in
the early frames demonstrates the benefits of the batch/non-causal na-
ture of the drift-reduction algorithm and of allowing information in the
future influence the past. By frame 1050 the unenhanced tracker has
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Fig. 6. The sequence is 1.2 minutes long. The subject looks in all directions,
by up to 80 degrees from frontal in some directions. The sequence was cap-
tured at ∼11 fps. The graph above provides an intuitive feel for the relative
magnitude of the rotations. It plots δω over time.
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Fig. 7. Left column: traditional tracker. Poses are updated according to (4).
Right column: drift-reduced tracker.



572 Ali Rahimi, Louis-Philippe Morency and Trevor Darrell

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

Current image

M
at

ch
ed

 im
ag

es

Fig. 8. Anchor frames used by drift-reduced tracker. Each frame on the hori-
zontal axis is matched by appearance with 3 previous frame. The protrusions
show that as the subject returns from a rotation, frames on the way into the
rotation are used as anchor.

drifted far enough that all subsequent pose changes throw it even fur-
ther off track. Figure 10 shows a quantitive version of the results. After
600 frames, the traditional tracker starts to accumulate considerable
drift. During the same period, the drift-reduced tracker keeps track of
the real movement by using information prom similar previous frames
as shown in figure 12.
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Fig. 9. The camera begins panning from the center dot, in the direction of
the arrow. The dashed path marks the approximate trajectory of the center
of the camera (drawn by hand). Only the interior of the black rectangle is
visible to the camera (approximate), so that the intial pose is completely out
of view between frames 420 and 530.
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Fig. 10. Top: Horizontal translation. Bottom: Vertical Translation. The tra-
ditional tracker exhibits continual drift with respect to the drift-reduced
tracker.
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Fig. 11. Left column: traditional tracker. Right column: drift-reduced
tracker. Beyond 1050 frames, the traditional tracker is no longer effective.
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Fig. 12. Anchor frames used by drift-reduced tracker. Previously visited
poses are used effectively (eg, frames 300, 700, 1020).
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5 Conclusion

We have developed a framework for stabilizing parametric motion track-
ers in closed environments. Our method measures pose change between
frames which are similar in pose and appearance, and uses these mea-
surements to compute robust pose estimates. This improves stabil-
ity since additional pose change measurements provide robustness and
ground the tracking against commonly revisited sites. We derived an
uncertainty model for motion estimation and used it to frame the prob-
lem of incorporating these additional measurements into a non-causal
estimation framework. We demonstrated the benefits of using multiple
base frames in our maximum likelihood framework on a synthetic 2D
motion tracking problem and on 3D ego-motion computation and pose
estimation.
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Abstract. Multi-modal fusion is an important, yet challeng-
ing task for perceptual user interfaces. Humans routinely per-
form complex and simple tasks in which ambiguous auditory
and visual data are combined in order to support accurate
perception. By contrast, automated approaches for processing
multi-modal data sources lag far behind. This is primarily due
to the fact that few methods adequately model the complex-
ity of the audio/visual relationship. We present an information
theoretic approach for fusion of multiple modalities. Further-
more we discuss a statistical model for which our approach
to fusion is justified. We present empirical results demonstrat-
ing audio-video localization and consistency measurement. We
show examples determining where a speaker is within a scene,
and whether they are producing the specified audio stream.

1 Introduction

Multi-modal fusion is an important, yet challenging task for perceptual
user interfaces. Humans routinely perform complex and simple tasks in
which ambiguous auditory and visual data are combined in order to
support accurate perception. In contrast, automated approaches for
processing multi-modal data sources lag far behind. This is primarily
due to the fact that few methods adequately model the complexity
of the audio/visual relationship. Classical approaches to multi-modal
fusion either assume a statistical relationship which is too simple (e.g.
jointly Gaussian) or defer fusion to the decision level when many of
the joint (and useful) properties have been lost. While such pragmatic
choices may lead to simple statistical measures, they do so at the cost
of modeling capacity.
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We discuss a nonparametric statistical approach to fusion which
jointly models audio-visual phenomena. Using principles from informa-
tion theory we show an approach for learning maximally informative
joint subspaces for multi-modal fusion. Specifically, we simultaneously
learn projections of images in the video sequence and projections of
sequences of periodograms taken from the audio sequence. The projec-
tions are computed adaptively such that the video and audio projec-
tions have maximum mutual information (MI). The approach uses the
methodology presented in [2, 6, 4] which formulates a learning approach
by which the entropy, and by extension the MI, of a differentiable map
may be optimized. We also discuss a statistical model for which the
approach can be shown to be optimal.

Combining audio and video signals for dialog interface applications
is an important goal for perceptual user interfaces. There has been
substantial progress on feature-level integration of speech and vision.
However, many of these systems assume that no significant motion
distractors are present and that the camera was “looking” at the user
who was uttering the audio signal.

Indeed, speech systems (both those that integrate viseme features
and those that do not) are easily confused if there are nearby speakers
also making utterances, either directed at the speech recognition sys-
tem or not. If a second person says “shut down” near a voice-enabled
workstation, the primary user may not be pleased with the result! In
general, it is clear that multi-modal cues can aid the segmentation of
multiple speakers into separate channels (e.g. the “cocktail party” ef-
fect)..

In this paper we show how signal level fusion of audio and video
data using nonparametric models can capture useful joint structure.
Specifically, we show results on two tasks, one localizing a speaker in
a video stream, and the second measuring audio/video consistency–
whether the audio and video came from the same source.

1.1 Related work

As mentioned above, there has been much work on feature level audio-
visual speech recognition. For example, Meier et al [9] and Stork [12]
(and others) have built visual speech reading systems that can improve
speech recognition results dramatically. It is not clear whether these
systems could be used to localize the speaker as they implicitly rely on
localization having already been performed. In theory, these systems
could be modified to verify if the sequence of observed visemes was
consistent with the detected phonemes. We are not aware of a system
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which has been reported to do this to date, though it may be a suc-
cessful approach. The method we will present works at a pre-feature
level and does not presume detection of phonemes or visemes, so it may
be advantageous in cases where a person-independent viseme model is
hard to obtain. Also, since our method is not dependent on speech con-
tent, it would have the advantage of working on non-verbal utterances.

Other work which is more closely related to ours is that of Hershey
and Movellan [7] which examined the per-pixel correlation relative to
an audio track, detecting which pixels have related variation. An in-
herent assumption of this method was that the joint statistics were
gaussian. Slaney and Covell [11] looked at optimizing temporal align-
ment between audio and video tracks, but did not address the problem
of detecting whether two signals came from the same person or not.
Their technique was more general than [7] in that pixels changes were
considered jointly, although there is also an implicit Gaussian assump-
tion. Furthermore, this technique makes use of training data.

The idea of simply gating audio input with a face detector is re-
lated to ours, but would not solve our target scenerio above where the
primary user is facing the screen and a nearby person makes an ut-
terance that can be mistakenly interpreted as a system command. We
are not aware of any prior work in perceptual user interfaces which ad-
dresses signal-processing level estimators to do both video localization
and classify audio-visual synchrony among individuals.

2 Informative subspaces

We now give a brief description of our information theoretic fusion
approach. While the algorithm has been described in previous work [3],
that discussion focused primarily on the information theoretic intuition
which motivated the method. In this section we also present a statistical
model from which the method can be derived and the conditions under
which our fusion approach is optimal.

2.1 Information theoretic fusion

Figure 1 illustrates our audio/visual fusion approach. Each image in
the measured video sequence is treated as a single sample of a high-
dimensional random variable (i.e. the dimension equals the number of
pixels) . We denote ith image as Vi. The audio signal is converted
to a sequence of periodograms (i.e. magnitude of windowed FFTs).
Peridograms are computed at the video frame rate using a window
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equal to twice the frame period. Similarly to the video sequence, each
periodogram “frame” is also treated as a sample of a high dimensional
random variable (whose dimension is equal to the number of frequency
bins) and whose ith frame is denoted Ui.

learned subspace

fUi
=hu

TUi

fVi
=hv

TVi

Fig. 1. Maximally Informative Joint Subspace

Using the approach described in [3] we learn projections of the au-
dio/video frames, denoted,

fV i = hT
V Vi (1)

fU i = hT
UUi (2)

resulting in samples of low-dimensional features fV i and fU i (whose
dimensionality is determined by the matrices hV and hU , respectively).
The criterion for learning the projection vectors, hV and hU , is to
maximize the MI between the resulting audio and video featuresfV i

and fU i.
Mutual information (in the case of continuous features) is defined

as [1]

I (fV , fU ) = h (fU ) + h (fV ) − h (fU , fV ) (3)

=
∫

RU

pfU (x) log (pfU (x)) dx +
∫

RU

pfV (x) log (pfV (x)) dx −
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∫ ∫
RU×RV

pfU ,fV (x, y) log (pfU ,fV (x, y)) dxdy

The difficulty of MI as a criterion for adaptation is that it is an integral
function of probability densities. Furthermore, in general we are not
given the densities themselves, but samples from which they must be
inferred. Consequently, we replace equation 3 with the approximation
of [6]

Î (fV , fU ) = Ĥ(fU ) + Ĥ(fV ) − Ĥ(fV , fU ) (4)

=
∫

RU

(p̂fU (x) − pu(x))2 dx

+
∫

RV

(p̂fV (x) − pu(x))2 dx

−
∫

RU×RV

(p̂fV ,fU (x, y) − pu(x, y))2 dxdy

where RU is the support of one feature output, RV is the support of
the other, pu is the uniform density over that support, and p̂(x) is the
Parzen density [10] estimate computed from the projected samples:

p̂ (x) =
1
N

∑
i

κ (x − xi, σ) (5)

where k ( ) is a gaussian kernel in our case and σ is the standard devi-
ation.

Note that this is essentially an integrated squared error comparison
between the density of the projections to the uniform density (which
has maximum entropy over a finite region). The consequence of using
this approximation is that its gradient with respect to the projection
coefficients can be computed exactly by evaluating a finite number of
functions at a finite number of sample locations in the output space as
shown in [5, 6]. The update term for the individual entropy terms in 4
of the ith feature vector at iteration k as a function of the value of the
feature vector at iteration k− 1 is (where fi denotes a sample of either
fU or fV or their concatenation depending on which term of 4 is being
computed)

∆fi
(k) = br(fi

(k−1)) −
1
N

∑
j �=i

κa

(
fi

(k−1) − fj
(k−1), σ

)
(6)
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br(fi)l ≈ 1
dM

∏
j �=l

(
κ1

(
fij +

d

2
, h

)
−

κ1

(
fij − d

2
, h

))
(7)

κa (fi, σ) = κ(fi, σ) ∗ κ′(fi, σ) (8)

= −
exp

(
− fi

T fi

4h2

)
(
2M+1πM/2hM+2

)fi (9)

where M is the dimensionality of the feature vector fi. Both br(fi)
and κa(fi, σ) are M -dimensional vector-valued functions and d is the
support of the output of the mapping (i.e. a hyper-cube with sides of
length d centered at the origin). The notation br(yi)l indicates the lth
element of br(fi) [6].

The process is repeated iteratively until a local maximum is reached
using the update rule above. In the experiments that follow the dimen-
sionality of fU and fV are set to unity while the number iterations is
typically 150 to 300 iterations.

Capacity control The method of [6] requires that the projection be
differentiable, which it is in this case. Additionally some form of capac-
ity control is necessary as the method results in a system of underdeter-
mined equations. In practice we impose an L2 penalty on the projection
coefficients of hU and hV . Furthermore, we impose the criterion that if
we consider the projection hV as a filter, it has low output energy when
convolved with images in the sequence (on average). This constraint is
the same as that proposed by Mahalanobis et al [8] for designing opti-
mized correlators the difference being that in their case the projection
output was designed explicitly while in our case it is derived from the
MI optimization in the output space.

The adaptation criterion, which we maximize in practice, is then a
combination of the approximation to MI (equation 4) and the regular-
ization terms:

J = Î (fV , fU ) − αvhT
V hV − αuhT

UhU − βhV R̄−1
V hV (10)

where the last term derives from the output energy constraint and
R̄−1

V is average autocorrelation function (taken over all images in the
sequence). This term is more easily computed in the frequency domain
(see [8]) and is equivalent to pre-whitening the images using the inverse
of the average power spectrum. The scalar weighting terms αv, αu, β,
were set using a data dependent heuristic for all experiments.
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The interesting thing to note is that computing hv can be decom-
posed into three stages:

1. Pre-whiten the images once (using the average spectrum of the
images) followed by iterations of

2. Updating the feature values, and
3. Solving for the projection coefficients using least squares and the

L2 penalty.

The pre-whitening interpretation makes intuitive sense in our case as it
accentuates edges in the input image. It is the moving edges (lips, chin,
etc.) which we expect to convey the most information about the audio.
The projection coefficients related to the audio signal, hU , are solved in
a similar (and simultaneously) without the initial pre-whitening step.

2.2 The implicit statistical model

From the perspective of information theory, estimating separate pro-
jections of the audio video measurements which have high mutual in-
formation with respect to each other makes intuitive sense as such
features will be predictive of each other. The advantage being that the
form of those statistics are not subject to strong assumptions (e.g. joint
gaussianity).

However, we now show that there is a statistical model for which
such fusion is optimal. Consider the graphical models shown in fig-
ure 2. Figure 2a shows an independent cause model, where {A, B, C}
are unobserved random variables representing the causes of our (high-
dimensional) observations {U, V }. In general there may be more causes
and more measurements, but this simple case can be used to illustrate
our algorithm. An important aspect is that the measurements have
dependence on only one common cause. The joint statistical model
consistent with the graph of figure 2a is

P (A, B, C, U, V ) = P (A)P (B)P (C)P (U |A, B)P (V, B, C) .

Given the independent cause model a simple application of Bayes’ rule
(or the equivalent graphical manipulation) yields the graph of figure 2b
which is consistent with

P (A, B, C, U, V ) = P (U)P (C)P (A, B|U)P (V |B, C) ,

which shows that information about U contained in V is conveyed
through the joint statistics of A and B. The consequence being that, in
general, we cannot disambiguate the influences that A and B have on
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the measurements. A similar graph is obtained by conditioning on V .
Suppose decompositions of the measurement U and V exist such that
the following joint densities can be written:

P (A, B, C, U, V ) = P (A)P (B)P (C)P (UA|A)P (UB|B)
P (VB |B)P (VC |C)

where U = [UA, UB] and V = [VB , VC ]. An example for our specific
application would be segmenting the video image (or filtering the audio
signal). In this case we get the graph of figure 2c and from that graph
we can extract the Markov chain which contains elements related only
to B. Figure 2d shows equivalent graphs of the extracted Markov chain.
As a consequence, there is no influence due to A or C.

Of course, we are still left with the formidable task of finding a
decomposition, but given the decomposition it can be shown, using the
data processing inequality [1], that the following inequality holds:

I(fU , fV ) ≤ I(fU , B) (11)
I(fU , fV ) ≤ I(fV , B) (12)

So, by maximizing the mutual information between I(fU , fV ) we must
necessarily increase the mutual information between fU and B and
fV and B. The implication is that fusion in such a manner discovers
the underlying cause of the observations, that is, the joint density of
P (fU , fV ) is strongly related to B. Furthermore, with an approxima-
tion, we can optimize this criterion without estimating the separating
function directly. In the event that a perfect decomposition does not
exist, it can be shown that the method will approach a “good” solution
in the Kullback-Leibler sense.

3 Empirical results

We now present experimental results in which the general method de-
scribed previously is used to first to localize the speaker in the video
and second to measure whether the audio signal is consistent with the
video signal. We collected audio-video data from eight subjects. In all
cases the video data was collected at 29.97 frames per second at a res-
olution of 360x240. The audio signal was collected at 48000 KHz, but
only 10Khz of frequency content was used. All subjects were asked to
utter the phrase “How’s the weather in Taipei?”. This typically yielded
2-2.5 seconds of data. Video frames were processed as is, while the
audio signal was transformed to a series of periodograms. The window
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length of the periodogram was 2/29.97 seconds (i.e. spanning the width
of two video frames). Upon estimating projections the mutual informa-
tion between the projected audio and video data samples is used as
the measure of consistency. All values for mutual information are in
terms of the maximum possible value, which is the value obtained (in
the limit) if the two variables are uniformly distributed and perfectly
predict one another. In all cases we assume that there is not signifi-
cant head movement on the part of the speaker. While this assumption
might be violated in practice one might account for head movement
using a tracking algorithm, in which case the algorithm as described
would process the images after tracking.

3.1 Video localization of speaker

Figure 3a shows a single video frame from one sequence of data. In the
figure there is a single speaker and a video monitor. Thoughout the
sequence the video monitor exhibits significant flicker. Figure 3c shows
an image of the pixel-wise standard deviations of the image sequence.
As can be seen, the energy associated with changes due to monitor
flicker is greater than that due to the speaker. Figure 3b shows the
absolute value of the output of the pre-whitening stage for the video
frame in the same figure. Note that the output we use is signed. The
absolute value is shown instead because it illustrates the enhancements
of edges in the image.

Figure 5a shows the associated periodogram sequence where the
horizontal axis is time and the vertical axis is frequency (0-10 Khz).
Figure 3d shows the coefficients of the learned projection when fused
with the audio signal. As can be seen the projection highlights the
region about the speaker’s lips.

Figure 4a shows results from another sequence in which there are
two people. The person on the left was asked to utter the test phrase,
while the person on the right moved their lips, but did not speak. This
sequence is interesting in that a simple face detector would not be
sufficient to disambiguate the audio and video stream. Furthermore,
viseme based approaches might be confused by the presence of two
faces.

Figures 4b and 4c show the pre-whitened images as before. There
are significant changes about both subjects lips. Figure 4d shows the
coefficients of the learned projection when the video is fused with the
audio and again the region about the correct speaker’s lips is high-
lighted.
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3.2 Quantifying consistency between the audio and video

In addition to localizing the audio source in the image sequence we can
also check for consistency between the audio and video. Such a test is
useful in the case that the person to which a system is visually attend-
ing is not the person who actually spoke. Having learned a projection
which optimizes MI in the output feature space, we can then estimate
the resulting MI and use that estimate to quantify the audio/video
consistency.

Using the sequence of figure 3 we compared the fusion result when
using separately recorded audio sequence from another speaker. The
periodogram of the alternate audio sequence is shown in figure 5b. Fig-
ure 6a (correct audio) and 6b (alternate audio) compares the resulting
projections hv. In the case that the alternate audio was used we see
that coefficients related to the video monitor increase significantly. The
estimate of mutual information was 0.68 relative to the maximum pos-
sible value for the correct audio sequence. In contrast when compared
to the periodogram of 5b , the value drops to 0.08 of maximum. We
repeat the same experiment with two speaker video sequence, shown
in figure 6c (correct audio) and 6d (alternate audio) and again we see,
not surprisingly, the speaker is not localized. The estimate of mutual
information for this correct sequence was 0.61 relative to maximum,
while it drops to 0.27 when the alternate audio is used.

3.3 Eight-way test

Finally, data was collected from six additional subjects. These data
were used to perform an eight-way test. Each video sequence was com-
pared to each audio sequence. No attempt was made to optimally align
the mismatched audio sequences. Table 1 summarizes the results. The
previous sequences correspond to subjects 1 and 2 in the table. In ev-
ery case the matching audio/video pairs exhibited the highest mutual
information after estimating the projections.

a1 a2 a3 a4 a5 a6 a7 a8
v1 0.68 0.19 0.12 0.05 0.19 0.11 0.12 0.05
v2 0.20 0.61 0.10 0.11 0.05 0.05 0.18 0.32
v3 0.05 0.27 0.55 0.05 0.05 0.05 0.05 0.05
v4 0.12 0.24 0.32 0.55 0.22 0.05 0.05 0.10
v5 0.17 0.05 0.05 0.05 0.55 0.05 0.20 0.09
v6 0.20 0.05 0.05 0.13 0.14 0.58 0.05 0.07
v7 0.18 0.15 0.07 0.05 0.05 0.05 0.64 0.26
v8 0.13 0.05 0.10 0.05 0.31 0.16 0.12 0.69

Table 1. Summary of results over eight video sequences. The columns indicate which audio sequence
was used while the rows indicate which video sequence was used. In all cases the correct audio/video
pair have the highest relative MI score.
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Fig. 2. Graphs illustrating the various statistical models exploited by the
algorithm: (a) the independent cause model - U and V are independent of
each other conditioned on {A, B, C}, (b) information about U contained in
V is conveyed through joint statistics of A and B, (c) the graph implied by
the existence of a separating function, and (d) two equivalent Markov chains
which can be extracted from the graphs if the separating functions can be
found.
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(a) (b)

(c) (d)

Fig. 3. Video sequence contains one speaker and monitor which is flickering:
(a) one image from the sequence, (b) magnitude of the image after pre-
whitening, (c) pixel-wise image of standard deviations taken over the entire
sequence, (d) image of the learned projection, hV .

(a) (b)

(c) (d)

Fig. 4. Video sequence containing one speaker (person on left) and one person
who is randomly moving their mouth/head (but not speaking): (a) one image
from the sequence, (b) magnitude of the image after pre-whitening, (c) pixel-
wise image of standard deviations taken over the entire sequence, (d) image
of the learned projection, hV .
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(a)

(b)

Fig. 5. Gray scale magnitude of audio periodagrams. Frequency increases
from bottom to top, while time is from left to right. (a) audio signal for
image sequence of figure 3. (b) alternate audio signal recorded from different
subject.

(a) (b)

(c) (d)

Fig. 6. Comparison of learned video projections when correct (left) and in-
correct (right)( audio is compared to image sequences of figure 3 (top) and
figure 4 (bottom). When correct audio is used energy is concentrated on
subject, when incorrect audio is used it is distributed throughout the image.
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4 Discussion and future work

We have presented a method for information theoretic fusion of audio
and video data. We have demonstrated over a small set of data, that
the method shows promise for detecting audio-video consistency. We
are not aware of equivalent results in the literature, although previous
multi-modal methods might also work for this application. However,
in contrast to previous approaches our method does not make strong
assumptions about the underlying joint properties of the modalities
being fused (e.g. Gaussian statistics). Consequently, it has the capac-
ity to represent more complex structure which may be present in the
data. Furthermore, our method makes no use of training data. While
there is an adaptive element to the method, the adaptation occurs in
an online fashion over a short sequence (approximately 2-2.5 seconds)
of audio-video data. Consequently, the method is applicable when a
prior model cannot be trained. As might happen when a multi-modal
interface is moved to a new environment. Future work will address the
robustness of the method over a larger corpus of data. Another area
of interest is to determine the relationship between camera resolution,
audio signal-to-noise ratio, and sampling rates for which the method
maintains reliability.
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Preserving the Freedom of Paper in a
Computer-Based Sketch Tool

Christine J. Alvarado and Randall Davis
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Abstract. The tradeoff between the ease of sketching a me-
chanical system on paper and the power of representing it on a
computer is too great, as evidenced by the fact that mechanical
designers typically begin by sketching their designs on paper,
then transfer them to the computer only after the initial design
process is complete. To bring early design to the computer, we
must develop a tool that allows the user to sketch freely, yet
still interprets and understands the user’s drawing as a me-
chanical system. We present a tool that allows users to sketch
simple 2-D mechanisms and report on early reactions to it.

1 Introduction

User interfaces to current computer aided design (CAD) and simula-
tion tools offer little assistance at the conceptual stage of design. As
a result, designers typically begin by sketching with paper and pencil
and transfer their designs to the computer only when nearly complete.

Our goal is to eliminate this two-stage design process by creating
a computer-based sketching tool that is both powerful and natural.
The tool should allow the user to sketch freely, without modifying her
drawing style, yet still be able to interpret the user’s drawing and allow
the user to interact with it, in a manner illustrated below.

Free sketching is not the only route to ease of interaction with de-
sign tools. As one example, sketch interpretation can be simplified by
constraining the user’s drawing style, for example by requiring that
the user draw each object with a single stroke [9]. [8] explores another
approach, creating shapes by carving larger shapes with a carving tool
rather than sketching them directly.
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We chose instead to allow users to sketch as they would on paper,
attempting to alter their style as little as possible. There is an interest-
ing, open question of whether free sketching is indeed the best overall
interaction metaphor, but detailed comparisons of sketching vs. menus
(or other approaches) cannot be addressed until an adequately power-
ful sketch system has been built. This work is a first step in building
such a system.

Our tool, called ASSIST (A Shrewd Sketch Interpretation and Simu-
lation Tool), enables sketching simple two-dimensional mechanical sys-
tems in a natural fashion, i.e., without explicitly informing the system
what is being drawn. ASSIST interprets the sketch as the user draws
and can simulate the design at any time during the design process.
This paper describes the tool, discusses a user study that evaluated its
utility in its current form, and suggests directions for future work and
improvements.

We begin with a description of a typical interaction with ASSIST,
then introduce our model for sketch interpretation and interaction, in-
cluding a brief discussion of our recognition algorithm. This is followed
by a discussion of the user test we performed, the feedback we gathered,
and the implications for future design. We conclude with a discussion
of related and future work.

2 Interacting with assist

Users interact with the system through a digitizing LCD tablet that
allows them to draw directly onto the computer screen and see their
strokes appear under their pen as they draw them.

We describe a session in which a user draws the car on a hill seen in
Figure 1. The user begins by drawing one side of the polygon that con-
stitutes the car body on an otherwise blank canvas. As she is drawing,
she sees her stroke appear under her pen in grey. As she lifts her pen,
the system replaces her stroke with a black line to indicate its recog-
nition. At this point the system believes that the user’s stroke could
possibly be a rod1 or a line that will become part of some other part (in
this case a mechanical body). Next she draws the rest of the body with
one stroke. Again, she sees her strokes in gray as she draws; when she
lifts her pen the system replaces all of her strokes with a blue polygon
that closely matches the strokes she has drawn (Figure 1, center). Note
that the system has “cleaned up” her raw strokes to indicate its recog-

1 A rod is a thin rigid body.
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nition. We discuss the advantages and disadvantages of this behavior
in Section 4.

The user continues to draw the other pieces of the drawing. By
mistake, she draws one of the wheels too large. To delete the wheel, she
circles it; the wheel turns red to indicate it has been selected. She then
draws a line through it to delete it.

After she finishes the drawing, she draws the hill for the car to sit
on, and anchors it to the background by drawing an “X”2. At this point
the car is floating above the hill. To move it, she circles it to select it,
and then drags it down to rest on the hill by putting her pen on one of
the selected pieces and dragging it downward until it rests on the hill.
As she drags her pen, the whole car moves with it.

If at any point in the drawing process the system misinterprets
one of the user’s strokes, she can tap the “Try Again” button at the
bottom of the screen, and ASSIST will present a list of alternative
interpretations for her stroke.

Finally, when she finishes her drawing (or at any time during the
design process), she can tap the “Run” button to see a simulation
of the system: another window appears (Figure 1 right), showing the
car running down the hill. The original drawing remains unchanged,
allowing for a convenient sketch-modify-simulate loop.

Fig. 1. A car on a hill: As drawn by the user (left), as interpreted and dis-
played by ASSIST (center) and as simulated in Working Model (right).

3 Approach

3.1 Recognition

Although our recognition algorithm is not the focus of this paper, un-
derstanding it will help explain some of our interface design decisions.
For a more complete description of the algorithm, see [1].
2 Anything not anchored can fall.
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The first step to recognizing a user’s sketch is to identify the pat-
terns in the sketch that represent mechanical parts. To identify these
patterns without forcing the user to significantly change her drawing
style, ASSIST relies on the fact that mechanical engineering has a fairly
concrete visual vocabulary for representing components [2].

Simply recognizing these patterns is not enough, however, because
there is a great deal of ambiguity in any mechanical sketch. For exam-
ple, consider wheels of the car in Figure 1. Are the small circles in the
middle of the large circles pin joints or circular bodies themselves? The
recognition process must also choose the correct representation for a
set of strokes, given multiple patterns to choose from.

After each stroke, ASSIST uses a three-stage procedure to choose
the most likely interpretation for that stroke. First, it matches the
user’s strokes (including the most recently drawn) to a series of tem-
plates, producing all possible interpretations of the strokes. Next, the
system ranks the interpretations using a series of heuristics (described
in [1]) about drawing style and mechanical engineering. As one exam-
ple, consider one of the the small circles that represent the pin joints
in Figure 1. The system was able to recognize it as a pin joint instead
of a circular body because in two-dimensional systems bodies do not
typically overlap without some means of interconnection (i.e. the pin
joint). Finally, the system chooses the best consistent overall set of in-
terpretations from among those produced in step 1, and displays it to
the user.

3.2 Level of aggressiveness

One design issue we faced was how “aggressive” the system should
be in interpreting the sketch. Interpreting after every stroke keeps the
user informed of the system’s current understanding, allowing her to
intervene promptly to correct any misinterpretations3.

We could alternatively have chosen to delay interpretation, inter-
preting only after the user had finished drawing, or at least paused
substantially. This approach has the advantage that the user would not
have to deal with the system’s interpretations after every stroke. But
errors are more difficult to correct: The user may have to go back and
fix interpretation errors after finishing part of the drawing, as an early
mistake can lead subsequent interpretations down the wrong path.

3 Lack of intervention is, conversely, taken as tacit approval: the system
becomes more sure of an interpretation the longer it remains unchallenged
by the user.
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We decided to build the system with a constant interaction between
the system and the user, to keep the user’s expectations from becom-
ing too far removed from the system’s interpretations. This interaction
also offers guidance that keeps the system from getting lost in what
would otherwise be a very large space of possible interpretations, as
the drawing becomes more complex4.

4 Evaluation and results

To judge how natural the system is we ran a test in which subjects
were asked to sketch three simple mechanical systems, both on paper
and using ASSIST via an active matrix LCD tablet. We observed their
behavior and asked them to explain their experience with the system,
describing in what ways it felt natural and in what ways it felt awkward.
Since this is an early-stage design, we were looking for qualitative feed-
back not quantitative results. We use the feedback to guide the system
into its next implementation.

4.1 Method

Fig. 2. Three test examples: a scale (left), a Rube-Goldberg machine (center)
and a circuit breaker (right).

Eleven subjects from the MIT AI Lab took part in the study. All of
the subjects had a background in computer science; two were mechan-
ical engineers.

Sessions with the subjects lasted between 30 minutes and an hour
and were videotaped.
4 Results from our study (Section 4), however, indicate that it might be

more natural for the system to display its interpretation less often, even
at the cost of a few more mistakes.
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We first showed them the diagrams in Figure 2 and told them they
would be asked to drawn them twice, once on paper and once using
our system. They were told not to worry about replicating the details
exactly. After they drew the figures on paper, we gave them a 5 minute
introduction to ASSIST that included drawing simple parts, such as a
pair of bodies connected by a spring. We also told them how to select,
move and delete objects. We then asked them to use ASSIST to draw
the same systems they had drawn on paper.

After they were done sketching we asked them a series of questions
(Table 1). Although we were observing their behavior as they sketched,
we also wanted them to articulate what they felt was particularly in-
trusive or particularly helpful in working in ASSIST. The first few
questions measure the perceived number of mistakes the system made
and how tolerant users were of these mistakes; the last two are open
ended.

1. How often did you feel the system got the correct interpretation for your strokes?

2. When the system misinterpreted your stroke, how reasonable was its misinterpretation?

3. How clear was the system’s interpretation for your strokes?

4. How easy was it to modify the drawing?

5. Compare using this system to drawing on paper.

6. Compare using this system to using a menu-based interface.

Table 1. Questions we asked the subjects.

4.2 Results

Our first observation was that the learning curve for our system is low.
All subjects were able to successfully draw all of the systems in Figure 2.
While they had to modify slightly the way they drew certain objects,
such as polygons and springs, for the most part they were either able
to use their natural drawing style or quickly learn the small changes
required to work successfully with ASSIST5.

Because of the slight modifications to their drawing styles, it took
subjects slightly longer to draw system with ASSIST than it did on
paper. The three examples took the subjects about 10 minutes total
to sketch on paper (approximately 2 minutes for the scale, 4 minutes
5 Since this study, another member of our group has implemented more ro-

bust low-level recognizers to be more accurate with less-constrained draw-
ing styles. (See [10].)
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for the Rube-Goldberg machine, and 4 minutes for the circuit breaker).
The scale took subjects about 5 minutes to draw using ASSIST, while
subjects spent about 10 minutes on the Rube-Goldberg machine and
about 10 minutes on the circuit breaker.

In response to question 1, almost all subjects reported the that the
system got the correct interpretation of their strokes between 70 and
80 percent of the time. One subject reported that the system got the
correct interpretation for his strokes only 50 percent of the time, while
another said he felt the system interpreted his strokes correctly about
95 percent of the time. Most recognition errors were polygon recognition
errors.

When the system did make a mistake, subjects overwhelmingly pre-
ferred to delete the mistaken interpretation and redraw it, rather than
using the “Try Again” button. A few subjects tried using “Try Again”,
but did not find the correct interpretation of their piece and ended
up deleting the piece they had just drawn anyway. The bias against
the “Try Again” button is likely due to the fact that when the system
misinterprets a user’s stroke, it is often a result of never identifying
the correct interpretation for that stroke, in which case the correct in-
terpretation does not appear in the “Try Again” list. It may also be
the case that our users are too used to paper, where re-drawing is the
common reaction to a misunderstanding.

All subjects reported that it was clear when the system had made
a mistake that they needed to correct, but also reported that the feed-
back was at times distracting. The primary source of distraction was
the way the system replaced the user’s strokes with the icon indicating
its interpretation. Even though the icon is fitted to match the user’s
stroke as closely as possible, the match is never exact, so the stroke
appears to “jump” a little when it is replaced. This behavior bothered
some people because they felt that they no longer had total control of
the strokes they were putting on the page and it was therefore difficult
to have any sort of precision in their drawing. In our current imple-
mentation we have removed the replacement of the user’s strokes and
instead use a color change to indicate interpretation. Further investiga-
tion is necessary to determine whether the color change gives adequate
feedback.

People were quite pleased with the power that the system brought
to the drawing process in the realm of mechanical engineering. Subjects
found the ability to simulate the drawings to be quite appealing. It is
especially interesting to note that subjects were intrigued when the
behavior of their system did not match the intended behavior. For
example, unless drawn with great attention to symmetry, the scale will
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not balance when empty (by default all bodies have the same mass so
the scale will tilt toward the side with the longer lever arm). Subjects
often tweaked their drawings until they got the desired behavior.

People also liked the idea that the system could be a more complete
editing tool. For example, although paper does not give users the ability
to cut and paste or rotate their images, most people said that having
these features in the program would not make the interface feel any less
natural, but would simply add power they have come to expect from a
computer program. Also, people liked the idea that ASSIST was able to
clean up their drawings, even though they would have preferred for this
cleanup to take place after they were done drawing. Several subjects
expressed interest in a more controlled way to clean up their drawings.
They wanted their strokes to be left rough at first, with the option to
go back and touch up the drawing later.

5 Related work

Other sketch-based design tools include the Electronic Cocktail Nap-
kin [3, 4] and SILK (Sketching Interfaces Like Krazy) [5]. Our work
explores many similar issues as theirs, but in the domain of mechani-
cal engineering where the task of recognition involves more ambiguity
resolution.

Our work deals with many of the issues presented in [6]. Their work
acknowledges the idea that in any naturally based interface will have
inherent ambiguity in the input. She presents a method for represent-
ing these ambiguities and then applying a series of “mediators” to the
possible recognitions. Our approach is similar; the second step of our
recognition algorithm is similar to the “mediation” stage in her archi-
tecture.

6 Future work and conclusions

We are exploring our free sketch interface further by incorporating the
feedback received from users into the current version of our interface.
We have been working to improve low-level recognition algorithms be-
cause most of the interpretation mistakes made by the system were
low-level mistakes. We have changed our feedback on the interpreta-
tion of the design to simply change the color of the strokes, rather than
replace the strokes themselves.

We would also like to produce more intuitive simulations for the me-
chanical systems sketched by users. We noted that users tweaked their
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drawings until the simulator gave them the desired behavior. In many
cases they were confused as the why the simulator did not produce the
correct behavior, not understanding that a literal interpretation of a
hand-drawn sketch rarely produces the desired qualitative simulation
of the system. Other work in our group has developed methods that al-
low users to describe the intended behavior of sketched devices through
spoken explanations and sketched gestures [7]. Our goal is to have AS-
SIST use the behavioral descriptions to adjust parameters such that
the simulation gives the desired qualitative behavior.

We have suggested that engineers currently do not use computers in
early design because they do not allow for quick and natural sketching of
ideas. To be useful in early design, computers must allow the designer to
sketch as on paper, and provide benefits, such as the ability to simulate
the system, that are not available with paper. We believe the work
described here takes several small but important steps in that direction.
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Abstract. Current computer-based design tools for mechani-
cal engineers are not tailored to the early stages of design. Most
designs start as pencil and paper sketches, and are entered into
CAD systems only when nearly complete. Our goal is to create
a kind of “magic paper” capable of bridging the gap between
these two stages. We want to create a computer-based sketch-
ing environment that feels as natural as sketching on paper,
but unlike paper, understands a mechanical engineer’s sketch
as it is drawn. One important step toward realizing this goal
is resolving ambiguities in the sketch— determining, for exam-
ple, whether a circle is intended to indicate a wheel or a pin
joint—and doing this as the user draws, so that it doesn’t in-
terfere with the design process. We present a method and an
implemented program that does this for freehand sketches of
simple 2-D mechanical devices.

1 Sketching conceptual designs

Engineers typically make several drawings in the course of a design,
ranging from informal sketches to the formal manufacturing drawings
created with drafting tools. Drawing is far more than an artifact of the
design process; it has been shown to be essential at all stages of the
design process [16]. Yet almost all early drawings are still done using
pencil and paper. Only after a design is relatively stable do engineers
take the time to use computer aided design or drafting tools, typically
because existing tools are too difficult to use for the meager payoff they
provide at this early stage.

Our aim is to allow designers to sketch just as they would on paper,
e.g., without specifying in advance what component they are drawing,
yet have the system understand what has been sketched. We want to
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have the input be as unconstrained as possible, in order to make inter-
action easy and natural; our route to accomplishing this is to build a
sufficiently powerful sketch recognizer.

It is not yet obvious that a freehand sketching interface will be more
effective in real use than a carefully designed menu-based system. In
order to do the comparison experiments, however, we must first build
powerful sketch-based systems. It is the construction of such a system
that is the focus of this paper.

The value of sketching as an interface and the utility of intelligent
sketch understanding has gained increasing attention in recent years
(e.g., [6]). Some early research was concerned with single stroke clas-
sification ([11]), while more recent work ([4, 7]) puts groups of strokes
together to form larger components. A number of efforts (e.g., [3], [8])
have acknowledged the necessity of representing ambiguities that arise
in interpreting strokes, but have not substantially addressed how to
resolve those ambiguities.

Given the frequency of ambiguities in a sketch, a tool that con-
stantly interrupts the designer to ask for a choice between multiple
alternatives would be cumbersome. Our work is thus focused, in part,
on creating a framework in which to both represent and use contex-
tual (top-down) knowledge to resolve the ambiguities. We built a pro-
gram called ASSIST (A Shrewd Sketch Interpretation and Simulation
Tool) that interprets and understands a user’s sketch as it is being
drawn, providing a natural-feeling environment for mechanical engi-
neering sketches.

The program has a number of interesting capabilities.

– The basic input to the program is a sketch, i.e., a sequence of strokes
drawn “while the system watches,” not a finished drawing to be
interpreted only after it is complete.

– Sketch interpretation happens in real time, as the sketch is being
created.

– The program allows the user to draw mechanical components just
as on paper, i.e., as informal sketches, without having to pre-select
icons or explicitly identify the components.

– The program uses a general architecture for both representing am-
biguities and adding contextual knowledge to resolve the ambigui-
ties.

– The program employs a variety of knowledge sources to resolve
ambiguity, including knowledge of drawing style and of mechanical
engineering design.

– The program understands the sketch, in the sense that it recog-
nizes patterns of strokes as depicting particular components, and
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illustrates its understanding by running a simulation of the device,
giving designers a way to simulate their designs as they sketch them.

We describe the system and report on a pilot user study evaluating
the naturalness of the program’s interface and the effectiveness of its
interpretations.

2 Designing with ASSIST

Fig. 1. A car on a hill, as drawn by the user in ASSIST.

Figure 1 shows a session in which the user has drawn a simple car
on a hill. The user might begin by drawing the body of the car, a free-
form closed polygon. As the user completes the polygon, the system
displays its interpretation by replacing the hand-drawn lines (shown in
Figure 1) with straight blue lines. Next the user might add the wheels of
the car, which also turn blue as they are recognized as circular bodies.
The user can then “attach” the wheels with pin joints that connect
wheels to the car body and allow them to rotate. The user might then
draw a surface for the car to roll down, and anchor it to the background
(the “x” indicates anchoring; anything not anchored can fall). Finally,
the user can add gravity by drawing a downward pointing arrow not
attached to any object. The user’s drawing as re-displayed by ASSIST
is shown in Figure 2.

The system recognizes the various components in the drawing by
their form and context; when the “Run” button is tapped, it transfers
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Fig. 2. The sketch as displayed by ASSIST.

the design to a two-dimensional mechanical simulator which shows what
will happen (Figure 3).1

Fig. 3. The sketch simulated, showing the consequences.

Note that the user drew the device without using icons, menu com-
mands, or other means of pre-specifying the components being drawn.
Note, too, that there are ambiguities in the sketch, e.g., both the wheels
of the car and pin joints are drawn using circles, yet the system was

1 We use Working Model 2D from Knowledge Revolution, a commercial
mechanical simulator; any simulator with similar capabilities would do as
well.
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able to select the correct interpretation despite these ambiguities, by
using the knowledge and techniques discussed below. The automatic
disambiguation allowed the user to sketch without interruption.

Figure 4 shows a session in which the user has drawn a more inter-
esting device, a circuit breaker, and run a simulation of its behavior.

Note that ASSIST deals only with recognizing the mechanical com-
ponents in the drawing and is, purposely, literal-minded in doing so.
Components are assembled just as the user drew them, and component
parameters (e.g. spring constants, magnitudes of forces, etc)̇ are set
to default values. The car in Figures 1–3, for example, wobbles as it
runs down the hill because the axles were not drawn in the center of
the wheels. The combination of literal-minded interpretation and de-
fault parameter values can produce device behavior other than what
the user had in mind. Other work in our group has explored the inter-
esting and difficult problem of communicating and understanding the
intended behavior of a device once it has been drawn using ASSIST
[10].

3 Embedding intelligent assistance

We created a model for sketch understanding and ambiguity resolution
inspired by the behavior of an informed human observer, one that rec-
ognizes the sketch by relying on both low-level (i.e., purely geometric)
routines and domain specific knowledge.

One interesting behavior of an informed observer is that interpre-
tation begins as soon as the designer begins sketching. While not a
required strategy—people can obviously interpret a finished sketch—
there are advantages in ease of use and in speed from having the pro-
gram do its interpretation in parallel with drawing. Ease of use arises
because the program can provide an indication of its interpretation of
parts of the sketch as soon as they are drawn, making it easier for the
user to correct a misinterpretation. Interpretation is faster because in-
cremental interpretation effects a divide and conquer strategy: parts
of the drawing interpreted correctly can provide useful context when
interpreting parts drawn subsequently.2

A second interesting behavior of an informed observer is the ability
to accumulate multiple interpretations and defer commitment. Con-
sider for example the objects in Figure 5. Are the strokes in 5a going
to become part of a ball and socket mechanism (5b), or are they the
2 The program also seems faster because it is working while the user is

drawing, reducing the user’s wait.
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Fig. 4. A sketch of a circuit breaker (left) and its simulation (right).
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beginning of a gear (5c)? Committing too soon to one interpretation
precludes the other. Hence interpretation must be capable of revision
in the face of new information.

There is clearly a need to balance out the desire for interpretation
occurring in parallel with drawing, and the need to avoid premature
commitment. We discuss below how our system accomplishes this.

(b) (c)

(a)

Fig. 5. An example of ambiguity: The bold strokes in (b) and (c) are identical
to the strokes in (a).

Third, while commitment should be deferred, it must of course be
made eventually, and determining when to make that commitment is
not easy. Timing information can assist. Consider the case of circles:
Because circles are low-level structures, it is likely that they will be used
in higher-level structures, as for example when a circle turns out to be
part of a pulley system. One way of dealing with this is to use timing
data: the system gets to “watch” the sketch being drawn and knows
when each stroke was made. If, some time after the circle has been
drawn, it has still not been used in any other structure, the observer
can plausibly guess that it will not be incorporated into another piece
and should be interpreted as an independent circular body.3

Finally, parts may remain ambiguous even when a piece of the draw-
ing is finished. To resolve these residual ambiguities, the observer uses
his knowledge of mechanical engineering components and how they
combine. Consider, for example, the small circles inside the larger cir-
cles in Figure 2; ASSIST determines that these are more likely to be
pivot joints than additional circular bodies, both because small circles

3 A body is any hunk of material not otherwise interpreted as a more special-
ized component (like a spring, pin joint, etc.). The car body is a polygonal
body; its wheels are circular bodies.
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typically indicate pin joints and because bodies do not typically overlap
without some means of interconnection (i.e., the pin joint).

Our system incorporates each of these observations: it begins inter-
preting the sketch as soon as the user starts drawing; it accumulates
multiple interpretations, deferring commitment until sufficient evidence
(e.g., stroke timing) accumulates to suggest a component has been fin-
ished, and it resolves ambiguities by relying on knowledge from the
domain about how components combine.

4 ASSIST’s interpretation and disambiguation
process

ASSIST’s overall control structure is a hierarchical template-matching
process, implemented in a way that produces continual, incremental in-
terpretation and re-evaluation as each new stroke is added to the sketch.
Each new stroke triggers a three stage process of recognition, reason-
ing and resolution. Recognition generates all possible interpretations
of the sketch in its current state, reasoning scores each interpretation,
and resolution selects the current best consistent interpretation. After
each pass through the three stages the system displays its current best
interpretation by redrawing the sketch.

4.1 Recognition

In the recognition stage, ASSIST uses a body of recognizers, small
routines that parse the sketch, accumulating all possible interpretations
as the user draws each stroke. A recognizer takes as input raw strokes
and previously recognized objects, and if the input fits its template,
produces a new object. For example, the circle recognizer reports a
circle if all the points on a stroke lie at roughly the same distance
from the average X and Y coordinate of the stroke.4 The circle is then
available to other recognizers, e.g., the pulley recognizer.

4.2 Reasoning

In the second stage the system scores each interpretation using a variety
of different sources of knowledge that embody heuristics about how
people draw and how mechanical parts combine.
4 In other work we describe recognizers that use more sophisticated early

processing of basic geometry [14].
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Temporal evidence People tend to draw all of one object before
moving to a new one. Our system considers interpretations that were
drawn with consecutive strokes to be more likely than those drawn with
non-consecutive strokes.

Additional evidence comes from “longevity:” the longer a figure
stays unchanged, the stronger its interpretation becomes, because as
time passes it becomes more likely that the figure is not going to be
turned into anything else by additional strokes.

Simpler is netter We apply Occam’s razor and prefer to fit the fewest
parts possible to a given set of strokes. For example, any polygonal body
(e.g., the car body in Figure 2) could have been interpreted as a set of
(connected) individual rods, but the system prefers the interpretation
“body” because it fits many strokes into a single interpretation.

More specific is better Our system favors the most specific inter-
pretation. Circles, for example, (currently) have three interpretations:
circular bodies, pin joints, and the “select” editing gesture. The selec-
tion gesture is the most specific interpretation, in the sense that every
circle can be a circular body or pin joint, but not every circle can be a
selection gesture (e.g., if it does not encircle any objects). Hence when
a circle contains objects inside of it, the system prefers to interpret it
as a selection gesture.

Domain knowledge ASSIST uses basic knowledge about how me-
chanical components combine. For example, a small circle drawn on
top of a body is more likely to be a pin joint than a circular body.

User feedback User feedback also supplies guidance. The “Try Again”
button (see the bottom of Figure 1) permits the user to indicate that
something was recognized incorrectly, at which point the system dis-
cards that interpretation and offers the user an ordered list of alter-
native interpretations. Conversely the system can be relatively sure an
interpretation is correct if the user implicitly accepts it by continuing
to draw.

Combining evidence The heuristics described above all indepen-
dently provide evidence concerning which interpretation is likely to be
correct. Our method of combining these independent sources involves
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distinguishing between two categories of evidence: categorical and sit-
uational.

Categorical evidence ranks interpretations relative to one another
based on the first four knowledge sources described above. Each source
is implemented in the system as a set of rules that takes two interpre-
tations as input, and outputs an ordering between them. In processing
Figure 1, for example, the interpretation “body” is ranked higher than
the interpretation “connected rods,” based on the “Simpler is Better”
heuristic.

Situational evidence comes from implicit and explicit feedback from
the user. Explicit feedback is provided by use of the “Try Again” but-
ton; implicit feedback arises when the user keeps drawing after the
system displays an interpretation, suggesting that the user is satisfied
that the system has understood what has been drawn so far.

The system gives each interpretation two numeric scores, one from
each category of evidence. The categorical score is an integer from 0
to 10; the situational score is an integer from -11 to 11. These values
are chosen so that the situational dominates the categorical, because
we want user feedback to dominate general ranking rules. An interpre-
tation’s total score is simply the sum of its two scores.

To convert categorical evidence to a numerical score (so it can be
combined it with the situational score), we generate a total ordering of
all the interpretations consistent with the partial orders imposed by the
categorical evidence. We do a topological sort of the graph of partial
orders produced by the evidence and distribute scores evenly, from 0
to 10, over all the interpretations in the sorted graph.5

Situational scores start out at 0 and are strengthened or weakened
by evidence that can raise of lower the current value by 1 or by 11.
Situational evidence thus either modifies an interpretation’s value by a
small amount (1 unit) or declares it to be certainly correct or certainly
incorrect. The system declares an interpretation to be certainly correct
or certainly incorrect when the user explicitly accepts or rejects the in-
terpretation using the “Try Again” dialog box. The system strengthens

5 The system first removes cycles in the graph by collapsing strongly con-
nected components. Conceptually, this step indicates that the system will
give an equal score to all interpretations that have inconsistent ordering
given the evidence (i.e., one rule says A is more likely than B, while an-
other says B is more likely than A). In addition, if there are more than
11 interpretations, the top ten are assigned scores of 10 through 1; the
remaining interpretations all receive a score of 0.
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an interpretation by a small amount each time strokes added by the
user are consistent with that interpretation.6

We developed this approach to accumulating and combining evi-
dence, and implemented our knowledge sources as a rule based system,
in order to provide a degree of modularity to the system. Our overall
approach to the problem is to take into account as many sources of
knowledge as prove useful in interpreting the sketch. We knew that it
would be impossible to identify and implement them all at the outset,
hence our design put a high premium on the ability to add and remove
sources of evidence easily.

4.3 Resolution

The third stage in the interpretation process involves deciding which
interpretation is currently the most likely. Our system uses a greedy al-
gorithm, choosing the interpretation with the highest total score, elim-
inating all interpretations inconsistent with that choice, and repeating
these two steps until no more interpretations remain to be selected.

The process is illustrated by the interpretation graph in Figure 6,
which shows in graphical form all of the possible interpretations of four
strokes (the top row of ovals): 4 separate lines, 4 rods, a quadrilateral,
rectangle, or square. The rod on the left has the highest score, so it
is chosen as a correct interpretation for stroke A. Choosing that in-
terpretation eliminates the interpretations of quadrilateral, rectangle
or square, because stroke A is needed in any of these interpretations.
In this context the other strokes are interpreted as rods because that
interpretation has the highest score of any remaining interpretation.

Recall that our interpretation process is continuous: all three stages
of processing occur after every new stroke is added to the sketch, and
the current best interpretation as selected by the greedy algorithm is
presented to the user. The process tends to settle down reasonably
quickly, in part because, as noted, we reward longevity. Hence once an
interpretation has been presented to the user and unchanged for some
period of time, it becomes increasingly unlikely to change.

5 Evaluation and results

Our initial evaluation of ASSIST has focused on its naturalness and
effectiveness. We asked subjects to sketch both on paper and using
6 The system does not yet weaken an interpretation by a small amount; we

have included this possibility for symmetry and possible future use.
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Fig. 6. A recognition graph for four strokes; scores are shown at the left of
each interpretation.
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ASSIST. We observed their behavior and asked them to describe how
ASSIST felt natural and what was awkward about using it.

Fig. 7. A scale.

We tested the system on eleven people from our the laboratory, two
of whom had mechanical engineering design experience. All were asked
first to draw a number of devices on paper (Figures 7, 8, 9), to give
them a point of comparison and to allow use to observe differences in
using the two media.

They were then asked to draw the same systems using ASSIST
(they drew with a Wacom PL-400 tablet, an active matrix LCD display
that allows users to sketch and see their strokes appear directly under
the stylus). We asked them how often they felt the system got the
correct interpretation and how reasonable the misinterpretations were,
and asked them to compare using our system to drawing on paper and
to using a menu-based interface.

The system was successful at interpreting the drawings despite sub-
stantial degrees of ambiguity, largely eliminating the need for the user
to specify what he was drawing. As a consequence, a user’s drawing
style appeared to be only mildly more constrained than when drawing
on paper.

People reported that the system usually got the correct interpre-
tation of their sketch. Where the system did err, examination of its
performance indicated that in many cases the correct interpretation
had never been generated at the recognition step, suggesting that our
reasoning heuristics are sound, but we must improve the low-level rec-
ognizers. This work is currently under way.
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Fig. 8. A Rube-Goldberg machine. The ball rolling down the incline sets in
motion a sequence of events that eventually pushes the block at the right
into the receptacle at bottom right. The device is an adaptation of the one
found in [Narayanan, 1995].

Fig. 9. A circuit breaker.
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Users tended to draw more slowly and more precisely with ASSIST
than they did on paper. The most common complaint was that it was
difficult to do an accurate drawing because the system changed the
input strokes slightly when it re-drew them (to indicate its interpre-
tations). Users felt that the feedback given by ASSIST was effective
but at times intrusive. Our next generation of the system leaves the
path of the strokes unchanged, changing only their color to indicate
the interpretation.

For a more complete discussion responses to the system from a user
interface perspective, see [1].

6 Related work

The Electronic Cocktail Napkin (ECN) project [2, 5] attacks a similar
problem of sketch understanding and has a method for representing
ambiguity. Our system takes a more aggressive approach to ambiguity
resolution and as a result can interpret more complicated interactions
between parts. In order for ECN to to resolve ambiguity, the user must
either inform the system explicitly of the correct interpretation, or the
system must find a specific higher-level pattern that would provide the
context to disambiguate the interpretation of the stroke. Our system,
in contrast, takes into account both drawing patterns and knowledge
of drawing style.

[8] presents a general framework for representing ambiguity in recog-
nition-based interfaces. This work is similar in using a tree-like struc-
ture for representing ambiguity, but touches only briefly on ambiguity
resolution. Our work pushes these ideas one step further within the
domain of mechanical engineering by providing a framework and set of
heuristics for ambiguity resolution.

SILK [7] allows a user to sketch out rough graphical user interface
designs, then transform them into more polished versions. SILK ad-
dresses the notion of ambiguity, but limits its handling of it to single
parts, e.g., is this group of strokes a radio button or a check box? This
does not in general affect the interpretation of the other strokes in the
sketch. In contrast, our system can resolve ambiguities that affect the
interpretation of many pieces of the sketch.

A theoretical motivation to our work was provided by work in [13],
which outlines several goals in interpreting ambiguous sketches. Our
work implements many of the multiple representation and disambigua-
tion techniques suggested in their work.

We have also been motivated by work in mechanical system behav-
ior analysis, especially in the field of qualitative behavior extraction
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and representation [12, 15]. The work by Stahovich aims to extract the
important design constraints from the designer’s rough sketch and is
less focused on the interface or sketch recognition process. It was nev-
ertheless the inspiration for our work in this area.

7 Future work

The work presented in this paper is a first step toward creating a natural
interface. It can usefully be expanded in several areas.

First, our current formulation of recognition and evidential reason-
ing is of course quite informal. This is a consequence of our focus at
this stage on the knowledge level, i.e., trying to determine what the
program should know and use to evaluate interpretations. Once the
content has become more stable and better understood, a more formal
process of evaluation and control (e.g., Bayes’ nets) may prove useful
both for speed and scaling.

Second, in our efforts to combine the best properties of paper and
the digital medium we have yet to find many of the appropriate trade-
off points. How aggressive should the system be in its interpretations?
Forcing the user to correct the system immediately when it makes a
mistake greatly aids recognition, but may distract the designer by forc-
ing her to focus on the system’s recognition process rather than on
the design. In addition, some ambiguities are resolved as more of the
sketch is drawn, yet if the system waits for the sketch to be finished,
unraveling an incorrect interpretations can be a great deal of work.

In the same vein, it will be important to calibrate how important
true freehand sketching is to designers. The obvious alternative is a
icon-based system with graphical editing capabilities (e.g., moving and
resizing the standard components). Freehand drawing can be powerful,
but alternative interface styles need to be considered as well.

The system should also adapt to new users and their sketching style.
For example, one of our heuristics was that people draw all of one object
before moving onto the next, but there are of course exceptions. The
system should be able to adjust to this type of behavior and learn to
override its default heuristic.

8 Conclusion

CAD systems are rarely used in early design because they do not allow
for quick and natural sketching of ideas. To be useful here, computers
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must allow the designer to sketch as on paper, yet provide benefits not
available with paper, such as the ability to simulate the system.

To provide an interface that feels natural yet interprets sketches as
the user draws, the system must be able to resolve ambiguities without
interrupting the user. This work provides one solution to problem of
ambiguity resolution in a framework of reasonable generality.
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Abstract. Freehand sketching is a natural and crucial part
of everyday human interaction, yet is almost totally unsup-
ported by current user interfaces. We are working to combine
the flexibility and ease of use of paper and pencil with the
processing power of a computer, to produce a user interface
for design that feels as natural as paper, yet is considerably
smarter. One of the most basic steps in accomplishing this is
converting the original digitized pen strokes in a sketch into
the intended geometric objects. In this paper we describe an
implemented system that combines multiple sources of knowl-
edge to provide robust early processing for freehand sketching.

1 Introduction

Freehand sketching is a familiar, efficient, and natural way of expressing
certain kinds of ideas, particularly in the early phases of design. Yet this
archetypal behavior is largely unsupported by user interfaces in general
and by design software in particular, which has for the most part aimed
at providing services in the later phases of design. As a result designers
either forgo tool use at the early stage or end up having to sacrifice
the utility of freehand sketching for the capabilities provided by the
tools. When they move to a computer for detailed design, designers
usually leave the sketch behind and the effort put into defining the
rough geometry on paper is largely lost.

We are working to provide a system where users can sketch nat-
urally and have the sketches understood. By “understood” we mean
that sketches can be used to convey to the system the same sorts of
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information about structure and behavior as they communicate to a
human engineer.

Such a system would allow users to interact with the computer
without having to deal with icons, menus and tool selection, and would
exploit direct manipulation (e.g., specifying curves by sketching them
directly, rather than by specifying end points and control points). We
also want users to be able to draw in an unrestricted fashion. It should,
for example, be possible to draw a rectangle clockwise or counterclock-
wise, or with multiple strokes. Even more generally, the system, like
people, should respond to how an object looks (e.g., like a rectangle),
not how it was drawn. This will, we believe, produce a sketching in-
terface that feels much more natural, unlike Graffiti and other gesture-
based systems (e.g., [9], [14]), where pre-specified motions (e.g., an L-
shaped stroke or a clockwise rectangular stroke) are required to specify
a rectangular shape.

The work reported here is part of our larger effort aimed at provid-
ing natural interaction with software, and with design tools in particu-
lar. That larger effort seeks to enable user to interact with automated
tools in much the same manner as they interact with each other: by
informal, messy sketches, verbal descriptions, and gestures. Our over-
all system uses a blackboard-style architecture [6], combining multiple
sources of knowledge to produce a hierarchy of successively more ab-
stract interpretations of a sketch.

Our focus in this paper is on the very first step in the sketch under-
standing part of that larger undertaking: interpreting the pixels pro-
duced by the user’s strokes and producing low level geometric descrip-
tions such as lines, ovals, rectangles, arbitrary polylines, curves and
their combinations. Conversion from pixels to geometric objects is the
first step in interpreting the input sketch. It provides a more compact
representation and sets the stage for further, more abstract interpreta-
tion (e.g., interpreting a jagged line as a symbol for a spring).

2 The sketch understanding task

Sketch understanding overlaps in significant ways with the extensive
body of work on document image analysis generally (e.g., [2]) and
graphics recognition in particular (e.g., [16]), where the task is to go
from a scanned image of, say, an engineering drawing, to a symbolic
description of that drawing.

Differences arise because sketching is a realtime, interactive process,
and we want to deal with freehand sketches, not the precise diagrams
found in engineering drawings. As a result we are not analyzing careful,
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finished drawings, but are instead attempting to respond in real time to
noisy, incomplete sketches. The noise is different as well: noise in a free-
hand sketch is typically not the small-magnitude randomly distributed
variation common in scanned documents. There is also an additional
source of very useful information in an interactive sketch: as we show
below, the timing of pen motions can be very informative.

Sketch understanding is a difficult task in general as suggested by
reports in previous systems (e.g., [9]) of a recognition rate of 63%, even
for a sharply restricted domain where the objects to be recognized are
limited to rectangles, circles, lines, and squiggly lines (used to indicate
text).

Our domain–mechanical engineering design–presents the additional
difficulty that there is no fixed set of shapes to be recognized. While
there are a number of traditional symbols with somewhat predictable
geometries (e.g., symbols for springs, pin joints, etc.), the system must
also be able to deal with bodies of arbitrary shape that include both
straight lines and curves. As consequence, accurate early processing
of the basic geometry–finding corners, fitting both lines and curves–
becomes particularly important.

3 System description

Sketches can be created in our system using any of a variety of devices
that provide the experience of freehand drawing while capturing pen
movement. We have used traditional digitizing tablets, a Wacom tablet
that has an LCD-display drawing surface (so the drawing appears un-
der the stylus), and a Mimio whiteboard system. In each case the pen
motions appear to the system as mouse movements, with position sam-
pled at rates between 30 and 150 points/sec, depending on the device
and software in use.

In the description below, by a single stroke we mean the set of points
produced by the drawing implement between the time it contacts the
surface (mouse-down) and the time it breaks contact (mouse-up). This
single path may be composed of multiple connected straight and curved
segments (see, Fig. 1).

Our approach to early processing consists of three phases approx-
imation, beautification, and basic recognition. Approximation fits the
most basic geometric primitives–lines and curves–to a given set of pix-
els. The overall goal is to approximate the stroke with a more compact
and abstract description, while both minimizing error and avoiding
over-fitting. Beautification modifies the output of the approximation
layer, primarily to make it visually more appealing without changing
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its meaning, and secondarily to aid the third phase, basic recognition.
Basic recognition produces interpretations of the strokes, as for ex-
ample, interpreting a sequence of four lines as a rectangle or square.
(Subsequent recognition, at the level of mechanical components, such
as springs, and pin joints is accomplished by another of our systems
[1]).

3.1 Stroke approximation

Stroke processing consists of detecting vertices at the endpoints of lin-
ear segments of the stroke, then detecting and characterizing curved
segments of the stroke.

Vertex detection We use the sketch in Fig. 1 as a motivating example
of what should be done in the vertex detection phase. Points marked
in Fig. 1 indicate the corners of the stroke, where the local curvature
is high.

Note that the vertices are marked only at what we would intuitively
call the corners of the stroke (i.e., endpoints of linear segments). There
are, by design, no vertices marked on curved portions of the stroke be-
cause we want to handle these separately, modeling them with curves
(as described below). This is unlike the well studied problem of piece-
wise linear approximation [13].

Fig. 1. The stroke on the left contains both curves and straight line segments.
The points we want to detect in the vertex detection phase are indicated with
large dots in the figure on the right. The beginning and the end points of the
stroke are indicated with smaller dots.

Our approach takes advantage of the interactive nature of sketch-
ing, combining information from both stroke direction and speed data.
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Fig. 2. Stroke representing a square.

Consider as an example the square in Fig. 2; Fig. 3 shows the direction,
curvature (change in direction with respect to arc length) and speed
data for this stroke. We locate vertices by looking for points along the
stroke that are minima of speed (the pen slows at corners) or maxima
of the absolute value of curvature.1

While extrema in curvature and speed typically correspond to ver-
tices, we cannot rely on them blindly because noise in the data in-
troduces many false positives. To deal with this we use average based
filtering.
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Fig. 3. Direction, curvature and speed graphs for the stroke in Fig. 2

Average based filtering
We want to find extrema corresponding to vertices while avoiding those
due to noise. To increase our chances at doing this, we look for ex-
trema in those portions of the curvature and speed data that lie beyond
a threshold. Intuitively, we are looking for maxima of curvature only
where the curvature is already high and minima of speed only where
the speed is already low. This will help to avoid selecting false positives

1 From here on for ease of description we use curvature to mean the absolute
value of the curvature data.
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of the sort that would occur say, when there is a brief slowdown in an
otherwise fast section of a straight stroke.

To avoid the problems posed by choosing a fixed threshold, we
set the threshold based on the mean of each data set.2 We use these
thresholds to separate the data into regions where it is above/below the
threshold and select the global extrema in each region that lies above
the threshold.
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Fig. 4. Curvature graph for the square in Fig. 2 with the threshold dividing
it into regions.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. Speed graph for the stroke in Fig. 2 with the threshold dividing it
into regions.

2 The exact threshold has been determined empirically; for curvature data
the threshold is the mean, while for the speed the threshold is 90% of the
mean.
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Application to curvature data

Fig. 4 shows the curvature graph partitioned into regions of high
and low curvature. Note that this reduces but doesn’t eliminate the
problem of false positives introduced by noise in the stroke. We deal
with the false positives using the hybrid fit generation scheme described
below.3

While average based filtering performs better than simply compar-
ing the curvature data against a hard coded threshold, it is still clearly
not free of empirical constants. As we explain when considering future
work, scale space provides a better approach for dealing with noisy
data without having to make a priori assumptions about the scale of
relevant features.

Application to speed change
Our experience is that curvature data alone rarely provides sufficient
reliability. Noise is one problem, but variety in angle changes is an-
other. Fig. 6 illustrates how curvature fit alone misses a vertex (at the
upper right) because the curvature around that point was too small to
be detected in the context of the other, larger curvatures. We solve this
problem by incorporating speed data into our decision as an indepen-
dent source of guidance.

Fig. 6. At left the original sketch of a piece of metal; at right the fit generated
using only curvature data.

3 An alternative approach is to detect consecutive almost-collinear edges
(using some empirical threshold for collinearity) and combine them into
one edge, removing the vertex in between. Our hybrid fit scheme deals with
the problem without the need to decide what value to use for “almost-
collinear.”
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Just as we did for the curvature data, we reduce the number of
false extrema by average based filtering, then look for speed minima.
The intuition here is simply that pen speed drops when going around
a corner in the sketch. Fig. 7 shows (at left) the speed data for the
sketch in Fig. 6, along with the polygon drawn from the speed-detected
vertices (at right).

Fig. 7. At left the speed graph for the piece; at right the fit based on only
speed data.

Using speed data alone has its shortcomings as well. Polylines formed
from a combination of very short and long line segments can be prob-
lematic: the maximum speed reached along the short line segments may
not be high enough to indicate the pen has started traversing another
edge, with the result that the entire short segment is interpreted as the
corner. This problem arises frequently when drawing thin rectangles,
common in mechanical devices. Fig. 8 illustrates this phenomena. In
this figure, the speed fit misses the upper left corner of the rectangle
because the pen failed to gain enough speed between the endpoints
of the short vertical segment. The curvature fit, by contrast, detects
all corners, along with some other vertices that are artifacts due to
hand dynamics during freehand sketching. This illustrates the utility
of having both fits available.

We use information from both sources, generating hybrid fits by
combining the set of candidate vertices derived from curvature data
Fd with the candidate set from speed data Fs, taking into account the
system’s certainty that each candidate is a real vertex.

Generating hybrid fits
Hybrid fit generation occurs in three stages: computing vertex certain-
ties, generating a set of hybrid fits, and selecting the best fit.

Our certainty metric for a curvature candidate vertex vi is the scaled
magnitude of the curvature in a local neighborhood around the point,
computed as |di−k − di+k|/l. Here l is the curve length between points
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(a) Input, 63
points

(b) Using
speed data,
4 vertices

(c) Using
curvature
data, 7
vertices

Fig. 8. Average based filtering using speed data misses a vertex. The cur-
vature fit detects the missed point (along with vertices corresponding to the
artifact along the left edge of the rectangle).

Si−k, Si+k and k is a small integer defining the neighborhood size
around vi. The certainty metric for a speed fit candidate vertex vi

is a measure of the pen slowdown at the point, 1 − vi/vmax, where
vmax is the maximum pen speed in the stroke. The certainty values are
normalized to [0, 1].

While both of these metrics are designed to produce values in [0, 1],
they have different scales. As the metrics are used only for ordering
within each set, they need not be numerically comparable across sets.
Candidate vertices are sorted by certainty within each fit.

The initial hybrid fit H0 is the intersection of Fd and Fs. A succes-
sion of additional fits is then generated by appending to Hi the highest
scoring curvature and speed candidates not already in Hi.

To do this, on each cycle we create two new fits: H ′
i = Hi + vs

(i.e., Hi augmented with the best remaining speed fit candidate) and
H ′′

i = Hi + vd (i.e., Hi augmented with the best remaining curvature
candidate). We use least squares error as a metric of the goodness of a
fit: the error εi is computed as the average of the sum of the squares of
the distances to the fit from each point in the stroke S:

εi =
1
|S|

∑

s∈S

ODSQ(s, Hi)

Here ODSQ stands for orthogonal distance squared, i.e., the square of
the distance from the stroke point to the relevant line segment of the
polyline defined by Hi. We compute the error for H ′

i and for H ′′
i ; the

higher scoring of these two (i.e., the one with smaller least squares error)
becomes Hi+1, the next fit in the succession. This process continues
until all points in the speed and curvature fits have been used. The
result is a set of hybrid fits.
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In selecting the best of the hybrid fits the problem is as usual trading
off more vertices in the fit against lower error. Here our approach is
simple: We set an error upper bound and designate as our final fit
Hf , the Hi with the fewest vertices that also has an error below the
threshold.

Handling curves The approach described thus far yields a good ap-
proximation to strokes that consists solely of line segments, but as
noted our input may include curves as well, hence we require a means
of detecting and approximating them.

The polyline approximation Hf generated in the process described
above provides a natural foundation for detecting areas of curvature:
we compare the Euclidean distance l1 between each pair of consecutive
vertices in Hf to the accumulated arc length l2 between those vertices
in the input S. The ratio l2/l1 is very close to 1 in the linear regions of
S, and significantly higher than 1 in curved regions.

We approximate curved regions with Bézier curves, defined by two
end points and two control points. Let u = Si, v = Sj , i < j be the end
points of the part of S to be approximated with a curve. We compute
the control points as:

c1 = kt̂1 + v

c2 = kt̂2 + u

k =
1
3

∑

i≤k<j

|Sk − Sk+1|

where t̂1 and t̂2 are the unit length tangent vectors pointing inwards
at the curve segment to be approximated. The 1/3 factor in k controls
how much we scale t̂1 and t̂2 in order to reach the control points; the
summation is simply the length of the chord between Si and Sj.4

As in fitting polylines, we want to use least squares to evaluate the
goodness of a fit, but computing orthogonal distances from each Si in
the input stroke to the Bézier curve segments would require solving
a fifth degree polynomial. (Bézier curves are described by third degree
polynomials, hence computing the minimum distance from an arbitrary
point to the curve involves minimizing a sixth degree polynomial, equiv-
alent to solving a fifth degree polynomial.) A numerical solution is both
4 The 1/3 constant was determined empirically, but works very well for

freehand sketches. As we discovered subsequently, the same constant was
independently chosen in [15].
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computationally expensive and heavily dependent on the goodness of
the initial guesses for roots [12], hence we resort to an approximation.
We discretize the Bézier curve using a piecewise linear curve and com-
pute the error for that curve. This error computation is O(n) because
we impose a finite upper bound on the number of segments used in the
piecewise approximation.

If the error for the Bézier approximation is higher than our maxi-
mum error tolerance, the curve is recursively subdivided in the middle,
where middle is defined as the data point in the original stroke whose
index is midway between the indices of the two endpoints of the origi-
nal Bézier curve. New control points are computed for each half of the
curve, and the process continues until the desired precision is achieved.

Examples of the capability of our approach is shown in Fig. 9, a
hastily-sketched mixture of lines and curves. Note that all of the curved
segments have been modeled curves, rather than the piecewise linear
approximations that have been widely used previously.

Fig. 9. Examples of arbitrary stroke approximation. Boundaries of Bézier
curves are indicated with crosses, detected vertices are indicated with dots.
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3.2 Beautification

Beautification refers to the (currently minor) adjustments made to the
approximation layer’s output, primarily to make it look as intended. We
adjust the slopes of the line segments in order to ensure the lines that
were apparently meant to have the same slope end up being parallel.
This is accomplished by looking for clusters of slopes in the final fit
produced by the approximation phase, using a simple sliding-window
histogram. Each line in a detected cluster is then rotated around its
midpoint to make its slope be the weighted average of the slopes in that
cluster. The (new) endpoints of these line segments are determined by
the intersections of each consecutive pair of lines. This process (like any
neatening of the drawing) may result in vertices being moved; we chose
to rotate the edges about their midpoints because this produces vertex
locations that are close to those detected, have small least square errors
when measured against the original sketch, and look right to the user.
Fig. 10 shows the original stroke for the metal piece we had before, and
the output of the beautifier. Some examples of beautification are also
present in Fig. 13.

Fig. 10. At left the original sketch of a piece of metal revisited, and the final
beautified output at right.

3.3 Basic object recognition

The final step in our processing is recognition of the most basic ob-
jects that can be built from the line segments and curve segments pro-
duced thus far, i.e., simple geometric objects (ovals, circles, rectangles,
squares).

Recognition of these objects is done with hand-tailored templates
that examine various simple properties. A rectangle, for example, is
recognized as a polyline with 4 segments all of whose vertices are within
a specified distance of the center of the figure’s bounding box; a stroke
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will be recognized as an oval if it has a small least squares error when
compared to an oval whose axes are given by the bounding box of the
stroke.

3.4 Evaluation

We have conducted a user study to measure the degree to which the
system is perceived as easy to use, natural and efficient. Study partici-
pants were asked to create a set of shapes using our system and Xfig,
a Unix tool for creating diagrams. Xfig is a useful point of comparison
because it is representative of the kinds of tools that are available for
drawing diagrams using explicit indication of shape (i.e., the user indi-
cates explicitly which parts of the sketch are supposed to be straight
lines, which curves, etc.) As in other such tools, XFig has a menu and
toolbar interface; the user selects a tool (e.g., for drawing polygons),
then creates the shapes piece by piece.

Fig. 11. Examples of the shapes used in the user study.

Thirteen subjects participated in our study, including computer sci-
ence graduate students, computer programmers and an architecture
student. Subjects were given sufficient time to get familiar with each
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system and then asked to draw a set of 10 shapes (examples given in
Fig 11). All of the subjects reported our system being easier to use,
efficient and more natural feeling. The subjects were also asked which
system they would prefer when drawing these sort of informal shapes on
a computer. All but one subject preferred our system; the sole dissenter
preferred a tablet surface that had the texture and feel of paper.

Overall users praised our system because it let them draw shapes
containing curves and lines directly and without having to switch back
and forth between tools. We have also observed that with our system,
users found it much easier to draw shapes corresponding to the gestures
they routinely draw freehand, such as a star.

While the central point of this comparison was to determine how
natural it felt to use each system, we also evaluated our system’s ability
to produce a correct interpretation of each shape (i.e., interpret strokes
appropriately as lines or curves). Overall the system’s identification of
the vertices and approximation of the shapes with lines and curves was
correct 96% of the time on the ten figures.

In addition to the user studies we have conducted, we wrote a higher
level recognizer for evaluation purposes. The higher level recognizer
takes the geometric descriptions generated by the basic object recog-
nition module of our system and combines them into domain specific
objects.

Fig. 13 shows the original input and the program’s analysis for a
variety of simple but realistic mechanical devices drawn as freehand
sketches. The last two of them are different sketches for a part of the
direction reversing mechanism for a tape player. Recognized domain
specific components include gears (indicated by a circle with a cross),
springs (indicated by wavy lines), and the standard fixed-frame symbol
(a collection of short parallel lines). Components that are recognized
are replaced with standard icons scaled to fit the sketch.

An informal comparison of the raw sketch and the system’s approx-
imations shows whether the system has selected vertices where they
were drawn, fit lines and curves accurately, and successfully recognized
basic geometric objects. While informal, this is an appropriate evalua-
tion because the program’s goal is to produce an analysis of the strokes
that “looks like” what was sketched.

We have also begun to deal with overtracing, one of the (many)
things that distinguishes freehand sketches from careful diagrams. Fig. 12
illustrates one example of the limited ability we have thus far embodied
in the program.
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Fig. 12. An overtraced oval and a line along with and the system’s output.

4 Related work

In general, systems supporting freehand sketching lack one or more of
the properties that we believe a sketching system should have:

– It should be possible to draw arbitrary shapes with a single stroke,
(i.e., without requiring the user to draw objects in pieces).

– The system should do automatic feature point detection. The user
should not have to specify vertex positions by hand.

– The system should not have sketching modes for drawing different
geometric object classes (i.e., modes for drawing circles, polylines,
curves etc.).

– The sketching system should feel natural to the user.

The Phoenix sketching system [15] had some of the same motivation
as our work, but a more limited focus on interactive curve specification.
While the system provided some support for vertex detection, its focus
on curves led it to use Gaussian filters to smooth the data. While effec-
tive for curves, Gaussians tend to treat vertices as noise to be reduced,
obscuring vertex location. As a result the user was often required to
specify the vertices manually.

Work in [5] describes a system for sketching with constraints that
supports geometric recognition for simple strokes (as well as a con-
straint maintenance system and extrusion for generating solid geome-
tries). The set of primitives is more limited than ours: each stroke is
interpreted as a line, arc or as a Bézier curve. More complex shapes
can be formed by combinations of these primitives, but only if the user
lifts the pen at the end of each primitive stroke, reducing the feeling of
natural sketching.

The work in [3] describes a system for generating realtime spline
curves from interactively sketched data. They focus on using knot re-
moval techniques to approximate strokes known to be composed only
of curves, and do not handle single strokes that contain both lines and
curves. They do not support corner detection, instead requiring the
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user to specify corners and discontinuities by lifting the mouse but-
ton, or equivalently by lifting the pen. We believe our approach of
automatically detecting the feature points provides a more natural and
convenient sketching interface.

Zeleznik [7] describes a mode-based stroke approximation system
that uses simple rules for detecting the drawing mode. The user has to
draw objects in pieces, reducing the sense of natural sketching. Switch-
ing modes is done by pressing modifier buttons in the pen or in the
keyboard. In this system, a click of the mouse followed by immedi-
ate dragging signals that the user is drawing a line. A click followed
by a pause and then dragging of the mouse tells the system to enter
the freehand curve mode. Our system allows drawing arbitrary shapes
without any restriction on how the user draws them. There is enough
information provided by the freehand drawing to differentiate geomet-
ric shapes such as curves, polylines, circles and lines from one another,
so we believe requiring the user to draw things in a particular fashion
is unnecessary and reduces the natural feeling of sketching. Our goal
is to make computers understand what the user is doing rather than
requiring the user to sketch in a way that the computer can understand.

Among the large body of work on beautification, Igarashi et al. [8]
describes a system combining beautification with constraint satisfac-
tion, focusing on exploiting features such as parallelism, perpendicular-
ity, congruence and symmetry. The system infers geometric constraints
by comparing the input stroke with previous ones. Because sketches are
inherently ambiguous, their system generates multiple interpretations
corresponding to different ways of beautifying the input, and the most
plausible interpretation is chosen among these interpretations. The sys-
tem is interactive, requiring the user to do the selection, and doesn’t
support curves. It is, nevertheless, more effective then ours at beauti-
fication, but beautification is not the main focus of our work and is
present for the purposes of completeness.

The works in [15] and [3] describe methods for generating very accu-
rate approximations to strokes known to be curves with precision sev-
eral orders of magnitude below the pixel resolution. The Bézier approxi-
mations we generate are less precise but are sufficient for approximating
free-hand curves. We believe techniques in [15] and [3] are excessively
precise for free-hand curves, and the real challenge is detecting curved
regions in a stroke rather than approximating those regions down to
the numerical machine precision.
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5 Future work

We are working to link this early processing to other work in our group
that has focused on recognition [1] of higher level mechanical objects.
This will provide the opportunity to add model-based processing of the
stroke, in which early operations like vertex localization may be usefully
guided by knowledge of the current best recognition hypothesis.

In addition, incorporating ideas from scale space theory looks like
a promising way of detecting different scales inherent in the data and
avoiding a priori judgments about the size of relevant features. In the
pattern recognition community [4], [11] and [10] apply some of the ideas
from scale space theory to similar problems. We are currently working
on ways of applying these techniques to speed and curvature data. We
believe this may allow us to deal more effectively with sketches that
contain relevant details at a variety of scales. There is no guaranteed
way of deciding which scales are important at the geometric level, so
using constraints and/or information provided by the domain of appli-
cation may help in scale selection.

Humans naturally seem to slow down when they draw things care-
fully as opposed to casually, so another interesting research direction
would be to explore the degree to which one can use the time it takes
to draw a stroke as an indication of how careful and precise the user
meant to be.

6 Conclusion

We have built a system capable of using multiple sources of information
to produce good approximations of freehand sketches. Users can sketch
on an input device as if drawing on paper and have the computer de-
tect the low level geometry, enabling a more natural interaction with
the computer, as a first step toward more natural user interfaces gen-
erally, and toward earlier use of automated tools in the design cycle in
particular.
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Fig. 13. Performance examples: The first two pair are sketches of a marble
dispenser mechanism and a toggle switch. The last two are sketches of the
direction reversing mechanism in a tape player.
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Abstract. Free-hand sketching is used extensively during the
early design phases as an important tool for conveying ideas,
guiding the thought process, and serving as documentation
[5]. It also provides a natural way of interaction desirable in
the context of E21 and intelligent design spaces. Unfortunately
there is little computer support for sketching. The first step
in building a sketch understanding system is generating more
meaningful descriptions of free-hand strokes. We describe a
system that takes strokes described by an array of points along
with timing data, and generates such concise descriptions in
terms of geometric primitives such as circles, polylines, curves
and their combinations.

1 System description

1.1 Issues

Loss of information due to digitization, noise in the data, imprecision
due to freehand sketching and sparseness of sampled data points –
which may be as low as 4-5 dpi as opposed to scanned drawings that
may have 1200-2400 dpi – complicate the stroke approximation task.

1.2 Feature point detection

Stroke processing starts by looking for vertices. We want to avoid pick-
ing points on the curved regions as much as possible1. Vertex local-
ization is a frequent subject in the extensive literature on graphics
recognition (e.g., [4] compares 21 methods). However these methods
produce piecewise linear approximations.
1 Piecewise linear approximation algorithms don’t satisfy this requirement.



644 Tevfik Metin Sezgin

Our approach takes advantage of the interactive nature of sketch-
ing by combining information from both curvature and speed data for
detecting corners while avoiding a piecewise linear approximation. Fea-
ture points are indicated by the maxima of curvature2 data and the
minima of the pen speed. Both speed and curvature data are noisy and
simply picking the extrema introduces many false positives. Below we
describe two methods for selecting the extrema in each case.

Average based filtering The basic idea in average based filtering
is confining our search for the vertices to only those regions where
the curvature/speed data is above/below a threshold computed by the
mean of the data. Then we search for the global extremum within each
region to find the feature points.

Scale space filtering Our experiments show that the above method
is satisfactory for settings where noise is relatively small but doesn’t
deal with extremely noisy data as in Fig. 1 very well, because it doesn’t
differentiate between vertices due to the fine scale structure of the noise
and those due to the high level structure of the stroke. The scale space
based method deals with this problem by looking at the number of
feature points present at different scales in the scale space. As seen
in Fig. 2, the feature count graph has two distinct regions where the
feature count drops with different rates. This behavior is typical for
freehand strokes.

Our task is selecting a scale where most of the noise is filtered out.
This is done by modeling the feature count graph by fitting two lines
to it: one to the region with the steep drop corresponding to places
where the feature points due to noise disappear and the other to the
flatter region where real feature points disappear. We take the scale
corresponding to the intersection of these two lines as our scale.

The results obtained by applying this technique to curvature and
speed data are in Fig. 3.

Generating hybrid fits The above methods separately may miss
feature points, so we combine them to generate hybrid fits. We start
the hybrid fit generation by letting the intersection of the generated fits
2 From this point on, by curvature we will refer to the absolute value of the

curvature data defined as |∂d/∂s| where d is the angle between the tangent
to the curve at a point and the x axis and s is the distance traveled along
the curve.
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Fig. 1. A very noisy stroke along with the fits generated using curvature and
speed data with average based filtering. Both fits have picked many false
positives due to noise.
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Fig. 2. The scale space and feature count graph for the noisy stroke in Fig. 1.

Fig. 3. Curvature and speed fits generated using the scale space approach.
These fits contain 9 vertices for the curvature and 7 vertices for the speed
fit compared to 69 and 82 vertices for the fits obtained using average based
filtering in Fig. 1.
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to be our initial hybrid fit. At each iteration, we form a list of candidate
vertices by picking the vertex with the highest certainty from each of the
original fits. We augment the most recent hybrid fit by the candidate
from this list that reduces the least squares error of the fit by the largest
amount.

1.3 Handling curves

Our system also supports strokes that may contain curves. First we de-
tect curved regions by comparing the curve length l1 between the con-
secutive detected feature points to the Euclidean distance l2 between
the two points. l2/l1 is significantly larger than 1 in curved regions. The
curved regions are then approximated by Bézier curves.

2 Evaluation

For purposes of evaluation, we built a higher level recognizer that takes
the output of our system and interprets strokes in the mechanical en-
gineering domain. Fig. 4 shows a number of free hand sketches and the
output of the recognizer3.

Fig. 4. Input-output figures for the rough sketch of the direction reversal
mechanism of a walkman.

3 Related work

Related work can be found in [2, 1, 6, 3] but these systems either don’t
support drawing arbitrary shapes or don’t do automatic vertex detec-
3 Some domain specific objects such as springs and ground symbols are

recognized by the recognizer.
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tion. Some of them require drawing modes making them unnatural
freehand sketching interfaces.

4 Future work

Future directions include potential improvements, user studies and inte-
gration with other systems including systems that can learn and classify
strokes, patterns or objects taking the concise representation of strokes
generated by our system as inputs.
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Abstract. Designers routinely explain their designs to one an-
other using sketches and verbal descriptions of behavior, both
of which can be understood long before the device has been
fully specified. But current design tools fail almost completely
to support this sort of interaction, instead not only forcing
designers to specify details of the design, but typically requir-
ing that they do so by navigating a forest of menus and dia-
log boxes, rather than directly describing the behaviors with
sketches and verbal explanations. We have created a proto-
type system, called assistance, capable of interpreting mul-
timodal explanations for simple 2-D kinematic devices. The
program generates a model of the events and the causal rela-
tionships between events that have been described via hand
drawn sketches, sketched annotations, and verbal descriptions.
Our goal is to make the designer’s interaction with the com-
puter more like interacting with another designer. This requires
the ability not only to understand physical devices but also to
understand the means by which the explanations of these de-
vices are conveyed.

1 Introduction

When a mechanical designer explains a device to a colleague, s/he does
so with sketches and verbal explanations of the device’s behavior. When
specifying the same device in a CAD system, however, the interaction is
not nearly as natural, in either the medium of expression or the content
expressed. The designer must use a mouse and keyboard to specify a
substantial body of detailed information (e.g., spring constants) that
is not the primary concern in early design stages. This state of affairs
remains true even a decade after work indicated that the formality and
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rigidity of CAD systems can significantly hinder the early stages of the
design process [17].

We have been working to remove this barrier between designers and
their tools by shifting the emphasis away from parametric specifications
and towards multimodal explanations of behavior. We have constructed
a system, called assistance, that allows the user to describe a device’s
behavior using hand drawn sketches, sketched annotations, and verbal
descriptions phrased in the same vocabulary designers routinely use
when talking to one another. From this information assistance gen-
erates a model that represents how the components move and what
causal relationships exist between those movements. As we illustrate,
this process both provides a more natural interface for the designer and
allows the system to infer some useful details about the design of the
device. In the near term the model constructed by the system will be
used to inform a mechanical simulator, so the sketched device can be
animated, while in the longer term we envision systems using assis-
tance’s representations to reason about design rationale by tracking
changes in both the design’s structure and behavior during the early
stages of design.

This paper reviews an example of the system in operation, explains
what knowledge is required to support the inferences it makes, and
examines both its capabilities and limitations.

2 Describing structure and behavior

Enabling designers to describe devices to a computer as naturally as
they would to a colleague requires understanding descriptions of both
structure and behavior. For a mechanical device, the structure repre-
sents the device’s components and their physical interconnections while
the behavior represents how the components move and the relation-
ships between these motions. The problem of understanding structural
descriptions using natural media like hand drawn sketches has been ex-
plored in our group [1] and a few other efforts (e.g., [9]) but there has
been very little work on understanding similarly natural descriptions
of behavior.

To make description feel natural, we have to attend to both the
medium of expression and the content being expressed. Designers of all
sorts feel natural drawing and talking about their designs, particularly
in the early, conceptual stages of the process. Designers also find a par-
ticular kind of content natural at this stage: they typically pay more
attention to the behavior of the device than the properties of the in-
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dividual components [2]. This demands that we enable descriptions to
be phrased in the sort of language and vocabulary typically employed.

As a trivial yet instructive example, consider a spring attached to
a block positioned next to a ball. In a traditional CAD system (Fig. 1)
the designer would select the components from a tool bar and position
them, and would then have to specify a variety of parameters, such as
the rest length of the spring, the spring constant, etc.

Contrast this to the way someone would describe this device to
a colleague. As we discovered in a set of informal experiments, the
description typically consists of a quick hand drawn sketch (e.g., Fig. 2)
and a brief spoken description, “the block pushes the ball.” We have
built a tool that augments structural descriptions by understanding
these sorts of graphical and verbal descriptions of behavior.

Fig. 1. A block and spring described using a CAD tool.

3 Overview and capabilities

To use the system a designer first sketches the device, using a system
called assist [1], which interprets the sketch and generates a represen-
tation of device structure. The designer then switches to an explanation
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Fig. 2. A more natural medium of description.

mode and explains the device’s behavior by drawing arrows, speak-
ing, and pointing. After each of the designer’s explanation fragments
(i.e., each utterance and gesture) the system interprets that explana-
tion fragment, updating its model of devices. At any time the designer
can verbally ask the system to explain its causal model.

assistance can currently understand descriptions of two dimen-
sional kinematic devices that use rigid bodies, pin joints, pulleys, rods,
and springs. It takes spoken natural language and hand-drawn sketches
as input and generates a causal model that describes the actions the
device performs and the causal connections between them.

We take “understanding” in this context to mean the ability to
generate such a causal model, that accurately reflects the behavior de-
scription given by the designer. The system’s task is thus to understand
the designer, without attempting to determine whether the designer’s
description is physically accurate.

The representations assistance generates are not a verbatim record-
ing of the designer’s description. To demonstrate that it has understood
an explanation (and not just recorded it), assistance can construct
simple explanations about the role of each component in terms of the
events that it is involved in and causal connections between events. Fur-
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ther evidence of the system’s understanding is provided by its ability
to infer from the behavior description what values some device parame-
ters (e.g., spring constants) must take on in order to be consistent with
the description. The query and parameter adjustment capabilities were
designed to provide a mechanism for the system to describe its internal
model and to suggest how such representations could be used in the
future.

The current implementation of assistance is made tractable by
taking advantage of a number of sources of knowledge and focusing the
scope of the task. We currently focus on two-dimensional kinematic
devices, thereby limiting the vocabulary and grammar necessary to de-
scribe a device, making the language understanding problem in turn
tractable. We then take advantage of two characteristics of informal
behavior descriptions: they typically contain overlapping information
and they are often expressed in stereotypical forms. We use the multi-
ple, overlapping descriptions of an event–the same event described in
a verbal explanation and in a sketched annotation–to help infer the
meaning of the description. We also combine multiple descriptions to
produce a richer description than either one provides alone. Finally,
we use knowledge about the way designers describe devices to simplify
the process of interpreting their descriptions (e.g., mechanical device
behavior is frequently described in the order in which it occurs).

4 An example

An example will help demonstrate the types of multi-modal explana-
tions assistance understands and the types of inferences it can make.
Fig. 3 shows a Rube Goldberg-style egg-cracking device (adapted from
[12]), along with an explanation of its behavior (the arrows and verbal
statements).

From this explanation the system generates a model of the device’s
behavior. The model (described in more detail below) consists of 8
events, one motion event for each of bodies 2, 3, and 5-10.

Note that in the absence of the information provided by the verbal
and gestural annotations of Fig. 3, a simulation of the device produces
useless behavior: body 3 will simply drop the small remaining distance
to the frame, and sit there, preventing the spring from propelling the
ball, while the ball will similarly drop the small distance and remain
in place. Allowing the designer to explain how the device should work
allows the system to construct a model that can be used to inform
a simulator, so that intended behavior of the current design can be
visualized.
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Body 7

Spring 1

Body 3

Body 5

Body 6

Body 9

Body 8

Body 10
Body 2

Legend

Spring Pin JointAnchor Pulley

“When body 3 moves up spring 1 releases.”
“Body 2 pushes body 5.”
“Body 6 rotates.”
“Body 7 falls.”

Fig. 3. The explanation of an egg cracking device. (Labels of the form “body
3” are created by the system for each component; some have been removed
in this figure for clarity.)
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4.1 Inferences from device structure

assistance is given a description of the device’s structure (supplied by
another system we have developed [1]) that specifies each of the objects
in the figure and their connections.1 As its first step assistance does
a degree of freedom analysis based on the interconnection information
(e.g., anchors prevent both rotation and translation while pin joints
allow rotation).

4.2 Generating the behavioral model from the description

The bulk of the work of assistance lies in parsing the user’s verbal
description and sketched annotations, and providing a causal model
of the device behavior. We walk through several inputs to illustrate
this process in action, detailing the knowledge required to understand
the description. The example illustrates assistance’s ability to infer
motions of bodies, identify multiple descriptions of the same event,
disambiguate deictic references, and infer causal links between motions.

“When body 3 moves up spring 1 releases” assistance be-
gins by breaking the utterance into its constituent clauses, which it
then translates into events. A straightforward interpretation of the first
clause (“body 3 moves up”) generates a representation for the motion
of body 3. The system then infers the motion of body 2 from the second
clause (“spring 1 releases”), based on the observation that spring 1 is
connected on the left end to an anchored body (body 1), hence in order
for the spring to “release,” body 2 must be moving. This is an example
of an inference based on the physical structure of the device.

assistance then infers a causal connection between these two mo-
tions because the two clauses are linked by a conditional statement
(“When body 3 moves. . . ”) suggesting causality, in which the motion
of the first clause is a precondition for the motion in the second. This is
an example of using linguistic properties to infer a causal link between
events.

1 We use “objects” to mean any of the things in the sketch. We refer to ob-
jects such as springs, pulleys, pin joints, etc., as “functional components”,
or “components.” We use the term “body” to refer to any other hunk of
material in the sketch (e.g., everything other than the spring, pulley, pin
joints, and arrows in Fig. 3).
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The arrow at body 3 From the arrow at body 3, assistance gen-
erates a second event representation for the motion of this component,
describing its path. assistance then links this representation with the
representation generated by the utterance above, based on its ability to
recognize that the two descriptions describe the same type of motion
and refer to the same object.

“Body 2 pushes body 5”, the arrow at body 2 assistance
interprets the “pushes” phrase as two motion events with the first (the
motion of body 2) causing the second (the motion of body 5). The
causal link is inferred by the fact that pushing is interpreted as the act
of one object causing another object to move.

From the arrow at body 2 the system generates a second repre-
sentation the motion of that body (the first resulted from “the spring
releases” utterance). Recognizing that they refer to motions of the same
object, the system marks the two representations as describing the same
motion. These equivalence links between event representations are used
later to merge two descriptions of the same event into a single, more
detailed representation.

At this point assistance’s behavioral model represents the fact
that the motion of body 3 causes the motion of body 2, which in turn
causes the motion of body 5.

“Body 6 rotates,” and “body 7 falls” From these utterances as-
sistance infers a causal link between the motions of body 6 and body
7. This is based on its model of pulleys, which is simply that if two
things are attached to either end of a pulley, and both of them are
known to be moving, then one of the motions may have caused the
other. assistance uses this piece of physical reasoning and the topol-
ogy of the device to hypothesize a causal link between the two motion
events.

The arrows at bodies 8, 9, and 10 assistance infers that there is
a motion event associated with each of these 3 arrows. It also infers that
the motion of the egg causes the motions of the two levers, based on
the observation that the path followed by the egg brings it into contact
with the levers.

Finally, assistance observes that the motions of the two levers are
rotations because the bodies have a single, rotational degree of freedom.
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4.3 How ASSISTANCE demonstrates understanding

assistance now has both a structural and behavioral model of the
device. The system can demonstrate its understanding of the device by
describing the events that a component is involved in and the immediate
causes and effects of those events. An example is presented in Fig. 4.

Designer: What is body 2 involved in?
assistance: The motion of body 3 causes the mo-

tion of body 2 which causes the motion
of body 5

Fig. 4. assistance demonstrates its understanding.

The system also demonstrates understanding by adjusting the pa-
rameters of the springs in the structural model so that the simulation of
the device is closer to the behavior described by the designer. Consider
the spring in Fig. 3: As drawn, is it currently compressed, stretched, or
at its neutral position? With the knowledge that body 2 is propelled
by spring 1, assistance is able to infer that it must be compressed,
allowing the program to modify the model, which then will produce the
correct behavior when the device is simulated.

5 Implementation

The process by which assistance builds its models can be split into
four main components:

– Process sketch and speech input
– Translate these inputs into events and causal links
– Construct the causal structure
– Demonstrate the system’s understanding of the explanation

We describe the overall architecture of the system, then discuss each
of these components in detail.

5.1 System architecture

The basic structure and information flow in the system is depicted in
Fig. 5. The sketch recognition system, assist recognizes the raw sketch
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data and produces a description of objects in the sketch and their inter-
connections. IBM’s ViaVoice recognizes the acoustic data and produces
a decorated parse tree of the utterances. The input to assistance is
thus descriptions of physical bodies, descriptions of arrows, and parsed
textual phrases, rather than raw pixel and acoustic data. The informa-
tion from assist and ViaVoice is converted into propositional state-
ments and used as the foundation for the reasoning performed by as-
sistance.

Sketch Speech

ViaVoiceASSIST:

Recognize Sketch

Parse text

Recognize speech

ASSISTANCE

Causal Model &

Simulation

Truth Maintenance System

Rule System

Interpret explanation

Fig. 5. The overall structure of the system.

assistance is implemented with a forward-chaining rule-based sys-
tem and truth maintenance system (TMS) taken from [7]. The rules rep-
resent the knowledge required to translate the parsed utterances and
gestures into representations of events, and the knowledge required to
infer causal relationships between events.
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The role of the TMS is to maintain a record of inferences: When
a rule fires, the TMS records the rule’s preconditions as justifications
for the inference. When the system later attempts to build a complete
causal model of the device behavior, these records of inferences permit
flexible and efficient exploration of alternative interpretations.

5.2 Process the inputs

There are three inputs to assistance: the structural model generated
by assist, the utterances recognized by the speech recognition system,
and the sketched arrows.

The Representation of the structural model The structure rep-
resentation provided by assist[1] contains shape and location infor-
mation about every object in the sketch. For functional components
(e.g., springs, pin joints, etc.) assist also indicates which bodies they
are attached to and whether they are attached to the fixed plane. All
objects are assigned a unique English name (e.g. “body 1”, “spring 1”)
so that they can be referred to unambiguously.

assistance uses this model to perform a degree of freedom anal-
ysis on each body, determining from its connections (e.g., a pin joint)
whether it can rotate, translate, or neither.

Speech recognition and processing Speech recognition is handled
by IBM’s ViaVoice software, which parses the utterances against a
grammar containing phrases we found commonly used in an informal
survey of several designers explanations of devices. The grammar ab-
stracts from the surface level syntactic features to an intermediate syn-
tactic representation that explicitly encodes grammatical relations such
as subject and object. These intermediate representations are used by
the rules described below to generate semantic representations of the
utterances. This type of intermediate syntactic representation is similar
to the approach taken in [15].

The grammar is written using the Java Speech Grammar Format,
which provides a mechanism for annotating the grammar rules with
tags. These tags decorate the parse tree generated by the speech recog-
nition system with both the surface level syntactic features and the
intermediate syntactic representations mentioned above.

The grammar handles several basic sentence types: motions (e.g.
“the block moves”), conditionals (e.g. “If body 1 moves up then Spring
1 releases”), and propulsions (e.g. “Body 2 pushes body 5”). The system
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is also capable of handling deictic references to bodies, for example
“This pushes Body 1.” The interpretation of each of these is described
in more detail below.

The grammar has intentionally been kept constrained, because our
emphasis has not been on the language processing aspects of the sys-
tem. Having a small grammar also helps the speech recognition system
achieve a high level of accuracy. We are currently looking into the pos-
sibility of linking into a more powerful language processing system such
as the start System [10].

Recognizing sketched gestures The sketched gestures currently
handled by assistance are arrows and pointing gestures. Both of these
gesture types are recognized by assist and converted into a symbolic
representation that includes the object that they refer to; assistance
then reasons with the symbolic representations. For arrows, the referent
is the object closest to the base of the arrow and for pointing gestures
it is the object that is closest to the point indicated.

5.3 Translate inputs into events and causal links

In order to construct the causal structure of the device from the expla-
nation, assistance must first determine what events are mentioned in
the explanation, then unify multiple representations of the same event.
It then determines the causal relationships between pairs of events. The
knowledge required to make these inferences is represented by rules that
fit into several categories:

– Translate utterances into events
– Resolve deictic references
– Translate arrows into events
– Merge multiple representations of the same event
– Find causal connections between events

The rules are organized around knowledge of language patterns (the
first two categories), knowledge of drawing conventions (the third cate-
gory), and knowledge about physics and physical devices. By organizing
the rules around such knowledge, and by writing them to be as general
as possible within these categories, we achieve a degree of generality
in the system’s performance. As is common with rule-based systems,
new rules must be added with care, but the task has to date been quite
tractable.
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Translate utterances into events There are currently three rules
that translate utterances into motion events. These rules correspond
to the three classes of verbs understood by the system: “moves,” “re-
leases,” and “propels.” The rule for translating “propels” utterances,
such as “Body 2 pushes body 3,” will illustrate how these rules work.
The decorated parse tree for this sentence is shown in Fig. 6. The parse
tree contains the structure of the sentence and syntactic tags that indi-
cate the parts of speech and the roles played by each part of the parse
(e.g. subject).

direct object, noun phrase, noun: "body 3"

Sentence: "Body 2 pushes body 3"

verb phrase: "pushes body 3"subject, noun, noun phrase: "Body 2"

verb, propels: "pushes"

Fig. 6. Decorated parse tree for ”body 2 pushes body 3.”

To process this utterance the rule begins by identifying the sentence
as a “propels” utterance, by the “propels” tag on the verb. Then it uses
the structure of the parse tree to bind the “subject” to “body 2” and
the “direct object” to “body 3.” Finally, it finds the physical objects
corresponding to these bodies by matching the names to the bodies.
The rule then asserts one motion event for the subject and one for the
object.

The rule for “releases” utterances deals with springs, where “re-
lease” implies the motions of objects connected to either end of the
spring. This rule is analogous to the one for “propels” except the bod-
ies are those attached to the spring (which must be explicitly referenced
by name or by a pointing gesture as described below).

The rule for interpreting “moves” utterances is analogous to the one
for “propels” but does not have an object and only asserts one motion
event.

Resolve deictic references In the current implementation, when
objects are not referred to by name they must be accompanied by
a pointing gesture. This allows the interpretation of phrases such as
“when this moves up, body 1 pushes body 2.”
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In addition to the pronouns “this” and “that” the system has a
vocabulary of common component names like “block” and “ball” which
the user can use to reference objects. However, since the system does
not have representations for “balls” and “blocks” these references must
also be disambiguated by pointing gestures. For example, the user can
say “the block moves up” as long as she also points to the block in
question.

The constraint that each reference has a corresponding pointing
gesture means that the two can be matched in a straightforward man-
ner, simply by keeping a list of references and pointing gestures and
matching them in the order in which they occur.

While deictic references are common in explanations, our current
requirement that the user disambiguate the referent is awkward and is
one that we plan to eliminate in the future. There has been substantial
work in both the literature on discourse theory and multi-modal inter-
faces [13] to indicate that this is possible. In particular the typical time
delays between gestures and verbal utterances reported in [14] could be
used to identify such multimodal references.

Translate arrows into events The translation of sketched arrows to
motion events is straightforward because the recognition of the arrow
includes the determination of the object it refers to: this is defined as
the object at or near the tail of the arrow. A simple rule associates
a motion event with this body and records the path depicted by the
arrow.

Merge multiple representations of the same event We have
found that in many explanations the motion of one body is described
multiple times, often by multiple modalities. For example, in the egg
cracker (see Fig. 3) the motion of body 2 is described three times: by the
utterance “spring 1 releases”, by the utterance “body 2 pushes body
5,” and by the arrow. Initially each of these is represented individually.

To generate a unified causal structure, sets of equivalent events must
be combined into a single, canonical event. This is done by unifying the
properties of the individual events. In the example mentioned above, the
representation generated from the arrow provides spatial information
about the trajectory of the motion, while the verbal utterance indicates
the causal connection between that motion and other motions.

Our current implementation assumes that each body can be in-
volved in only a single motion event. This means that any two events
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that involve the same physical object are actually different descriptions
of the same event2

The occurrence of overlapping descriptions from multiple modalities
is well known (see [13] for example), however, our problem is slightly
more complex than is typical: We not only have redundant descriptions
due to multiple modalities, we also have redundant explanations within
a modality, as, for example, the two utterances describing the motion
of body 3. This is why we perform the merging of events based on the
semantic interpretations instead of the input sources.

Find causal connections between events After identifying the
motion events, the system attempts to find causal connections between
them. There are currently two classes of causal links in our system:
definite and plausible.

Definite Causal Links Definite causal links result from verbal utter-
ances that unambiguously describe a causal relationship between two
events. If, for example, the user says, “if this moves up spring 1 re-
leases,” we take that to be an unambiguous statement of a causal re-
lationship between the two events. Definite causal links are also con-
structed from “propels” utterances, to relate the two motion events
with a causal relationship. There are currently two rules for asserting
definite causes, one for utterances of conditional statements and one
for “propels” utterances.

Plausible Causal Links Plausible causal links arise from less explicit
indications of causality. Currently these links are inferred from spatial
information about the trajectories traced by bodies and from the mo-
tions of bodies connected by a rod or pulley system. There is one rule
for each of these cases. As an example, spatial information is used in
the egg-cracker description (Fig. 3) to infer that the motions of the two
levers holding the egg are caused by the motion of the egg on its way
into the pan. If the first body’s trajectory brings it in contact with the
second body, it is plausible that the second body’s motion is caused by
the first, but not guaranteed: the second motion may have commenced
2 Future implementations will relax this restriction by adding reasoning to

determine when an event description refers to a new event rather than
another aspect of a previously mentioned event. The decision to keep the
events separate could be based on evidence of conflicting properties (e.g.
direction) or by examining the amount of time since the last reference to
the event.
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before the first. This rule makes use of the size of the bodies and the
path traced by the arrow.

As as a second example, if two bodies are attached to a rope that
passes through a pulley and they both move, it is plausible that one
of the motions is the cause of the other. However, this is not definite
because there may be slack in the rope.

5.4 Construct the causal structure

After finding all the events and the causal relationships between them,
assistance has two remaining tasks: (i) find the set of consistent causal
structures, and (ii) choose the causal structure that is closest to the
designer’s description.

Find the set of consistent causal structures The constraints that
must be satisfied in order for a causal ordering to be considered con-
sistent are: (i) each event must have exactly one cause (but can have
multiple effects), and (ii) causes precede effects.

The truth maintenance system and its constraint propagation capa-
bilities enable fast and efficient exploration of different possible causal
structures, allowing the system to find those consistent with the con-
straints. This exploration of alternative causes is a forward-looking
depth-first search with backtracking over the set of possible causal or-
derings. The search is constrained by limiting it to those events with
no definite causes and multiple plausible causes. It proceeds by trying
all the plausible causes of each event until each has a cause. Any event
that does not have a cause can be hypothesized to be caused by an
exogenous force (a later step minimizes the number of hypothesized
exogenous causes).

The truth maintenance system can identify and record sets of in-
consistent assumptions, enabling search to be terminated along other
branches of the tree that include the same set of assumptions that led to
the contradiction. Although the search is exponential in the worst case,
the branching factor is small and for our current problems efficiency has
not been an issue. (We believe that there may be more efficient search
strategies that take advantage of the fact that causes and effects are
generally described together, and refer to physical components that are
nearby spatially. This may allow us to partition the search space and
reduce the depth of the search.)

Choose the causal structure that is closest to the designer’s
description Finally, the system must choose from all the consistent
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models the one that most closely matches the designer’s description.
Two heuristics are used to select the model: there should be a minimal
number of events caused by exogenous forces, and the order of the
events in the causal description should be as close as possible to the
order in which they were described. This latter criterion is based on our
empirical observation that people describe the behavior in the order in
which it occurs.

6 Evaluation and future work

Criteria for evaluating a system such as assistance include its usabil-
ity and the range of inferences supported by its representations. We
consider these by first comparing existing alternative methods for be-
havior explanation. We then evaluate the usability and expressiveness
of assistance and discuss the features that we believe are necessary
for the growth of the system.

6.1 Existing alternatives

To date designers have had to choose between descriptions that were
formal, constrained, and usable by an automated system, and those
that were natural and unconstrained, but not easily automated.

On the formal end of the spectrum are CAD tools, which require
the designer to describe the device with mathematical precision, using
input media that are very different from the pencil and paper sketches
used in the early design stages. Although some CAD systems claim to
support sketching, they are still highly modal and force the designer to
indicate what they are about to draw, instead of just drawing it. To
date CAD systems have also supported the specification of behavior
only through the adjustment of parameters, rather than via explicit
descriptions of the intended behavior.

On the opposite end of the spectrum are written documents, person
to person explanations, and verbatim recordings of explanations. The
collection of this information imposes no constraints on the designer
but also does not produce a representation usable by an automated
reasoning system.

assistance aims to combine the strengths of both of these ap-
proaches to create a system that gathers information from natural in-
teractions and generate useful representations.
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6.2 Usability issues

We have not yet performed a formal evaluation of assistance’s natu-
ralness but can offer comments from our own experiences.

As we have demonstrated, assistance is capable of interpreting the
types of input media and language that designers use in the early stages
of design. The explanations include many features commonly found
in person-to-person explanations such as the use of natural language,
sketching, simple deictic references, and the use of behavior-oriented
explanations instead of parameter-oriented ones. The representations
generated by assistance are in a machine readable form suitable for
use by other reasoning systems. By generating such representations
assistance is capitalizing on one of the primary advantages of CAD
tools.

One area of the interface we hope to improve is its ability to pro-
vide feedback to the user about its current level of understanding. One
way to do this would be to involve the computer in a dialog with the
designer, in which the system asks for clarifications and asks questions
about the roles played by different components. This would both pro-
vide the designer feedback about the system’s current understanding
of the explanation and offer some structure to the explanation which
may provide additional constraints on the interpretation of the expla-
nations. This inclusion of the computer as an active participant is an
approach that is also advocated in [8] and fits into our overall goal of
providing an interface that is as close as possible to person-to-person
interactions.

A second improvement would be the extension of the reference dis-
ambiguation facilities. As mentioned earlier (Section 5.3) there has been
previous work on this topic (e.g. [14, 13]) to provide guidance in expand-
ing the system’s current capabilities in this area.

A third improvement would be the extension of the natural language
capabilities. The grammar of recognized utterances is currently too
small to allow designers who have not previously used the system to
describe a device easily. This difficulty is complicated by occasional
errors in the speech recognition. Using a mature speech understanding
system such as start [10] will alleviate some of these problems, by
accounting for common language structures such as passive voice.

6.3 Expand reasoning abilities

Future work also needs to be done to expand the range of devices that
the system can understand. In particular the limitation that each body
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can be involved in only a single state transition precludes many common
devices. We hypothesize that this does not pose any conceptual level
adjustments to the architecture but it will involve reengineering some
of the internal representations of the reasoning system. The ability to
manipulate the components of the device directly (in addition to just
describing them) could help this problem from a usability perspective
by visually displaying the current state of the device. Without this fea-
ture the designer must visualize the new positions of components after
each event occurs. As the chain of events involving the same component
grows this will become a larger issue.

7 Related work

While a variety of work has explored the understanding of descriptions
in individual modalities, and some multi-modal systems deal with direct
manipulation tasks, relatively little work has attempted to interpret the
sorts of multi-modal descriptions handled by assistance.

7.1 Related description understanding systems

Borchardt [4], for example, parsed natural language descriptions of de-
vice behavior and from this reconstructed the causal relationships de-
scribed in the text. His insight was to focus on the changes that oc-
curred in the state of the device instead of the states themselves. This
closely parallels our goal to focus on descriptions of behavior instead
of descriptions of structure. The primary difference in our work derives
from having sketched input; having explicit spatial models simplifies
many descriptions. This changes the focus of the descriptions and al-
lows them to be conveyed more naturally.

Understanding device behavior was also an element in [16]. In that
system the designer specified structure by indicating some elements of
the topology of the device and described behavior with a state transi-
tion diagram. From these representations, his system was able to under-
stand the operation of the device and suggest alternative designs with
the same qualitative behavior as the original. To engineers, a state
transition diagram is one form of natural explanation, and as such that
work took one step in the direction we have pursued.

Another approach to the behavior understanding problem is to infer
the device’s behavior by observation, without a separate behavioral
description. This was the approach taken in [12] to infer the behavior
of a device from static diagrams. Similarly, [5] and [6] interpret the
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behavior of devices from images and sequences of images of a device in
action. These approaches are important because they could provide an
initial guess at the behavior which can be augmented and repaired by
explanations provided through a system such as ours.

7.2 Related multimodal systems

There has been a great deal of work done on the design and theory of
pen and speech based multimodal interfaces (see [13] for an overview).
This work has focused on improving recognition accuracy by combining
multiple input modalities. It has also identified general properties of
multimodal human computer interactions that can guide their design.
[14].

Another body of work in the field of multi-modal interfaces has
focused on recording human interactions in meetings[3]. The goal of
that work is to generate annotated multimedia transcripts of meetings.
The transcripts include the text of what was said, who said it, and links
between the transcript and video sequences.

assistance fits between these two bodies of work in its emphasis on
being a silent observer but also understanding the content the user is
conveying instead of just recording it in a structured manner. Another
system which takes this approach is Rasa described in [11].

8 Contributions

assistance demonstrates a new kind of interface for describing mech-
anism behavior. Rather than proposing better templates, buttons, or
menus, assistance adopts the interface that designers use everyday
to communicate with their colleagues. Armed with knowledge about
sketching, natural language, and mechanical devices, assistance brings
the computer into the designer’s world. During conceptual design, de-
signers talk about behaviors and not the parameters that lead to them,
hence assistance focuses on understanding behavioral explanations
rather than providing ways of specifying parameters.
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Abstract. Although vast amounts of information are avail-
able electronically today, no effective information access mech-
anism exists to provide humans with convenient information
access. A general, open-domain question answering system is
a solution to this problem. We propose an architecture for a
collaborative question answering system that contains four pri-
mary components: an annotations system for storing knowl-
edge, a ternary expression representation of language, a trans-
formational rule system for handling some complexities of lan-
guage, and a collaborative mechanism by which ordinary users
can contribute new knowledge by teaching the system new in-
formation. We have developed a initial prototype, called Web-
notator, with which to test these ideas.

1 Introduction

A tremendous amount of heterogenous information exists in electronic
format (the most prominent example being the World Wide Web), but
the potential of this large body of knowledge remains unrealized due
to the lack of an effective information access method. Because natural
language is the most convenient and most intuitive method of accessing
this information, people should be able to access information using
a system capable of understanding and answering natural language
questions—in short, a system that combines human-level understanding
with the infallible memory of a computer.
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Natural language processing has had its successes and failures over
the past decades; while the successes are significant, computers will
not soon be able to fully process and understand language. In addition
to the traditional difficulties associated with syntactic analysis, there
remains many other problems to be solved, e.g., semantic interpreta-
tion, ambiguity resolution, discourse modeling, inferencing, common
sense, etc. Furthermore, not all information on the Web is textual—
some is sound, pictures, video, etc. While natural language processing
is advanced enough to understand typical interactive questions about
knowledge (interactive questions are typically fairly simple in struc-
ture), it cannot understand the knowledge itself. For the time being,
therefore, the only way for computers to access their own knowledge is
for humans to tell the computers what the knowledge means in a lan-
guage that the computers can understand—but still in a language that
humans can produce. A good way to accomplish this is with the use of
natural language annotations, sentences which are simple enough for a
computer to analyze, yet which are in natural human language. Once
knowledge is so annotated, and indexed in a knowledge repository, a
question answering system can retrieve it.

The Start (SynTactic Analysis using Reversible Transformations)
Natural Language System [6, 7] is an example of a question answering
system that uses natural language annotations. Start is a natural
language question answering system that has been available to users on
the World Wide Web1 since December, 1993. During this time, it has
engaged in millions of exchanges with hundreds of thousands of people
all over the world, supplying users with knowledge regarding geography,
weather, movies, corporations, and many many other areas. Despite
the success of Start in serving real users, its domain of expertise is
relatively small and expanding its knowledge base is a time-consuming
task that requires trained individuals.

We believe that the popularity of the Web may offer a solution to
this knowledge acquisition problem by providing collaborative mecha-
nisms on a scale that has not existed before. We can potentially leverage
millions of users on the World Wide Web to construct and annotate
a knowledge base for question answering. In fact, we had proposed a
distributed mechanism for gathering knowledge from the World Wide
Web in 1997 [7], but only recently have we attempted to implement
this idea.

An advantage of natural language annotations is that it paves a
smooth path of transition as natural language processing technology

1 http://www.ai.mit.edu/projects/infolab
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improves. As natural language analysis techniques advance, the annota-
tions may become more and more complex. Eventually, a textual infor-
mation segment could be its own annotation; someday, through other
technologies such as speech and image recognition, etc., annotations
could even be automatically constructed for non-textual information.

A further advantage is that natural language annotations can be
processed via techniques that only partially understand them—via IR
engines, or less-than-ideal natural language systems—yet they retain
their more complex content and can be reanalyzed at a later date by
more sophisticated systems.

2 Overview

We propose a collaborative question answering architecture composed
of the four following components:

1. Natural Language Annotation is a technique of describing the
content of information segments in machine parsable natural lan-
guage sentences and phrases.

2. Ternary Expressions are subject-relation-object triples that are
expressive enough to represent natural language, and also amenable
to rapid, large-scale indexing.

3. Transformational Rules handle the problem of linguistic vari-
ation (the phenomenon in which sentences with different surface
structures share the same semantic content) by explicitly equating
representational structures (derived from different surface forms)
that have approximately the same meaning.

4. Collaborative Knowledge Gathering is a technique by which
the World Wide Web may be viewed not only as a knowledge re-
source, but also a human resource. The knowledge base of a ques-
tion answering system could be constructed by enlisting the help
of millions of ordinary users all over the Web.

3 Annotations

Natural language annotations are machine-parsable sentences or phrases
that describe the content of various information segments. They de-
scribe the questions that a particular segment of information is capable
of answering. For example, the following paragraph about polar bears:

Most polar bears live along the northern coasts of Canada, Green-

land, and Russia, and on islands of the Arctic Ocean. . .
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may be annotated with one or more of the following:

Polar bears live in the Arctic.

Where do polar bears live?

habitat of polar bears

A question answering system would parse these annotations and
store the parsed structures with pointers back to the original informa-
tion segment that they described. To answer a question, the user query
would be compared against the annotations stored in the knowledge
base. Because this match occurs at the level of ternary expressions,
structural relations and transformation (to be discussed in Section 5)
can equate queries and annotations even if their surface forms were
different. Furthermore, linguistically sophisticated machinery such as
synonymy/hyponymy, ontologies, can be brought to bear on the match-
ing process. If a match were found, the segment corresponding to the
annotation would be returned to the user as the answer.

The annotation mechanism we have outlined serves as a good basis
for constructing a question answering system because annotating in-
formation segments with natural language is simple and intuitive. The
only requirement is that annotations be machine parsable, and thus
the sophistication of annotations depends on the parser itself. As natu-
ral language understanding technology improves, we can use more and
more sophisticated annotations.

In addition, annotations can be written to describe any type of in-
formation, e.g., text, images, sound clips, videos, and even multimedia.
This allows integration of heterogenous information sources into a sin-
gle framework.

Due to the vast size of the World Wide Web, trying to catalog all
knowledge on the World Wide Web is a daunting task. Instead, fo-
cusing on meta-knowledge is a more promising approach to building a
knowledge base that spans more than a tiny fraction of the Web. Con-
sider that reference librarians at large libraries obviously don’t know
all the knowledge stored in the reference books, but they are neverthe-
less helpful in finding information, precisely because they have a lot of
knowledge about the knowledge. Natural language annotations can assist
in creating a smart “reference librarian” for the World Wide Web.

4 Representing natural language

A good representational structure for natural language is ternary ex-
pressions.2 They may be intuitively viewed as subject-relation-object
2 See [6, 7] for details about such representation in Start.
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triples, and can express most types of syntactic relations between var-
ious entities within a sentence. We believe that the expressiveness of
ternary relations is adequate for capturing the information need of users
and the meaning of annotations. For example, “What is the population
of Zimbabwe?” would be represented as two ternary expressions:

[what is population]

[population of Zimbabwe]

Ternary expressions can capture many relationships between en-
tities within a sentence. Such a representational structure is better
than a keyword-based scheme which equates a document’s keyword
statistics with its semantic content. Consider the following sets of sen-
tences/phrases that have similar word content, but (dramatically) dif-
ferent meanings:3

(1) The bird ate the young snake.

(1′) The snake ate the young bird.

(2) The meaning of life

(2′) A meaningful life

(3) The bank of the river

(3′) The bank near the river

Ternary expressions abstract away the linear order of words in a
sentence into a structure that is closer to meaning, and therefore a
relations-based information access system will produce much more pre-
cise results.

We have conducted some initial information retrieval experiments
comparing a keyword-based approach with one that performs matching
based on relations4. Using Minipar [12], we parsed the entire contents
of the Worldbook Encyclopedia and extracted salient relations from
it (e.g., subject-verb-object, possessives, prepositional phrase, etc.) We
found that precision for relations-based retrieval was much higher than
for keyword-based retrieval. In one test, retrieval based on relations
returned the database’s three correct entries:

Question: What do frogs eat?
Answer:

(R1) Adult frogs eat mainly insects and other small animals, includ-

ing earthworms, minnows, and spiders.

(R4) One group of South American frogs feeds mainly on other frogs.

3 Examples taken from [13]
4 to be published



678 Boris Katz, Jimmy Lin and Sue Felshin

(R6) Frogs eat many other animals, including spiders, flies, and

worms.

compared to 33 results containing the keywords frog and eat which
were returned by the keyword-based system—the additional results all
answer a different question (“What eats frogs?”) or otherwise coinci-
dentally contain those two terms.

Question: What do frogs eat?
Answer:

. . .

(R7) Adult frogs eat mainly insects and other small animals, includ-

ing earthworms, minnows, and spiders.

(R8) Bowfins eat mainly other fish, frogs, and crayfish.

(R9) Most cobras eat many kinds of animals, such as frogs, fishes,

birds, and various small mammals.

(R10) One group of South American frogs feeds mainly on other

frogs.

(R11) Cranes eat a variety of foods, including frogs, fishes, birds,

and various small mammals.

(R12) Frogs eat many other animals, including spiders, flies, and

worms.

(R13) . . .

Another advantage of ternary expressions is that it becomes easier
to write explicit transformational rules that encode specific linguistic
variations. These rules are capable of equating structures derived from
different sentences with the same meaning (to be discussed in detail
later).

In addition to being adequately expressive for our purposes, ternary
expressions are also highly amenable to rapid large-scale indexing and
retrieval. This is an important quality because a large question an-
swering system could potentially contain answers to millions of ques-
tions. Thus, compactness of representation and efficiency of retrieval
become an important consideration. Ternary expressions may be in-
dexed and retrieved efficiently because they may be viewed using a
relational model of data and manipulated using relational databases.

5 Handling linguistic variation

Linguistic variation is the phenomenon in which the same meaning can
be expressed in a variety of different ways. Consider these questions,
which ask for exactly the same item of information:
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(4) What is the capital of Taiwan?

(5) What’s the capital city of Taiwan?

(6) What is Taiwan’s capital?

Linguistic variations can occur at all levels of language; the exam-
ples above demonstrate lexical, morphological and syntactic variations.
Linguistic variations may sometimes be quite complicated, as in the
following example, which demonstrates verb argument alternation.5

(7) Whose declaration of guilt shocked the country?

(8) Who shocked the country with his declaration of guilt?

Transformational rules provide a mechanism to explicitly equate
alternate realizations of the same meaning at the level of ternary ex-
pressions.

As an example, Figure 1 shows a sample transformational rule for
(7) and (8).6 Thus, through application of this rule, question (7) can
be equated with question (8).

[n1 shock n2] [n3 shock n2]

[shock with n3] ↔
[n3 related-to n1] [n3 related-to n1]

where n ∈ Nouns where n ∈ Nouns

Fig. 1. Sample Transformational Rule

Transformational rules may be generalized by associating arbitrary
conditions with them; e.g., verb ∈ shock, surprise, excite . . .

A general observation about English verbs is that they divide into
“classes,” where verbs in the same class undergo the same alternations.
For example, the verbs ‘shock’, ‘surprise’, ‘excite’, etc., participate in
the alternation shown in Sentence (7) and (8) not by coincidence, but
because they share certain semantic qualities. Although the transfor-
mational rule required to handle this alternation is very specific (in that
it applies to a very specific pattern of ternary expression structure), the
rule can nevertheless be generalized over all verbs in the same class by
5 Beth Levin [9] offers an excellent treatment on English verb classes and

verb argument alternations.
6 This rule is bidirectional in the sense that each side of the rule implies

the other side. The rule is actually used in only one direction, so that we
canonicalize the representation.
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associating with the rule conditions that must be met for the rule to
fire, i.e., verb ∈ emotional-reaction-verbs; see Figure 2.

[n1 v1 n2] [n3 v1 n2]

[v1 with n3] ↔
[n3 related-to n1] [n3 related-to n1]

where n ∈ Nouns and v ∈ emotional-reaction-verbs

Fig. 2. Sample Transformational Rule

Note that transformational rules can also encode semantic knowl-
edge and even elements of common sense. For example, a rule can be
written that equates a selling action with a buying action (with verb ar-
guments in different positions). Or as another example, rules can even
encode implicatures, e.g., A murdered B implies that B is dead.

Transformational rules can apply at the syntactic, semantic, or
even pragmatic levels, and offer a convenient, powerful, and expressive
framework for handling linguistic variations.

In order for a question answering system to be successful and have
adequate linguistic coverage, it must have a large number of these rules.
A lexicon which classified verbs by argument alternation patterns would
be a good start, but this is another resource lacking in the world to-
day. Rules generally may be quite complex, and it would be difficult
to gather such knowledge from average Web users with little linguis-
tic background. Requesting that users describe segments with multiple
annotations (each representing a different phrasing of the description),
might serve as a preliminary solution to the linguistic variation prob-
lem. Another possible solution will involve learning transformational
rules from a corpus. The difficulty in creating transformational rules is
a serious problem and unless and until this problem is solved, an NL-
based QA system would have to be restricted to a limited domain where
a small number of experts could provide enough transformational rule
coverage, or would require a large commitment of resources to attain
sufficient coverage.

6 Collaboration on the web

A critical component of a successful natural language question answer-
ing system is the knowledge base itself. Although the annotation mech-
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anism simplifies the task of building a knowledge base, the accumula-
tion of knowledge is nevertheless a time consuming and labor intensive
task. However, due to the simplicity of natural language annotations
(i.e., describing knowledge in everyday English), ordinary users with no
technical skills may contribute to a knowledge base. Thus, by providing
a general framework in which people on the World Wide Web can enter
additional knowledge, we can engage millions of potential users all over
the world to collaboratively construct a question answering system.
We can distribute the effort of building a knowledge base across many
ordinary users by allowing them to teach the system new knowledge.

The idea of using the Internet as a tool for collaboration across
geographically distributed regions is not a new idea. The Open Source
movement first demonstrated the effectiveness and sustainability of pro-
gramming computer systems in a distributed manner. Made possible
in part by the World Wide Web, the Open Source movement promotes
software development by nurturing a community of individual contribu-
tors working on freely distributed source code. Under this development
model, software reliability and quality is ensured through independent
peer review by a large number of programmers. Successful Open Source
projects include Linux, a popular Unix-like operating system; Apache,
the most popular Web server in the World; SendMail, an utility on
virtually every Unix machine; and dmoz, the Open Directory Project,
whose goal is to produce the most comprehensive directory of the Web
by relying on volunteer editors.7

Another example of Web-based collaboration is the Open Mind Ini-
tiative [17, 18], which is a recent effort to organize ordinary users on the
World Wide Web (netizens) to assist in developing intelligent software.
Based on the observation that many tasks such as speech recognition
and character recognition require vast quantities of training data, the
initiative attempts to provide a collaborate framework for collecting
data from the World Wide Web. The three primary contributors within
such a framework are domain experts, who provide fundamental algo-
rithms, tool/infrastructure developers, who develop the framework for
capturing data, and non-expert netizens, who supply the raw training
data.

Open Mind Commonsense8 is an attempt at constructing a large
common sense database by collecting assertions from users all over the
Web.9

7 http://www.dmoz.org
8 http://openmind.media.mit.edu
9 A non-collaborative approach to building a common sense knowledge base

is taken by Lenat whose Cyc project [8] is an attempt to build a common
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Other projects have demonstrated the viability of Web-enabled col-
laborative problem-solving by harnessing the computational power of
idle processors connected to the Web.10 The SETI (Search for Extrater-
restrial Intelligence) Institute was founded after Nasa canceled its High
Resolution Microwave Survey project. The institute organizes thou-
sands of individuals who donate their idle processor cycles to search
small segments of radio telescope logs for signs of extraterrestrial intel-
ligence.11 Other similar projects that organize the usage of idle proces-
sor time on personal computers include the Internet Mersenne Prime
Search,12 and the RC5 Challenge.13

Recent technical, social, and economic developments have made the
abovementioned models of collaboration possible. Furthermore, numer-
ous successful projects have already demonstrated the effectiveness of
these collaborative models. Thus, it is time to capitalize on these emerg-
ing trends to create the first collaborative question answering system
on the World Wide Web.

Even with the components such as those described above, there still
remains a major hurdle in jumpstarting the construction of a collabo-
rative question answering system. We are faced with a classic chicken-
and-egg problem: in order to attract users to contribute knowledge, the
system must serve a real information need (i.e., actually provide users
with answers). However, in order to serve user information needs, the
system needs knowledge, which must be contributed by users.

In the initial stages of building a question answering system, the
knowledge base will be too sparse to be useful. Furthermore, the system
may be very brittle, and might not retrieve the correct information
segment, even if it did exist within the knowledge base (e.g., due to a
missing transformational rule).

It may be possible to address this dilemma with an incremental
approach. The system can first be restricted to a very limited domain
(e.g., “animals” or “geography”). Users’ expectations will be carefully
managed so that they realize the system is highly experimental and has
a very limited range of knowledge. In effect, the users will be populating
a domain-specific knowledge base. Over time, the system will be able
to answer more and more questions in that domain, and hence begin
to offer interesting answers to real users. After this, a critical mass will

sense knowledge base through a small team of dedicated and highly trained
specialists.

10 http://www.distributed.org
11 http://setiathome.ssl.berkeley.edu
12 http://www.mersenne.org
13 http://www.distributed.org/rc5/
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form so that users are not only teaching the system new knowledge, but
also receiving high quality answers to their questions. At that point, a
decision can be made to increase the domain coverage of the system.

In order to initialize this process, we can bootstrap off the curiosity
and altruism of individual users. As an example, the Openmind Com-
mon Sense project has accumulated over 280 thousand items of infor-
mation by over six thousand users based on a data collection model
that does not supply the user with any useful service. The dream of
building “smart” systems has always been a fascination in our culture
(e.g., HAL from 2001: A Space Odyssey); we believe that this will serve
to attract first-time users.

7 Evolving the system

While the collaborative information gathering task proceeds, we are
then faced with the problem of maintaining the system and ensuring
that it will provide users with useful information. Two immediate issues
arise: quality control and linguistic variation.

How can we insure the quality of the contributed material? In gen-
eral, any system that solicits information from the World Wide Web
faces a problem of quality control and moderation. Although most Web
users are well-meaning, a small fraction of Web users may have mali-
cious intentions. Therefore, some filtering mechanisms must be imple-
mented to exclude inappropriate content (e.g., pornography or commer-
cial advertisement) from being inserted into the knowledge base. More
troublesome is the possibility of well-meant but incorrect information
which is probably more common and definitely harder to detect.

How can we handle linguistic variation? There are often different
ways of asking the same question; the annotation of a particular seg-
ment might not match the user query, and hence the correct answer
may not be returned as a result. Transformational rules may be a so-
lution to the problem, but writing and compiling these rules remain a
difficult problem.

We propose a variety of solutions for the maintenance of a collab-
orative question answering system, depending on the level of human
intervention and supervision.

At one end of the spectrum, an unsupervised approach to quality
control can be implemented through a distributed system of moder-
ation with different trust levels. The scheme essentially calls for self-
management of the knowledge repository by the users themselves (i.e.,
the users with high trust levels). Different trust levels will allow users
various levels of access to the knowledge base, e.g., the ability to modify
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or delete information segments and their associated annotations or to
modify other users’ trust levels. To initiate the process, only a small
group of core editors is required.

In such an unsupervised system, the problem of linguistic variation
could be addressed by prompting users to give multiple annotations,
each describing the information content of a particular segment in a dif-
ferent way. With a sufficiently large user base, wide coverage might still
be achieved in the absence of broad-coverage transformational rules.

At the other end of the spectrum, a large organization may commit
significant amounts of resources to maintaining a supervised collabo-
rative knowledge base. For example, an organization may be willing to
commit resources to preserve its organizational memory in the form
of an “intelligent FAQ” supported by natural language annotations.
Computers can be effectively utilized to augment the memory of an
organization [2], and have been successfully deployed in real-world en-
vironments with relative success [1].

If an organization were willing to commit significant resources to a
collaborative knowledge repository, then transformational rules can be
written by experts with linguistic background. Such experts could con-
stantly review the annotations entered by ordinary users and formulate
transformational rules to capture generalizations.

Supervised use of natural language annotation falls short of the
grandiose goal of accessing the entire World Wide Web, but is the prac-
tical and useful way to apply NL annotation until the transformational
rule problem can be solved for unlimited domains.

8 Initial prototype

Webnotator is a prototype test-bed to evaluate the practicality of NL-
based annotation and retrieval through Web-based collaboration. It
provides efficient facilities for retrieving answers already stored within
the knowledge base and a scalable framework for ordinary users to
contribute knowledge.

The system analyzes natural language annotations to produce
ternary expressions by postprocessing the results of Minipar [10, 11],
a fast and robust functional dependency parser that is freely available
for non-commercial purposes. The quality of the representational struc-
tures depends ultimately on the quality of whatever parser Webnotator
is made to access. In the current implementation, ternary expressions
are not embedded, elements of ternary expressions are not indexed, and
coreference is not detected. Words are stemmed to their root form and
morphological information is discarded. The system also implements a
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version of transformational rules described above as a simple forward-
chaining rule-based system.

Using a relational database, Webnotator implements a knowledge
base that stores ternary expressions derived from annotations and their
associated information segments. Ternary expressions fit neatly into a
relational model of data, and thus manipulation of the knowledge (in-
cluding answering queries and inserting new knowledge) can be formu-
lated as SQL queries. This vastly simplifies development efforts while
maintaining robustness and performance.

Webnotator provides an interface through which users may teach
the system new knowledge by supplying new information segments and
adding new annotations. Essentially, the user enters, in a CGI form,
an information segment and annotations that describe the knowledge.
Since the segment of information can contain any valid HTML, images,
tables, and even multimedia content may be included. Alternatively,
the user may simply provide a URL to annotate, and Webnotator will
automatically create a link to the URL in its knowledge base.

Currently, Webnotator is a prototype that has been released to a
small community of developers and testers within the MIT Artificial
Intelligence Laboratory. We plan on releasing the system to the general
public in the near future. By collecting knowledge from the general
public and by varying the representations and transformations applied
by Webnotator, it should be possible to discover which features are
most important for a natural-language-based annotation system and
whether the state of the art is indeed sufficiently advanced to make
such a system practical and effective.

9 Related work

A variety of research has been conducted on better information ac-
cess methods on the World Wide Web (e.g., the “Semantic Web” [4]).
However, most of these approaches have concentrated on methods of
annotating existing web pages with metadata such as XML/RDF (Re-
source Description Framework) [16], extensions to HTML [14, 5, 16],
specialized descriptions [19], or even conceptual graphs [15].

The common thread among previous work is the embedding of meta-
data directly into Web documents, which are then gathered via crawl-
ing or spidering. This approach only works if the target community
of the system is well-defined; adoption of various metadata techniques
are presently limited, and thus it would be pointless to crawl the entire
web to search for metadata. A model in which distributed metadata are
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gathered by a spider will not work with a constantly changing commu-
nity that is ill-defined. In principle, there is no reason why our natural
language annotations cannot be embedded into Web documents also;
the issue is strictly a practical concern.

Another common theme in previous work is the organization of
knowledge in accordance with some pre-established ontology. This
presents several challenges for building a general system for gather-
ing knowledge. Ontologies are often either too specific to be of general
use (e.g., RiboWeb’s ontology for ribosome data [3]), or too weak to
provide much structure (e.g., Yahoo). Since the ontology is static and
must be agreed upon prior to any knowledge base development, it may
be too constricting and too inconvenient for the expression of new or
unanticipated concepts. Although systems do allow for arbitrary ex-
tension of the ontology [5, 16], such extensions defeat the purpose of a
structure-imposing ontology. Our proposed alternative to a ontological
hierarchy is to take advantage of the expressiveness of natural language,
and use linguistic devices to relate concepts. The combination of lexical
resources (e.g., synonyms and meronyms in WordNet) and transforma-
tional rules provide a natural, extensible way to relate and structure
different concepts.

A compelling argument for natural language annotations is their
expressiveness and compactness. Martin and Eklund [15] argue against
an XML-based system of metadata because XML was primarily in-
tended to be machine readable, not human readable. In their paper,
they started with an English phrase, and then proceeded to demon-
strate the encoding of that sentence in various formalisms. A constraint
graph encoding was simpler than a KIF (Knowledge Interchange For-
mat) encoding, which was in turn shorter than a RDF format. Of
course, this begs the question: why not just annotate the document
with the original English phrase? Current NLP technology can handle
a large variety of English sentences and phrases, which may serve as the
annotations directly. Such is system is not only simpler, more intuitive,
but also more compact.

10 Conclusion

Recent social, technical, and economic developments have made pos-
sible a new paradigm of software development and problem solving
through loosely-organized collaboration of individuals on the World
Wide Web. Many successful precedents have already proven the viabil-
ity of this approach. By leveraging this trend with existing annotation
and natural language technology, we can provide a flexible framework
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for a question answering system that grows and “evolves” as each user
contributes to the knowledge base, with only minimal outside supervi-
sion. Testing will reveal whether such a system can help users realize
some of the untapped potential of the World Wide Web and other
sources of digital information as a vast repository of human knowledge.
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Abstract. Annotea is a Web-based shared annotation system
based on a general-purpose open RDF infrastructure, where
annotations are modeled as a class of metadata. Annotations
are viewed as statements made by an author about a Web doc-
ument. Annotations are external to the documents and can be
stored in one or more annotation servers. One of the goals of
this project has been to re-use as much existing W3C technol-
ogy as possible. We have reached it mostly by combining RDF
with XPointer, XLink, and HTTP. We have also implemented
an instance of our system using the Amaya editor/browser and
a generic RDF database, accessible through an Apache HTTP
server. In this implementation, the merging of annotations with
documents takes place within the client. The paper presents
the overall design of Annotea and describes some of the issues
we have faced and how we have solved them.

1 Introduction

One of the basic milestones in the road to a Semantic Web [22] is the as-
sociation of metadata to content. Metadata allows the Web to describe
properties about some given content, even if the medium of this content
does not directly provide the necessary means to do so. For example,
a metadata schema for digital photos [15] allows the Web to describe,
among other properties, the camera model used to take a photo, shut-
ter speed, date, and location. An interesting side effect, is that a same
piece of metadata can be used not only for describing content, but also
to organize and classify it, thus setting up other properties we had not
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thought about at first. For example, we can use it to search for photos
of a given location taken at a given time.

A first step towards building a Semantic Web is to have the in-
frastructure needed to handle and associate metadata with content. In
order to reach this goal, we have been developing Annotea, a shared
Web annotation system. In its simplest form, a Web annotation [25] can
be seen as a remark about a document identified by a URI, made by
the author of the document or by a third party, with or without author
knowledge. In a shared Web annotation system, annotations are stored
in specialized servers. Annotations are shared in that everyone having
access to an annotation server should be able to consult the annotations
associated with a given document and add their own annotations.

From a general viewpoint, annotations can be considered as meta-
data: they associate remarks to existing documents. We chose to use
the annotation scenario to drive our initial metadata infrastructure de-
velopment as it is a relatively simple metadata application and it would
allow us to concentrate on the general details of the infrastructure with-
out getting lost with the more specific details of the application. The
most important goal of this project has been to use as much exist-
ing W3C specifications as possible. This paper describes how we have
reached this goal by combining RDF with XPointer, XLink, and HTTP

The paper concentrates on describing the Annotea RDF infrastruc-
ture and its implementation in Amaya. Section 2 gives the overall de-
sign of Annotea. Section 3 describes the client implementation. Section
4 briefly discusses differences with related work by others. Section 5
concludes the paper and presents our perspectives for future work on
Annotea.

2 Design

In this section we describe the architecture of the Annotea system and
the RDF annotation schema. We start with a discussion of the require-
ments that motivate some of the aspects of our design.

2.1 Requirements

Since the early design of Annotea, we decided to build an infrastructure
that was based on generic RDF, with annotations being one possible
instantiation of the infrastructure. This choice has allowed us to con-
centrate more on the infrastructure than on the application itself. We
now list the principal requirements that have shaped Annotea (given
in no particular order):
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– Open technologies. Many of the existing annotation systems are
based in proprietary schemes or protocols. This makes it hard to
extend them. Annotea is built on top of open standards to simplify
the interoperability of Annotea with other annotation systems and
to maximize the extensibility of the data this system can carry.

– Annotated documents are well-formed, structured documents. Many
Web annotation systems allow users to annotate any kind of re-
source that has a URI. To simplify our design, we decided to limit
annotated resources to those that have a structure, that is, any
HTML or XML-based document, including other annotations.

– Annotations are first class Web resources. As any other Web re-
source, each annotation should be associated with a URI.

– Annotations are typed. At the same time that an annotation can be
seen as metadata related to an annotated document, annotations
themselves can have distinct properties. The type of an annotation
is metadata about the annotation itself. It allows users to classify
the annotations as they are creating them (for example, saying this
annotation is a comment or an erratum about a given document).

– Annotation types can be defined by users. Different users have dif-
ferent views and needs. Annotea should make it possible for any
user group to define their own annotation types.

– Annotation properties must be described with an RDF schema [20,
5].

– Annotations are stored in generic RDF databases.
Rather than making a specialized annotation server, we decided
to view the servers as generic RDF databases. This is important as
it will allow users, in the general Semantic Web picture, to reuse
the information stored in such databases without having to change
them.

– No assumptions on User Interface. Annotea describes how meta-
data can be associated with documents and how to query the RDF
databases. It does not specify how a user agent must present the
metadata to the user. We do predict, though, that some user inter-
face consistency is needed. However, with our approach it is easy
to provide additional views of the metadata.

– Local (private) and remote (shared) annotations. Annotations can
be stored either locally in the user’s host computer or in an an-
notation server. We assume that local annotations are private and
remote ones shared. An annotation server is responsible for con-
trolling access to the annotations that it stores.

– Multiple annotation servers. Having a centralized
server may present both scalability [16] and privacy problems. User
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groups must be able to easily set up an annotation server and define
who can consult it. Thus, in an Annotea instantiation, there may
be a number of annotation servers. We do not attempt to solve the
general scalability problem at this time.

2.2 Annotea and its operation

Fig. 1. The basic architecture of Annotea.

In Annotea, annotations are described with a dedicated RDF schema
and are stored in annotation servers (Fig. 1). The annotation server
stores the annotations in an RDF database. Users can query a server
to either retrieve an existing annotation, post a new annotation, modify
an annotation, or delete an annotation. All communication between a
client and an annotation server uses the standard HTTP methods [21].

The annotations that we handle are collections of various statements
about a document. They may be comments, typographical corrections,
hypothesis or ratings, but there is always an author that makes a state-
ment about the document or some part of it at a certain time. This
is illustrated in Figure 2, where an author makes a statement about
a document named XDoc. An annotation is represented as a set of
metadata and an annotation body.

The metadata of an annotation is modeled according to an RDF
schema and gives information such as the date of creation of the anno-
tation, name of the author, the annotation type (e.g., comment, query,
correction...) the URI of the annotated document, and an XPointer
that specifies what part of the document was annotated. The metadata
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also includes a URI to the body of the annotation, which we assume
to be an XHTML document. The annotation metadata does not say
how the annotations must be presented to the user. This choice is left
open to the developer of the client. Section 2.3 describes the annotation
schema further in detail.

Annotations are stored in generic RDF databases, which are ac-
cessible through an HTTP server. The following scenario explains the
interaction between these components when a user creates a new anno-
tation document. For simplicity, we will suppose that annotations are
displayed by highlighting the annotated text in the document.

– The user browses a document.
– The user selects some text on the document and tells its browser

that he wants to annotate this text.
– The browser pops up a new window, where the user can type the

text of his annotation and choose the type of the annotation.
– The user then publishes the annotation to a given annotation server.

To do this, the browser generates an RDF description of the an-
notation that includes the metadata and the body and sends it to
the server, using the HTTP POST method. The server assigns a
URI to the annotation and to the body and replies with an RDF
statement that includes these URIs.

– If the user further modifies the annotation, he will publish it directly
to the URI that was assigned.

Note that the first time that a user publishes an annotation, this
annotation does not have any URI. It is the server that assigns the
URI. When the user requests the URI from the server later, the server
will reply with the annotation metadata.

We now describe the scenario where the user browses an annotated
document. We suppose this user has previously configured his browser
with the list of annotation servers that he wants to query.

– The user browses a document
– The browser queries each of the annotation servers, requesting via

an HTTP GET method the annotation metadata that is associated
with the document’s URI.

– Each server replies with an RDF list of the annotation metadata.
If the server is not storing any related annotations, it replies with
an HTTP 404 Not Found message.

– For each list of annotations that it receives, the browser parses the
metadata of each annotation, resolves the XPointer of the annota-
tion and, if successful, highlights the annotated text.
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– If the user clicks on the highlighted text, the browser will use an
HTTP GET method to fetch the body of the annotation from the
URI specified in the metadata.

– Finally, the browser will open up a window showing the metadata
and the body.

In the above scenario, we divided the downloading of annotations
into two stages. First, the browser downloads the metadata of an an-
notation. Next, and only if the user requests it explicitly, the browser
downloads the body of the annotation. The motivation for this choice
is to reduce the amount of data that is being sent back to the browser.
In a heavily annotated document, sending the complete annotations
will consume resources and the user may not actually be interested in
seeing the body of all the annotations.

Note that once that an annotation is published to a server, it be-
comes a shared annotation. That is, any user with the correct access
rights may retrieve the annotations from the server. For the moment,
we expect that the HTTP server will enforce the access control to the
annotations, using the standard HTTP authentication mechanisms.

It is also possible to store annotations locally in the host computer
of the user, provided that the client simulates the reply to the first
query of the server. Our Amaya prototype, that we describe later in
Section 3, implements such a feature.

The next section presents the Annotation RDF schema. Appendix
A contains a more thorough presentation of the Annotea protocols.

2.3 RDF schema for annotations

The most important feature of an annotation is that it supports the
evolving needs of the collaborating groups. For instance, an annota-
tion system for classifying new technologies will need to expand their
annotation types to classify specific characteristics of the technologies
they are reviewing. Another working group may start with a set of an-
notation types and then modify this set according to the evolution of
their work. Annotea users may wish to define new types of annotations
as they use the system more. The group may also add relationships
to other objects that are specific to the group’s work. RDF provides
support for these needs, e.g., by allowing the expression of new rela-
tionships, by allowing new annotation types, and by supporting the
transformations from one annotation type to another.

RDF provides a simple yet very flexible framework for describing
properties of any Web resources. In its most simple level, RDF provides
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Fig. 2. A basic annotation model with an author making a statement about
a document.

(resource, property, value) triples (Fig. 3). A single triple is a statement
that indicates that a resource has a given property with a given value.
The resource can be any Web resource identified by a URI. The value
may be a literal string or may be the URI of another Web resource.
Literal strings may contain XML markup. By design, RDF permits
separate communities to develop independent metadata vocabularies
and then freely mix statements using those vocabularies in a single
database of triples. In RDF, the property names themselves are Web
resources, and applications can use the URIs of those properties to
make other statements about the properties themselves, such as their
meaning and their relationship to other properties.

Fig. 3. RDF triple model.

The type of an annotation is defined by the user or the group by
declaring additional annotation classes. These classes are a part of the
RDF model and may be described on the Web in an RDF Schema [5].
The general annotation super class is called Annotation (more precisely,
its name is http://www.w3.org/2000/10/annotation-ns#Annotation
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– a URI about which an application can expect to ask the Web for more
information) and we have defined several sample subclasses based on it
(Fig. 4). These subclasses are defined in a separate RDF Schema whose
namespace is http://www.w3.org/2000/10/annotationTypes#. Like-
wise, other user groups can easily create new subclasses. We can also
easily add new properties to the annotation classes, for instance, we
could add a property that defines an annotation set. This property can
then be queried with general RDF mechanisms and also presented as
text. However, to do more advanced presentations with the basic RDF
mechanisms we would need to develop presentation schemas for RDF.

Annotation A super class describing the common features of annotations.
Advice A subclass of Annotation representing advice to the reader.
Change A subclass of Annotation describing annotations that document

or propose a change to the source document.
Comment A subclass of Annotation describing annotations that are com-

ments.
Example A subclass of Annotation representing examples.
Explanation A subclass of Annotation representing explanations of con-

tent.
Question A subclass of Annotation representing questions about the con-

tent.
SeeAlso A subclass of Annotation representing a reference to another re-

source.

Fig. 4. Basic annotation classes.

Annotations are user made statements that consist of these main
parts: the body of the annotation, which contains the textual or graph-
ical content of the annotation, the link to the annotated document with
a location within the document, an identification of the person mak-
ing the annotation and additional metadata related to the annotation.
By using RDF we can take advantage of other work on Web metadata
vocabularies wherever possible. Specifically, we use the Dublin Core
[9] element set to describe some of the properties of annotations. The
annotation properties are illustrated in the RDF model presented in
Figure 5 and the corresponding schema definitions for properties are
defined in Figure 6.

The RDF schema that defines the annotation properties consists of
the property name and the natural language explanation. The type is
one of the basic classes in Figure 4 or some other type of annotation
defined elsewhere. The annotates property stores the link to the anno-
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Fig. 5. The RDF model of an annotation.

tated document, body is a link to the content of the annotation, and
dc:creator to the author making the annotation.

The context defines where exactly inside the document the anno-
tation is attached. We use XPointer [7] for defining positions within
XML documents. This works well for static (unchanging) documents,
but with documents that go through revision, such as working group
drafts, we may end up with orphan annotations or annotations pointing
to wrong places. To prevent unnecessary loss of pointers we can search
for the nearest ID to a parent of the object use it as the starting point
for the XPointer path. Fortunately, many documents usually have IDs
at least at their main levels. Pointing to finer details after the ID can
be done by other XPointer means, such as using text matching.

The additional annotation metadata includes date for the creation
and last modified time, and related for adding relationships to other
objects. Other metadata can be added to the annotation when the
working group needs that. For instance, the working group will prob-
ably add their own properties directly and not specialize the related
property.

Sample annotations utilizing this schema definition are presented in
Appendix A while discussing the protocols.

3 Annotations in Amaya

One of the goals of Annotea is to help us gain experience on building
an RDF infrastructure. Since the beginning of the project, we have
been implementing both a client and a server prototype. For the client,
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rdf:type An indication of the creator’s intention when making an annota-
tion; the value should be of rdf:type Annotation or any of its subclasses.

annotates The relation between an annotation resource and the resource
to which the annotation applies.

body The content of the annotation.
context Context within the resource named in annotates to which the an-

notation most directly applies. Eventually this will be an XPointer. It
may include a location range too. First locations will points to XML IDs.

dc:creator The creator of the annotation.
created The date and time on which the annotation was created.
dc:date The date and time on which the annotation was last modified.
related A relation between an annotation and a (collection of) resource(s)

that augment the resource that is the body of the annotation. This may
point to related issues, discussion threads, etc.

Fig. 6. The basic annotation properties.

we have been using Amaya, W3C’s testbed editor browser. For the
server, we have been using Apache, a MYSQL database running on
top of it and some Perl scripts. The rest of this section describes the
implementation choices we have made in Amaya 4.0.

Amaya [1] is a full-featured web browser and editor developed by
W3C for experimenting and validating web specifications at an early
stage of their development. Amaya supports CSS, MathML, XHTML,
HTML, and also provides a basic implementation of XLink and XPointer.
Libwww [17] is linked to Amaya and provides HTTP/1.1 support and
an RDF parser. Amaya can also show different views of a document.
In particular, we have a Formatted view, which shows the interpreted
document, and a Links view, which gives a list of all the links in the
document.

Our prototype implementation is able to interpret the complete
Annotation RDF schema and supports all of the Annotea protocols
as described in Appendix A. It is also possible to specify additional
annotation types (subclasses) as an RDF schema that can be can be
downloaded at runtime. The namespaces for these additional types are
specified to Amaya in a local configuration file that is read at startup.
Amaya will use the namespace name to try to retrieve an RDF schema
from the Web or the schema content can be cached in a local file and
specified with the same startup configuration. The prototype is not yet
able to recognize the need to download schemas dynamically from the
information given in annotations metadata.
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We will now describe the most important features of our imple-
mentation: creating an annotation, browsing annotations, and filtering
annotations.

3.1 Creating an annotation

The user has three choices for creating an annotation: annotate a whole
document, annotate the position where the caret is, annotate the cur-
rent selection. After making this choice, a popup annotation window
appears. The annotation window shows the metadata of the annotation,
as defined in Section 2.3, inside a box and the body of the annotation.
Figure 7 shows a screen capture of Amaya when creating an annotation
on a selection.

Fig. 7. Annotating a paragraph with Amaya.

Three of the metadata items are active. If the user clicks on the
Source document field, Amaya will scroll to the annotated text and
highlight it if it is a selection. Clicking on the Annotation type field
allows the user to change the type of annotation. Finally, each time
that the user saves the annotation Amaya updates the value of the
Last modified field. Note that we do not show the value of the XPointer
(context), but rather use it to select the source document highlighting.
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The body of the annotation can be edited as any other XHTML
document. Users can cut and paste fragments from other documents,
add links to other documents, and so on.

Amaya support both local (private) and remote (shared) annota-
tions. When a user creates an annotation, it is considered a local one
and will be stored in the user’s Amaya directory. When the user decides
to post it to an annotation server, the local annotation will be deleted
and subsequent saves will be sent to the server. Both local and remote
annotations are represented with the same schema format. The only dif-
ference is that for local ones, we emulate the annotation server’s query
response by using an index file that associates URIs with annotation
metadata.

3.2 Browsing annotations

By means of a setup menu, the user can specify the URIs of the annota-
tion servers he wants to query, as well as the local annotation repository.
The user can also say if he wants annotations to download automati-
cally or only on-demand. In order to avoid hampering performance, we
separated the downloading process in two steps. Once a document is
downloaded, the annotations metadata is downloaded asynchronously,
just like images, and merged into the document. The body of an an-
notation is only downloaded when the user opens an annotation. The
motivation for this choice is that metadata may be relatively smaller
than the body of an annotation. Moreover, if the user does not open
all the annotations, we save time by not downloading the body.

For showing annotations, we defined an active XML element, that
we will call A-element, that has an XLink pointing to the body of the
annotation and a special icon (currently, a pencil). This is similar to
the X element that was used in the Annotated XML specification [3],
with the difference that in Amaya, it is an active element. When the
user clicks once on the A-element, Amaya highlights the target of the
annotation. Clicking on it twice will open the annotation window and
show both the metadata and the body of the annotation. The A-element
is visible in both the Formatted Document and Links views and it is
ignored when saving or printing an annotated document. Clicking on
the A-element on any view has the same effect.

In the Formatted view, we position the A-element to the location to
which the XPointer of the annotation resolves. We made an exception
for MathML documents, as it would be disturbing to add it anywhere
in the expression. Instead, we place it as the the beginning of the Math
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expression. Clicking on the A-element will highlight the target of the
annotation, even if this target is not close to the A-Element.

Fig. 8. The Links View showing an orphan annotation and a normal one.

If an annotated document is edited, some of its annotations may
become orphan. That is, the XPointer will not resolve anymore to a
point in the document. In this case, Amaya will warn the user and make
the orphan annotation visible from the Links view. Figure 8 shows this
view in a document that has an orphan and a valid annotation. The
user may then open the orphan annotation and reposition its XPointer
or delete it.

3.3 Filtering annotations

For a heavily annotated document, seeing the A-element icon can make
reading the document bothersome. To avoid this problem, we defined
a local filter that allows the user to hide the annotations according
to one of three criterion: by author name, by annotation type, and
by annotation server. It is also possible to hide all the annotations
in the Formatted view. Using this menu, the user can hide all but the
annotations that interest him. This filter menu does not have any effect
on the Links view.

As an alternative to hiding annotations, the user can also temporar-
ily disable some annotation servers using the configuration menu. We
also have an experimental customized query feature, where the user can
describe his own query, using a language we have named “Algae”. The
Algae language is derived from Algernon [4]. This customized query in-
terface makes it possible to start filtering the annotations on the server
side, for example, by only requesting those done in the past week by a
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given author and belonging to a given annotation type. Appendix B1

gives a brief description of Algae.

4 Related work

This section discusses some previous annotation ap-
proaches. We concentrate on document-centered approaches where users
are browsing documents and examining annotations related to them.
There are also discussion-centered approaches to annotations, such as
HyperNews [12], where users browse discussion messages and threads
and follow a link to a document that these messages annotate.

Web annotations first appeared in version 1.2 of Mosaic [18, 19],
almost ten years ago, and many other web annotation aware tools or
servers have seen the light since then, such as CritLink [24] and Third-
Voice [23]. [10, 11] list other existing annotation technologies. Due to
the lack of existing annotation standards, most of these proposals are
proprietary or closed.

The two main categories to Web annotation systems are proxy-based
approaches and browser-based approaches. In a proxy-based approach,
annotations are stored and merged with a Web document by a proxy
server. The browser user agent only sees the result of the merge, typi-
cally with some semantic content removed. In a browser-based approach
the browser is enhanced (either by an external application or by a plu-
gin) to merge the document and the annotation data just prior to pre-
senting the content to the user. The annotation data is stored in the
proxy or a separate annotation server. It is also possible to store an-
notations locally or provide site specific annotations, but these are less
interesting to us because of their limitations.

The CritLink [24] annotation tool uses the proxy approach where
a Web page and its annotations are served through a different URI
address than the original page. This approach works with any existing
browser. However, the user must use different addresses for the doc-
ument depending on which annotation proxy server is used. This is a
limitation when a user wants to use more than one annotation server.
The proxy approach also inherently restricts the types of content that
can be annotated and the presentation styles that can be used for the
annotations. Typically, presentation of the annotations is limited to the
presentation styles available through HTML. Finally, as the browser
does not have any knowledge about annotations, it makes it harder to

1 Available only in the HTML version of this paper.
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filter the annotations locally, without having to send a new request to
the proxy server.

ThirdVoice [23] uses plugins to enhance web browsers so that they
understand annotations. The users can annotate the page or some text
on the page with discussions on selected topics. The discussions can be
closed to a group of participants or open to anybody. Unfortunately,
users cannot host their own servers.

IMarkup [13] is an Internet Explorer annotation tool that has an
interesting user interface. Users have a wide variety of palettes for anno-
tation markers and can even circle parts of the text with something akin
to a real marker. Annotations can be placed anywhere on the browser’s
document window, without taking into account the markup of the doc-
ument itself. All the annotations are local. A menu entry allows to mail
annotations to other users and to import them. The format used for
describing annotations is proprietary and too related to the browser’s
API, making their use with other tools practically impossible.

An interesting possibility for presenting the annotations on a Web
page is to use internal DOM [14] events without actually changing
the mark-up of the page. Yawas [6] is an annotation tool that uses
this approach. It codes the annotations into an extended URI format
and uses local files similar to bookmark files to store and retrieve the
annotations. A modified browser can transform the URI format into
DOM events. The local annotation files can be sent to other users only
by mail or copied by other means. There is no provision for having
active links or filtering options. This kind of approach is limited by the
API provided by the browser.

XLink [8], an XML linking technology currently under development
in W3C, has some built in features in the mark-up for creating anno-
tations. For instance, it is possible to store XLink arcs in an external
document that can be loaded with another document. The content de-
fined by the end locator of an XLink arc may be embedded to the
location in a document defined by a starting locator of the arc. Using
XLink provides the means to easily present the annotations in prede-
fined ways in any browser implementing XLink. However, the metadata
properties that can be expressed with XLink are limited.

5 Conclusions and future plans

Being able to associate metadata with Web resources is an important
milestone for building a Semantic Web. Annotea provides a simple in-
frastructure for associating annotations with Web documents, without
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having to modify these documents. The principal contributions of An-
notea are as follows:

– Annotations are metadata. Annotea is not designed as a specific
annotation system, but rather as a general application of a generic
RDF infrastructure. This allows a variety of applications to reuse
the information that is stored in an Annotea system with other
RDF tools that are not necessarily specific to annotations.

– Open infrastructure. Annotea is built on top of W3C specifications.
We use an RDF schema for describing the properties of annotations,
XPointer for associating annotations to documents, and HTTP for
the client/server interactions.

– Use of RDF databases. By storing annotations inside RDF databas-
es, it is possible to make customized queries and limit the amount
of data returned by the servers.

– Extensible RDF schema. Our annotation RDF schema defines gen-
eral properties about annotations. Users can extend it by defining
their own annotation types or by adding other annotation proper-
ties.

– Client-less. Annotea defines an infrastructure for associating meta-
data with documents and for storing and retrieving this metadata.
In principle, it is possible to build an Annotea client on top of any
browser that handles DOM, XPointer, XLink and RDF.

In November 2000, we made the first public release of the Annotea
prototypes. The client is included as a built-in feature of the Amaya
4.0 release. We have also set up a public annotation server [2]. All the
source code is freely available too. The public server is not intended to
be a permanent service, but rather one that will be purged periodically.
Its goal is to let people experiment with annotations and motivate them
to set up their own servers.

Our wish list for future work on Annotea includes:

– Shared bookmarks. Shared bookmarks are quite similar to anno-
tations. The annotation schema provides a set of fixed annotation
types. The user is expected to classify his annotation by selecting
one of these types. With shared bookmarks, the user should be able
to define his own types on-the-fly, for example, by highlighting key-
words on the annotated document. These types can then be used
to automatically classify the bookmarks.

– User interface. Currently, a user can see annotations either as pen-
cil icons next to the fragment that was annotated or in a special
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Links view. We would like to experiment with other ways for dis-
playing annotations. For example, by embedding the body of the
annotations in the annotated document.

– Author metadata. The Annotation schema defines the author as a
string. We plan to expand the schema so that the author is defined
by another RDF schema and use this property in the Annotation
schema. It will then be easy to search for the metadata of the author
and, for example, substitute the pencil icon with the photo of the
author.

– Robust XPointers. Currently, we are able to detect orphan anno-
tations. However, our XPointer expressions are very simple. If a
user edits an annotated document, in some cases, the XPointer of
an annotation may point to the wrong place and thus become a
misleading annotation. We have made some provisions for this case
(use of the ID attribute), but this is not enough. A better XPointer
expression would be one that is more tolerant of document changes,
but robust enough to prevent misleading annotations.

– Discussion threads. When a user wants to reply to an annotation,
s/he can either modify the body of the annotation or make a new
annotation. This can become cumbersome as we would need to
browse each annotation in order to follow the discussion. We can
improve this situation by adding new RDF properties for distin-
guishing such discussions and by showing all the replies to a given
annotation in a specialized view.
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A Annotea protocols

We distinguish five types of client-server interactions in Annotea:

– Posting a new annotation: the client publishes a new annotation
– Querying the annotation server: the client sends a query to the

server and gets backs the annotation
– Downloading the body of an annotation
– Updating an annotation: the client modifies an annotation and

publishes these modifications
– Deleting an annotation: the client deletes an annotation from the

server

For all of these cases, we use the standard HTTP protocol methods.
We use HTTP POST for uploading a new annotation to a server, HTTP
PUT to update an annotation, HTTP GET to query and download an
annotation, and HTTP DELETE to delete an annotation. We will now
describe each of these operations in detail.

We use the standard HTTP POST protocol for storing a new anno-
tation to the annotation server and HTTP GET protocol for fetching
the annotations and returning the result to the client. POST provides
the necessary interface for the server to construct a URI for the new
annotation and return that URI to the client. When the client has
the URI for a previously created annotation, it can (with the proper
permissions) use HTTP PUT to modify the annotation. In all the ex-
amples, we use the Apache shorthand CGI convention, using the string
annotations to refer to the actual CGI script. This makes it easier to
refer to an existing annotation.

A.1 Posting a new annotation

To create a new annotation, the client posts some RDF describing the
annotation to a selected annotation server. Both the annotation and
its body are specified as anonymous RDF resources in the POST mes-
sage. The server is responsible for allocating the URIs for them. If the
body already exists, as will happen if the annotation body is another
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document that the user wants to use as an annotation, the URI of that
existing document can be specified in the RDF when the annotation is
posted.

In Figure 9 we illustrate a request to create a simple annotation
using an existing document as the body of the annotation. Note that
the resource http://www.example.com/mycomment.html is presumed
to exist independently of this annotation.

POST /annotations HTTP/1.1

Host: www.example.org

Content-Type: application/xml

Content-Length: 636

<r:RDF xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:a="http://www.w3.org/2000/10/annotation-ns#"

xmlns:d="http://purl.org/dc/elements/1.1/">

<r:Description>

<r:type resource="http://www.w3.org/2000/10/

annotation-ns#Annotation"/>

<r:type resource="http://www.w3.org/2000/10/

annotationType#Comment"/>

<a:annotates r:resource="http://example.com/some/page.html"/>

<a:context>#xpointer(id("Main")/p[2])</a:context>

<d:creator>Ralph Swick</d:creator>

<a:created>1999-10-14T12:10Z</a:created>

<d:date>1999-10-14T12:10Z</d:date>

<a:body r:resource="http://www.example.com/mycomment.html"/>

</r:Description>

</r:RDF>

Fig. 9. Creating an annotation with POST, using an existing document as
the body.

A design issue we encountered is that we wanted to be able to use
XML for describing the body of an annotation, and at the same time we
wanted to be able to publish the complete annotation in a single HTTP
transaction. In order to use XML in the body, the correct architectural
approach is to store the body as a separate resource with its own content
type. We therefore designed a simple packaging protocol that permits
both the client and server to specify embedded HTTP message bodies.
To do this, we declare an RDF namespace for describing certain HTTP
headers and we specify those HTTP headers as normal RDF properties,
as shown in Figure 10.
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In Figure 10, we show the metadata that specifies an annotation
of the page whose URI is http://example.com/some/page.html. The
creator of this annotation is identified as Ralph Swick. The text of the
annotation body is This is an important concept.

As specified by the RDF model, the data we pass to the server in
the POST is a set of statements describing properties of the new (and
unnamed) annotation resource that we would like the server to create.
In response to the POST (Fig. 11), a new annotation is created and
the server assigns URIs. Now the server has created the URIs for the
anonymous resources and they can be used by the browser. The value
of the a:body property is a URI of the content of the annotation; in
this case the server implementation chose to store the text in a separate
location and give it its own URI.

With this little bit of ad hoc packaging we can have a POST method
that explicitly creates two resources at the same message and a GET
method that returns these same resources in one message. This pack-
aging protocol has the additional advantage that it makes POST and
GET of multiple resources an atomic operation; there is no window in
which another client might modify the annotation body after the anno-
tation properties have been returned but before the body is returned.

A.2 Querying an annotation server

An annotation server is queried for the URIs of annotations it may
hold using the GET method. Since the client will most commonly wish
to query for annotations that have an annotates property naming a
specific page that the user may currently be viewing, a particular query
parameter is designated to pass the URI of that page, as shown in
Figure 12.

The query parameter w3c annotates may be best thought of as an
abbreviation for the longer property name http://www.w3.org/2000/
10/annotation-ns#annotates; that is,
this GET is a short-hand for a query that says “return the names of
resources that are the subjects of RDF statements in which the predi-
cate is http://www.w3.org/2000/10/
annotation-ns#annotates and the object is http://example.com/
some/page.html”. The server responds to this GET request by return-
ing RDF/XML describing the properties of each annotation that has
an annotates relationship to the given URI. In the first release of our
server implementation, we return all the properties of each annotation
including the URI of the body resource. Figure 13 illustrates a typi-
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cal response; in this case there is only one annotation for the specified
page.

A.3 Downloading an annotation

An annotation is downloaded from an annotation server using the GET
method and specifying the annotation URI, as returned in a query
response (Fig. 14).

The response to this GET will be as in Figure 13.

A.4 Updating an annotation

An existing annotation is updated using the PUT method, specifying
the URI of the annotation we wish to update. For example, to update
the annotation created in the messages illustrated in Figures 10 and 11
above, we might specify the message in Figure 15.

A.5 Deleting an annotation

An annotation is deleted using the DELETE method, specifying the
URI of the annotation we wish to remove. For example, to delete the
annotation created in the messages illustrated in Figures 10 and 11
above, we might specify the message in Figure 16.
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POST /annotations HTTP/1.1

Host: www.example.org

Content-Type: application/xml

Content-Length: 1082

<r:RDF xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:a="http://www.w3.org/2000/10/annotation-ns#"

xmlns:d="http://purl.org/dc/elements/1.1/"

xmlns:h="http://www.w3.org/1999/xx/http#">

<r:Description>

<r:type resource="http://www.w3.org/2000/10/

annotation-ns#Annotation"/>

<r:type resource="http://www.w3.org/2000/10/

annotationType#Comment"/>

<a:annotates r:resource="http://example.com/some/page.html"/>

<a:context>#xpointer(id("Main")/p[2])</a:context>

<d:creator>Ralph Swick</d:creator>

<a:created>1999-10-14T12:10Z</a:created>

<d:date>1999-10-14T12:10Z</d:date>

<a:body>

<r:Description>

<h:ContentType>text/html</http:ContentType>

<h:ContentLength>250</http:ContentLength>

<h:Body r:parseType="Literal">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Ralph’s Annotation</title>

</head>

<body>

<p>This is an <em>important</em> concept; see

<a href="http://example.com/other/page.

html">other page</a>.</p>

</body>

</html>

</h:Body>

</r:Description>

</a:body>

</r:Description>

</r:RDF>

Fig. 10. Creating an annotation with POST.
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HTTP/1.1 201 Created

Location: http://www.example.org/Annotation/3ACF6D754

Content-Type: application/xml

Content-Length: 404

<r:RDF xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:a="http://www.w3.org/2000/10/annotation-ns#"

xmlns:d="http://purl.org/dc/elements/1.1/">

<r:Description about="http://www.example.org/Annotation/

3ACF6D754">

<a:annotates r:resource="http://example.com/some/page.html"/>

<a:body resource="http://www.example.org/Annotation/

3ACF6D754text"/>

</r:Description>

</r:RDF>

Fig. 11. Sample response when creating a new annotation.

GET /annotations?w3c annotates=http://example.com/some/page.

html HTTP/1.1

Host: www.example.org

Accept: application/xml

Fig. 12. A query for annotations related to
http://example.com/some/page.html.
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HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: 689

<r:RDF xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:a="http://www.w3.org/2000/10/annotation-ns#"

xmlns:d="http://purl.org/dc/elements/1.1/">

<r:Description about="http://www.example.org/Annotation/

3ACF6D754">

<r:type resource="http://www.w3.org/2000/10/

annotation-ns#Annotation"/>

<r:type resource="http://www.w3.org/2000/10/

annotationType#Comment"/>

<a:annotates r:resource="http://example.com/some/page.html"/>

<a:context>#xpointer(id("Main")/p[2])</a:context>

<d:creator>Ralph Swick</d:creator>

<a:created>1999-10-14T12:10Z</a:created>

<d:date>1999-10-14T12:10Z</d:date>

<a:body r:resource="http://www.example.com/mycomment.html"/>

</r:Description>

</r:RDF>

Fig. 13. A typical response to the query in Figure 12.

GET /annotations/3ACF6D754 HTTP/1.1

Host: www.example.org

Accept: application/xml

Fig. 14. Downloading a specific annotation.
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PUT /annotations/3ACF6D754 HTTP/1.1

Host: www.example.org

Content-Type: application/xml

Content-Length: 657

<r:RDF xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:a="http://www.w3.org/2000/10/annotation-ns#"

xmlns:d="http://purl.org/dc/elements/1.1/">

<r:Description about="http://www.example.org/Annotation/

3ACF6D754">

<r:type resource="http://www.w3.org/2000/10/

annotation-ns#Annotation"/>

<r:type resource="http://www.w3.org/2000/10/

annotationType#Example"/>

<a:annotates r:resource="http://example.com/some/page.html"/>

<a:context>#xpointer(id("Main")/p[2])</a:context>

<d:creator>Ralph Swick</d:creator>

<a:created>1999-10-14T12:10Z</a:created>

<d:date>1999-10-14T13:14Z</d:date>

<a:body>

...

</a:body>

</r:Description>

</r:RDF>

Fig. 15. Updating an annotation using PUT.

DELETE /annotations/3ACF6D754 HTTP/1.1

Host: www.example.org

HTTP/1.1 200 OK

Fig. 16. Deleting an annotation using DELETE.
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Abstract. Searching for relevant information on the world-
wide web is often a difficult and frustrating task. The infor-
mation one is looking for, is hidden among thousands of docu-
ments returned by a search engine. One way of making search
for relevant information easier, is to create better interfaces to
the search engines; interfaces that facilitate quick and efficient
browsing through the multitude of returned documents. In this
paper, we present FIRE - a multimodal interface for informa-
tion retrieval deployed in the Intelligent Room at the MIT AI
Lab. FIRE differs from most other interfaces for information
retrieval in that it combines a couple of interaction modalities
to improve the search process.

1 Introduction

This paper presents the current state of our work on a new multi-
modal interface-situated in an Intelligent Environment-for retrieving
information from the web. The work brings together progress made in
three research areas: multi-modal interfaces, interfaces for information
retrieval, and intelligent environments.

The motivation for building FIRE (the Friendly Information Re-
trieval Engine) was three fold: first, we wanted to build a very nat-
ural and effective information retrieval interface. Second, we wanted
to demonstrate new capabilities that become possible when building
� This work was funded by Acer Inc., Delta Electronics Inc., HP Corp., NTT

Inc., Nokia Research Center, and Philips Research under the MIT Project
Oxygen partnership, and by DARPA through the Office of Naval Research
under contract number N66001-99-2-891702.
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applications situated in an Intelligent Environment (IE). Finally, we
wanted to test the limitations of the technology we have developed for
our IE.

FIRE takes advantage of the numerous display devices that many
IEs offer and of the ubiquity of speech input and output in such spaces.
Our current implementation of FIRE was build within the Intelligent
Room Project [2] at the MIT AI Lab.

1.1 Problems with search engines

There are numerous problems with how the current search engines and
Web directories organize the information [6]. Many of them stem from
the current trend to assign each document to exactly one category.
That makes it difficult to look for information that relates to several
categories at once. Also, if one wants to browse a number of documents
relating to a particular topic, one often needs to traverse a large num-
ber of sub trees in order to find all of the relevant information. This has
to do with which nodes were chosen as top nodes in the category tree,
and which were placed further down. For example, if we were to look
for documents on the economy of European countries, it would really
matter if the tree was organized like this:

Economy → Regional → Europe → Poland

or like this:

Regional → Europe → Poland → Economy

In the first case, we can just browse all documents under Europe and
all of them will be somewhat relevant to our search. In the second case,
if we look at all documents under Europe, we will get information about
countries’ geography, culture, customs, etc., as well as the economy.

We have designed FIRE in a way that allows browsing of relevant
information returned by a search engine, even if the category tree had
not been constructed in our favor, or if the topic of interest spans several
dinstinct categories.

2 Related work

A number of approaches have been suggested to make searching large
centralized corpora for relevant information easier. Three of the main
trends are summarized here.
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Preprocessing and annotating information. The START natural lan-
guage query system employs this strategy to return the most relevant
information in response to a query [7]. The strength of this approach
is that it provides just the right information in response to a query. Its
main weakness is that it requires a lot of human effort to set up and
maintain.

Processing retrieved documents based on content. Documents re-
turned by keyword-based search engines are analyzed based on their
content and grouped according to some measure of similarity. The Scat-
ter/Gather [4] algorithm is a prominent example of this strategy. The
strength of this approach is that it allows browsing through collections
of uncategorized documents. Unfortunatelly, the entire body of the doc-
uments needs to be analyzed thus drastically impacting the speed of
the retrieval process.

Advanced visual interfaces, such as Cat-a-Cone [5], organize catego-
rized collections of documents visually in a way that makes browsing
and selecting the most relevant information easier. Many of such in-
terfaces make it easy to explore several categories simultaneously and
to provide instant access to a large portion of the information base
at once, without cluttering the screen. Their shortcoming is that they
provide no direct access to the information not presented on the screen.
Also, they rely on documents being already categorized.

3 FIRE

The key goal of the work on FIRE is to create an interface that will
provide a natural and efficient way of searching and browsing docu-
ments on the World Wide Web. FIRE is meant to use one or more
of the existing search engines. It provides tools for easily identifying
and selecting the most relevant search results from the hundreds or
thousands returned by the search engine.

FIRE takes the visual interface approach (described in the previous
section) one step further: although it still relies on search engines that
categorize their search results, it provides a way to easily reach both
visible and invisible search results. It also attempts to make brows-
ing through the returned information easier by incorporating several
modalities. Instead of using just a purely visual interface, FIRE com-
bines several modalities: a multi-display graphical component, a point-
ing device, as well as speech input and output. What is more, FIRE is
deployed in an IE, an immersive multimodal environment, where users
interact multimodally not only with FIRE but also with the environ-
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Fig. 1. FIRE in action: the left display shows the FIRE interface; the browser
with the most recently selected document is displayed on the right.

ment itself, including devices (such as lights and projectors) and other
software (e.g. the browser or the display manager).

FIRE makes search for information particularly effective when speech
and gesture are used together to complement one another. It has been
observed, however, that users rarely use all of the available modalities
simultaneously but tend to pick one mode or switch between modes
[8]. For that reason, FIRE is also perfectly usable if used just with a
pointing device, or if driven solely by speech with visual feedback. Our
initial tests indicate, however, that users familiar with the Intelligent
Room find it easy and convenien to use both modalities at once, at
least part of the time.

3.1 The interface

FIRE’s interface has a number of graphical components interacting with
one another. After the user makes a query, and information is retrieved
from the Web, a tree of all potentially relevant categories is displayed.
This tree is constructed based on what categories the documents re-
turned by a search engine belonged to. Simple heuristics are applied
to rank the categories in order of most likely relevance. The categories
deemed as more relevant are displayed towards the top of the tree and
the font size is proportional to the predicted relevance.



Information Retrieval Interface 719

Another view shows the tree of categories selected by the user. Here
the categories are ranked based on user’s feedback (“it surely has to do
with economy” vs. “it may have something to do with politics”). Our
intention was to provide a space where user could see at a single glance
all of the categories that he considers worth browsing though.

Another large component shows the currently analyzed documents.
Whenever the user focuses on a set of categories, relevant documents
are presented there. Each document is shown as a title and a short
summary.

There is also the local bookshelf where the user can place relevant
documents for short-term storage. Depending on the availability of re-
sources and on user’s preferences, the bookshelf can be placed on a
separate display or together with the main part of the interface. The
main display always has an icon where the user can place newly found
documents to be moved onto the bookshelf.

The trashcan is the last component of the main part of the interface.
As the name implies, the trashcan is a container for all discarded ele-
ments such as documents and categories. It was added relatively late
in the development process. We have realized that sometimes users
wanted to undo some of their operation after a relatively long time.
Simple undo mechanism was not adequate in such situations. It be-
came clear that we needed to give the users a way of verifying what
items have been discarded.

Finally, there is a browser, used to show full text of the documents.
The browser is almost always placed on its own display unless none is
available.

We use two input modalities: speech and gesture. Either of them
can be used alone to accomplish the task. However, each of them is
better suited for some parts of the process than for the others.

Role of speech Speech in FIRE is used for four main tasks:
Taking shortcuts and probing invisible parts of the category tree and

document base. For example, if a user asks about “agents”, the sys-
tem will display main categories such as Travel, Business, or Comput-
ers. The user, can quickly probe the system by asking “Do you have
anything related to Artificial Intelligence?” If Artificial Intelligence is
among the categories associated with any of the returned documents,
the system will show the subset of documents about agents that are in
that category and all of its subcategories.

Accessing multiple parts of the tree at once. As described in the
example in Section 1.1, to view documents about the economy of Eu-
ropean countries, the user may need to visit many separate branches
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in the category tree. Using FIRE, the user may very conveniently use
speech to say “My query has to do only with Economy,” and all of the
branches about economy will be presented and all other branches will
be discarded.

Speech is also very useful for command and control part of the in-
teraction. It can be used to undo actions or to manipulate the interface
itself.

Finally, speech can often be used to make the initial query. In cases
where the query includes uncommon terms, the user can easily fall back
on a keyboard.

Role of gesture FIRE uses standard gestures such as selection or
drag-and-drop. Its strength comes from incorporating novel input de-
vices such as a laser pointer (whose position is tracked in real time
with a camera), or an on-wall display with a specially instrumented
electronic marker. Gestures are used to interact with the interface in a
traditional GUI style, and to set context for spoken commands.

In particular, by using hand gestures the user can browse through
the available categories and documents, and select documents for view-
ing and moving onto the bookshelf.

We are currently in the process of adding two new gestures: strike-
through to delete (i.e. move to trash), and circling to select one or
multiple objects.

4 Modalities: recognition and integration

FIRE uses relatively unsophisticated—yet effective—recognition meth-
ods for speech and gesture recognition. For gesture recognition we use
primarily a pen-like pointing device, which can be used to interact
accurately even with small objects on the screen. The two gestures
we currently recognize (pointing and drag-and-drop) are unambiguious
and easy to recognize. The two other that we are in the process of
adding (strike-through and circling) are not as trivial but still easy to
recognize correctly.

Our speech recognition system [3] is entirely grammar-driven. This
ensures very good recognition rate and makes the processing of the
spoken utterances straight-forward. Our choice of tools has made the
implementation process easy at the expense of the “naturalness” of our
interface. Hand and finger gestures would be preferred to pen strokes
for pointing, and unrestricted speech recognition would eliminate the
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problem of user occasionally trying to use a phrase that is not in the
grammars.

The benefits of our approach are very low recognition error rate
and ease of development. Grammar-driven speech recognition engines
make it easy to recognize and parse complex utterances. Thanks to
this, our users can make statements like “My query has to do with
Economy, Politics and Government but not with Culture or Travel”
or “It has nothing to do with Artificial Intelligence but it might be
relevant to Programming.” There are very few such hybrid constructs
that we observed people using during their interactions with FIRE, and
they are easy to describe within a grammar.

Because of the good recognition accuracy of our speech and gesture
recognition systems, the integration of modalities is done at the post-
recognition stage in FIRE, and the modalities do not cross-influence
one another. In practice, therefore, multi modal integration in FIRE
is restricted to the resolution of diactic references in utterances like
“this category is not relevant,” “move this to the bookshelf,” or “put
this there.” In the case of the last utterance, we need to resolve two
references.

The context for resolving these references may be set by either
speech (e.g. “What do you have under HCI” sets context to the HCI
category) or gesture.

When we do the integration, we use temporal co-occurance and
semantic compatibility to verify that the current context is relevant to
the spoken command. If we cannot resolve what the user is referring
to, we request clarification. For example, in case of the “put this there”
command, if we cannot detect a valid destination for an object, we will
ask the user “Where do you want me to put it?”

It is not to say, however, that the integration task has been made
trivial. There are still cases that require some semantic analysis of re-
cent events in order to establish how to resolve references best. For
example, let us assume that the user drags a document to a trashcan.
If the then says “put this there as well” while pointing at another docu-
ment, “this” will be resolved to mean the new document and “there” to
mean the trashcan. If instead she were to say “I actually meant to put
it there” while pointing at the bookshelf, this time “this would refer to
the document that was previously placed in the trashcan and “there”
would mean the bookshelf.
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5 Sample interaction

User says “I need information about agents.” FIRE contacts a search
engine and retrieves the results. It then displays a tree of all poten-
tial categories and a list of a few documents that appear most rele-
vant. The top categories are Computers, Business and Travel. The user
drags Computers onto the area with chosen categories. This sub-tree
is expanded as deep as possible given available screen space (giving
preference to those branches that are predicted to be more relevant).
Again, most relevant documents are shown, this time only from the
branch relevant to Computers. The user now asks “Do you have any-
thing under HCI?” HCI is not visible on the screen but, indeed, under
Computers → ArtificialIntelligence there is HCI. FIRE expands the
right part of the tree and shows documents under HCI. The user selects
some of them with a pointing device and they appear in the browser.
Those that are particularily interesting, the user moves onto the book-
shelf icon.

The user can now ask “Is there anything under Programming Lan-
guages?” FIRE replies that there is nothing but then the user notices
that there is a branch called Programming under Computers. Selecting
this branch with a pointer, reveals a number of documents about cur-
rent agent programming tools. The user moves some of them onto the
bookshelf. Saying “I am done” clears the main interface and brings up
the bookshelf with all the documents placed there during the search.
Now the user can evaluate the quality of the collected material and,
potentially, save it for future reference.

6 Evaluation

Our initial informal experiments have shown that the itnerface is com-
fortable to use after a short initial training. Users were given a short
explanation of the individual elements of the interface, and the extent
of things they could use speech for. Our test users were members of
the Intelligent Room project, already familiar with other multi-modal
applications running in the Room. The users were particularily happy
with the bookshelf, and with the ability to quickly browse the search
results by category. Users have also commented favourably on having
separate windows for browsing the returned results and for viewing the
full documents.

On the negative side, users commented on our Spartan interface,
and they found having two separate category trees unnatural, though
were not able to suggest a different method of keeping track of selected
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categories while having access to all the rest of them. They also found
the speech interface somewhat brittle. This particular concer we will
address in the next setcion.

7 Futher work

We are currently working on a number of improvements to the system.
Most significantly, we are in the process of incorporating new speech
recognition software based on the Galaxy [9]. This engine is speaker
independant and while it also works in a grammar-driven mode, it is
much more flexible in that the grammars specify only the keywords and
the general structure of the allowed utterances. In Galaxy, the grammar
descriptions can contain wild-cards and thus allow for wider linguistic
flexibility.

We are also in the process of integrating Haystack [1] with FIRE.
Haystack is a personal information management tool. After integrating
with FIRE, it will be able to answer questions like “When I was looking
for information on agents yesterday, did I see anything about 007?”

Finally, we are developing an algorithm that will allow us to rebuild
the category tree returned to us by the search engine in a way that best
suits a particular search.

8 Contributions

FIRE demonstrates how the new potentials for human-computer inter-
action—that become available with the emergence of Intelligent En-
vironments—can be used to build an effective and natural interface for
information retrieval. IEs usually have more resources than a single
desktop computer. If those resources become available, FIRE makes ef-
fective use of them. It uses up to three displays to separate navigation
through information space from previewing retrieved documents. FIRE
also benefits from the ubiquity of speech input and output in a smart
space: while in such a space, the user does not have to make any special
effort to start interacting with FIRE by means of speech, because all
other compontents of the space use speech already. In comparison to
purely visual interfaces, through the use of speech FIRE allows easy ac-
cess to multiple parts of the category tree at once and makes it possible
to take shortcuts to invisible parts of the information space.
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Abstract. This paper explores how the design of informa-
tion spaces might be grounded in knowledge of human visual
processing, notably what kinds of visual selection are most
efficient. Information maps spatially array graphical symbols
representing items of information and their attributes. Ideally,
their users should be able to do query by attention: answer
questions about the information quickly by controlling visual
attention (i.e., through spatial selection and visual search), in-
stead of manipulating an interface. We propose a preliminary
method for designing visually searchable maps based on exper-
imental results about what kinds of visual search are easy. The
hope is that the resulting maps will better employ the percep-
tual capabilities of their viewers when they search. An example
information map of recent movies illustrates the approach.

1 Information maps and visual search

Reading a map like that in Figure 11 to navigate the Boston subway
requires at least two episodes of visual search: find the originating sta-
tion, then find the destination. Could we improve the design of the map
by using our knowledge of what kinds of visual search are easiest?

A small visual stimulus that appears to be at a different depth
relative to its surroundings “pops out” – it can be found almost instan-
taneously [27, p. 39]. We could add such a stimulus to a map posted
inside a station to indicate that station (Figure 1, right). Now a map

1 Color versions of the figures are available at
http://www.infoarch.ai.mit.edu/publications/.



726 Mark A. Foltz and Randall Davis

reader (with an appropriate legend) can locate the station by efficient
visual search, instead of scanning the text labels.2

Designers of information spaces would like to make the same kinds
of improvements to more complicated displays. This paper explores the
relationship between information space design and visual search, in the
hope that spaces can be made that facilitate rapid visual queries. The
preliminary proposal is that they should be designed to make maximal
use of spatial selection through attentional control, and visual proper-
ties that pop out, i.e. require almost no effort to find even in a display
with many items.

In this paper, an information map is a display that spatially arrays
graphical symbols representing information items and their attributes
in two dimensions. By information item we mean an object with at-
tributes meaningful to users, e.g. a movie, document, or historical event.
The task is to obtain the subset of items whose attributes match the
query criteria. For example, in the Beethoven symphony map in Figure
2, we can find which pieces were composed before 1808 by attending to
the upper third of the map. Or, we can find the symphonies in minor
keys by attending to the textured symbols. Once attention has been
directed to the subset of the items, further inferences can be drawn
about them (e.g., no symphony in C was composed after 1808). (This
map is similar in layout to GlassEye, a visualization of Phillip Glass’
works [14], but was designed independently.)

Fig. 1. Left, part of the Boston subway map. Right, an improvement using
a depth cue to highlight the nearest station.

2 Using Wolfe’s classification of search task efficiency [27]. A classic example
of efficient search is locating a single X among O distractors. Search time
increases with display size with a very shallow slope (< 5 ms/item).
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1.1 Why information maps?

Information designs that use the position of graphical primitives have
long been used to concisely convey data [3]. An advantage of these
designs is that the user can query by attention – answer questions by
controlling visual attention (and receiving immediate feedback), rather
than manipulating a database query interface and waiting for a server
to return results. The user can more rapidly explore the information
space because he needs to alter only his visual attention (and not the
interface) to adjust the parameters of the query.

Information maps, which give meaning to a item’s location, also en-
gage their viewers’ capabilities for spatial imagery and spatial memory.
If the user remembers an item’s location, he can return to the map and
find it there, instead of repeating a textual query or scanning a list.
With the right design, information maps are a less cumbersome tool
for querying and drawing inferences from the ever-growing amount of
information we are faced with daily.

Information maps have limits: there are a limited number of inde-
pendent visual properties that support rapid visual search. And, using
too many properties has its drawbacks. A map that uses its symbols’ po-
sition, color, shape, depth, and orientation to encode information risks
overloading its viewer’s ability to attend only to the properties relevant
to his information need, by the presence of multiple distracting proper-
ties. Another risk is that the mapping of properties to meanings must
be retained in the viewer’s limited working memory.

To get around the problem of a limited number of visual attributes,
maps can be interactive (displayed on a computer). The user can obtain
multiple views of the same information by selecting relevant attributes
to display. If there are too many items to display without crowding, he
can prefilter the information in the map [1] or browse it with a hierarchy.
These methods help to bridge the gap between query by attention and
query by manipulation.

2 Designing for query by attention

Consider the common scenario in which a user wants to explore a small
database by posing a group of related queries (a task that would or-
dinarily require several transactions with a textual interface). Assume
that the database is small enough that a map can display all the items
without overcrowding.

The information is treated as a bag of items; adding or removing an
item would not substantially change the overall meaning of the map.
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Fig. 2. An information map of Beethoven’s nine symphonies. Color and tex-
ture are used to indicate the key of the composition.

Each item has attributes, which are variables that can be binary, enu-
merated (chosen from an unordered set), integer, real, or textual.

A query is a set of restrictions on the values of an item’s attributes
that must all be satisfied for an item to match. An example of a query
in Figure 2 is Key = F AND Year < 1810. The user explores the in-
formation space bottom-up – adding and removing restrictions to a
working query and seeing which items match.

These maps are a simple kind of information space that set the
context for this initial sketch of the constraints and affordances that
relate visual search to information space design.

2.1 A design method

We propose a four-step method for designing a visually searchable in-
formation map:

1. List the queries viewers are likely to make and the information
attributes that are available to answer those queries.
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2. Propose a mapping of information attributes to visual properties,
using the design flowchart (discussed below) to suggest which map-
pings can be searched efficiently.

3. Produce an initial map and test it to see if users can quickly and
easily make the kinds of queries listed in Step 1.

4. If some of the queries are slow, adjust the mapping of information
attributes to visual properties and repeat Step 3.

Of course the real difficulty in this method lies in Steps 2 and 4 –
finding the initial mapping and adjusting it so that the map is usable in
practice. The design flowchart discussed below constrains the possible
mappings in terms of attribute types, but does not specify a unique
mapping. Instead, this approach is iterative: using what we know about
the cognitive affordances for search, try an initial design with these
guidelines, then iteratively improve it with feedback from users. A good
design solution will match the user’s patterns of semantic attention
across the information with patterns of visual attention across the map.

Another difficulty is that the number of relevant attributes to dis-
play often exceeds the number of available visual dimensions. In this
case, the designer must consider which attributes best support the
user’s query goals. (Dimension reduction can also help, as discussed
below.) Finding the best attributes often requires user input, iterative
prototyping, and careful task analysis [12], which are beyond the scope
of this paper. Here we assume we are given a data model and consider
how to display it in a visually searchable form.

3 Visual properties

This section considers in more detail the visual properties available to
represent a symbol in the map. We begin with single visual proper-
ties that can define a symbol’s appearance, then consider combinations
of those properties that can support efficient conjunctive search. This
summary is based largely on Wolfe’s review of visual search experiments
and results [27], and Feature Integration Theory [25].

3.1 Single properties

Research has shown that many visual properties can support efficient
visual search. Below we consider visual properties that have been used
to convey information in print information design [3, 26], and are also
discussed in Wolfe’s review.

Position. A user can control visual attention to search within a spa-
tially delimited region, making it appropriate to map to the X- or Y-axis
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attributes that are queried by range (e.g. Find all films in the 1980s).
The user can quickly shift attention to different scales or regions, easily
adjusting the query.

An axis can also be subdivided to allow one spatial dimension to en-
code more than one attribute. (This approach has been independently
applied to graph multivariate functions [17].) A primary, enumerated
attribute can partition an axis into subaxes, and a secondary, continu-
ous attribute can be mapped onto each subaxis. For example, we could
add Beethoven’s contemporaries to Figure 2 by partitioning the X axis
by composer, then plotting symphony length on each subaxis. Although
subdivision allows more attributes to be represented at once, searches
that require the secondary attribute but not the first require the serial
examination of several disjoint regions of the map.

Color. Color is widely used to distinguish symbols in maps. The col-
ors at the extrema of opponent processing [19, p. 113] (red/green,
blue/yellow, and black/white) are considered good candidates for effi-
cient search. D’Zmura proposes that a color will pop out if it is linearly
separable in CIE color space from distractors [9], while other work has
shown that search for a color target among as many as nine distractor
colors is efficient if the colors are spread far apart in color space [22].

This suggests choosing colors that are symmetrical in a ring of high
saturation in color space, maximizing distance and separability (Figure
3). If white is reserved for the background, then at least five colors are
left for map symbols. Color is best for enumerated attributes that can
take two or more values. 3

Shape. Because there are many parameters that determine shape, com-
ing up with a fixed set of rules for finding shapes that can be searched
for efficiently is difficult. Some determining features include line termi-
nation (presence/absence), closure, holes, and possibly intersection [27,
pp. 31-4]. Most experiments described by Wolfe report efficient search
with homogeneous distractors, so a conservative approach would map
shapes like X and O to a binary attribute. Orientation also supports
efficient search, for example using bars oriented at 0 or 90 degrees.

Motion. Motion exhibits search asymmetry [21] – a moving target
among stationary distractors is easy to find, while a stationary target
among moving distractors is not. Thus, a map that uses motion to code
a binary attribute is biased against searches for the stationary value.

3 It is important to note that 8 percent of men and 1 percent of women are
colorblind [19, p.104], so visualizations that use colored symbols should
provide an alternate presentation of that information (e.g. with shape).
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Fig. 3. Left, a set of symbol colors (open circles) chosen to approximate the
extrema of color opponent processing (indicated by arrows). Right, colors
chosen to maximize separability. The triangle encloses the colors displayable
on a CRT monitor.

However, the user may choose to render a subset of the symbols as
salient in an interactive map, and search among them. This prospect is
appealing, because search for motion in conjunction with other prop-
erties can be efficient (as discussed below).

Depth. Pictoral depth cues such as shading, occlusion, or shadows can
support efficient search [27, p. 39]. This cue is best used for binary
features, as search in more than two depth planes is less likely to be
efficient.

Other cues. Wolfe lists other basic features that can be searched for
efficiently: vernier offset, curvature, gloss, size, etc. While these are also
worth investigating as useful for information maps, the cues discussed
above – position, color, shape, motion, and depth – have been investi-
gated thoroughly in the visual search literature. This initial proposal
explores the possibilities they afford for information map design.

3.2 Combinations of properties

The original version of Feature Integration Theory [25] held that visual
properties are preattentively and simultaneously processed into feature
maps across the visual field. Searching for a target defined by a single
property is fast because only one feature map is consulted to locate it.
To search a conjunction of features, however, information from multi-
ple feature maps must be bound together at item locations, and each
location serially checked to see if it possesses the target conjunction.

Later work has shown that for certain combinations of distinct vi-
sual properties, subjects can perform conjunctive searches efficiently.
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In particular, Egeth et al. as well as others have shown that subjects
can efficiently search a colored subset of items for a differently shaped
target [10]. Efficiency improves when the targets are far apart in color
space.

Other work has shown that visual search is efficient for a mov-
ing stimulus among stationary distractors that also differs in depth,
orientation, or shape [7, 8, 15, 16] (but as mentioned, motion search is
asymmetric).

Stereoscopic depth can also be used with color or orientation for
efficient conjunctive search [18]. Computer-generated stereo displays
usually require special viewing equipment, however.

These results are important because they suggest a user can query
by at least four attributes, first by spatial selection (using two real-
valued attributes), and then by searching for a conjunction (e.g., color
and shape).
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Fig. 4. A design flowchart for visually searchable information maps. A map
design traces a path from START, assigning visual properties to information
attributes along outgoing edges. X ′ and Y ′ represent the subaxes created
when the X and Y axes are partitioned by an enumerated attribute. The
path may terminate before reaching DONE.
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3.3 Summary

The flowchart in Figure 4 summarizes the suggested design combina-
tions that afford efficient search. A mapping is created by tracing a
path from START in the graph, assigning visual properties to infor-
mation attributes of the indicated types. The edge chosen to leave a
visual property node assigns its information attribute (e.g., placing
SymphonyLength on the R edge leaving X means that the map will
have symphony length on its X-axis). Names or other labels may be
ordered alphabetically and treated like integers in the flowchart, or in-
cluded as text adjacent to map symbols. (For simplicity, the latter case
is not included in the flowchart.)

4 Example information maps

To illustrate the method, we first consider the problem of designing an
information map to visualize a database of about 25 movies. Suppose
the database contains the attributes shown in Table 1.

Attribute Type Example

Title textual Titanic

Year integer, 1900-2001 1999

Genre enumerated Drama

Oscar binary Y

Review real, 0.0-10.0 6.8

Table 1. Movie database attributes and example values. The review scores
are from Internet Movie Database votes.

The first step in the design procedure is to list the questions users
might ask of the data. The questions in this list depend on the motiva-
tion of the prototypical user (e.g., a video rental browser versus a film
researcher). Table 2 shows some sample questions that might be asked
by someone browsing for good, recent movies.

In these sample questions, both Year and Rating are ordered at-
tributes queried by range, so they are good candidates to map to axes.
Oscar is binary and can be mapped to two shapes, while Genre is
enumerated over five values and can be mapped to five colors.

Combining these observations, a possible design path is shown in 5,
with the corresponding information in Figure 6. We can now predict
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Question Query
Was “Aliens” any good? Title = ’Aliens’

Which recent comedies are well-reviewed? Year > 1995 AND Genre = Comedy AND Review > 7.5

When have the Oscars made an unpopular choice? Review < 7.5 AND Oscar = Y

What movies received Oscars in the eighties? 1980 <= Year < 1990 AND Oscar = Y

Has any horror film ever received an Oscar? Genre = Horror AND Oscar = Y

Table 2. Sample questions a user might use a Movie Map to answer.

whether users would be able to answer the sample questions efficiently
when using a map with these assignments. The first question requires
searching the symbol labels serially, because it uses the Title attribute,
which is not mapped to a searchable property in this design. The re-
maining questions involve subsets of attributes on the design path, and
are predicted to require quick visual search.

4.1 Mapping mutual funds

We illustrate the use of the flowchart with another example (Figure
7), in this case to design information maps of mutual funds. Suppose
the available attributes are Name, InvestmentObjective, YTDReturns,
5YearReturns, Beta, and NetAssets.

The first design (Figure 7, top) allows the user to weigh the trade-
off between volatility and performance for funds of a given size and
investment objective. It uses a partition of the X axis to indicate the
fund’s investment objective, and a partition of the Y axis to indicate
its size. Within each partition, the horizontal and vertical position of
the symbol indicate its year to date and five year returns, respectively.
The shape indicates the fund’s volatility. In this way, five aspects of the
fund can be concisely conveyed and searched.

A second design (Figure 7, bottom) uses the performance measures
as the dominant selection criteria. The user can optionally animate a
subset of funds by investment objective. The use of the flowchart thus
facilitates the exploration of the map design space, suggesting multiple
views that can accommodate different sets of query goals.

5 Related work

Pirolli et al. have performed a study that tracks the eye movements of
users as they perform textual navigation in a hyperbolic tree [20]. Their



Query by Attention: Visually Searchable Information Maps 735

analysis finds that the size of the user’s attentional spotlight is propor-
tional to the local relevance of the text, and inversely proportional to
the text’s density. These results are relevant to creating information
maps with large data sets, where views that let the user focus on a
subset of information while retaining its context will be needed to pre-
vent unusable information densities. Also, their theory focuses on how
semantic (textual) cues serially guide the attentional spotlight, while
this work focuses on perceptual, preattentive visual properties that the
viewer can process in parallel. Clearly these processes are complemen-
tary and research to integrate such models is needed.

Card and MacKinlay present a formal way of describing the map-
ping of information types to visual properties [5]. Their goal is to ana-
lyze the structure of the larger information visualization design space,
which includes trees, graphs, and hyperbolic views. Their goal is anal-
ysis, not design, but their representation would be useful if our work
were extended to describe the perceptual constraints in the design of
other types of information spaces.

Finally, the SAGE and VQE systems are part of a project to create
a presentation design expert system [13, 6]. SAGE creates a media-
independent design plan that fulfills the presentation’s communicative
goals. The design plan is given to a media allocator that can generate
textual or graphic realizations of the plan. These design suggestions
could be integrated into SAGE to assist its generation of information
graphics. VQE adds threads that connect multiple views of the same
data. Our proposal can be extended to accommodate multiple views by
ensuring consistent visual semantics (e.g., never change the meaning of
symbol colors across views).

X Y

ShapeColor
Oscar?

Review

Year
Released

Genre

Fig. 5. A design for the Movie Map, which is an example path in the flowchart
in Figure 4.
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Fig. 6. The Movie Map produced from the design path in Figure 5.

6 Conclusion

This report explores the relationships among spatial selection, visual
search, and visualization design. It proposes a method for designing
information maps that makes use of experimental results regarding
which kinds of visual search are efficient for viewers. These results were
obtained from Wolfe’s review of the experimental literature on visual
search. The goal is to enable the map’s users to do query by attention
– answer questions by controlling visual attention (and receiving im-
mediate feedback), rather than by manipulating the interface. Visual
search for information is preferred because it is better suited for people,
while database search remains better suited for computers.

While the application of experimental vision science to information
design can result in oversimplification of both fields, we believe that
useful design principles can be gleaned. Traditional textbooks on in-
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Fig. 7. Two designs of maps for mutual funds. In cases where a real attribute
is used on an edge marked E in the flowchart, the value ranges are shown in
parenthesis. The figures at right suggest the appearance of the maps.

formation design proceed by examining and critiquing design examples
[26], and do not explicitly refer to results from vision science.

It remains to be seen whether this method can scale to real-world
design problems, as the number of items in the map (100? 1,000?) and
the number of attributes displayed increases. Techniques that give the
user the ability to dynamically filter the data by manipulating sliders
and toggles have proven effective for exploring large data sets [11, 2,
24]. And, dimension reduction techniques such as principal components
analysis can simplify design (but only if the reduced dimensions are
informative to users).

Further investigation of our visual capabilities can lead to new de-
sign insights. It remains to be seen whether people can search efficiently
using arbitrary subsets of visual properties, so that more properties
(such as texture, color, and shape) can be used at once. Also, most vi-
sual search experiments present a single type of target and distractor;
understanding the role of heterogeneous distractors will help determine
which visual properties can take more than two values. Using the heuris-
tics discussed here in more design examples would further refine them,
along with usability studies that can point out their shortcomings in
practice.

It would also be worthwhile to see how well an empirically-based
model of search performance could predict the time needed to complete
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map usage tasks. However, visual search experiments are conducted in
carefully controlled conditions that may differ greatly from those in
the day-to-day use of an information visualization. Users also tend to
reformulate their information needs continuously. These factors would
need to be taken into account in such an evaluation.

A future plan is to implement this proposal with an interactive tool
that allows a user to rapidly prototype an information map given a
small database or spreadsheet. The tool would let the user adjust the
mapping of attributes to visual properties, while applying the kinds of
perceptual constraints on efficient search presented here. (The tool’s
function would be similar to VQE [6].)

Efficient visual search in information maps is not possible in all
cases. But maps that better employ our visual perception potentially
have a great advantage over textual interfaces for understanding and
managing information [4, 23]. We believe that visual information tools
can benefit from progress in vision science, by offering design guidance
related to our perceptual capabilities.
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Management Systems for Intelligent Spaces
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Abstract. The idea of ubiquitous computing and smart envi-
ronments is no longer a dream and has long become a serious
area of research and soon this technology will start entering our
every day lives. There are two major obstacles that prevent
this technology from spreading. First, different smart spaces
are equipped with very different kinds of devices (e.g. a pro-
jector vs. a computer monitor, vs. a TV set). Second, multiple
applications running in a space at the same time inevitably
contend for those devices and other scarce resources. The un-
derlying software in a smart space needs to provide tools for
self-adaptivity in that it shields the rest of the software from
the physical constraints of the space, and that it dynamically
adjusts the allocation of scarce resources as the number and
priorities of active tasks change.
We argue that a resource manager can provide the necessary
functionality. This paper presents a set of guiding principles
for building high-level resource management tools for smart
spaces. We present conclusions we arrived at after two years
of exploring the topic in the Intelligent Room Project at the
MIT AI Lab. The paper is based on a number of implemented
and tested tools.

1 Introduction

For several years, our research group in the MIT AI Lab has been
developing an “Intelligent Room” [8, 9, 5], a space that interacts with
� This work was supported by Acer Inc., Delta Electronics Inc., HP Corp.,

NTT Inc., Nokia Research Center, and Philips Research under the MIT
Project Oxygen partnership, and by DARPA through the Office of Naval
Research under contract number N66001-99-2-891702.
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its users through sensory technologies such as machine vision, speech
recognition and natural language understanding. Our room also is equipped
with a rich array of multi-media technologies. These technologies are
intended to provide a natural, human-centered interface to its users.

The Intelligent Room is designed to be a utility that must always
be available and it must provide reasonable services to its users even
though their needs are not easily predicted. It must continue to pro-
vide these services even if there are equipment failures or if there is
contention for the use of resources among the users or applications.
It is also desirable that it be able to provide improved and additional
services if higher quality equipment is added.

Finally, and most crucially to be truly human-centered it must be
able to do all these things seemlessly while running, without interven-
tion by programmers and systems wizards. In other words, the Intel-
ligent Room must be a self-adaptive system in the spirit of [17, 16]. It
must monitor the environment as well as its own state, have a variety
of techniques for accomplishing its goals, and make intelligent choices
about which technique to use in the current context.

This paper describes our experience with building such a system.
The key insights are:

1. People should interact with the Intelligent Room not in terms of
resources, but rather in terms of abstract services (e.g. “show me
this information” rather than “print this on that printer”)

2. The Intelligent Room should be capable of mapping a service re-
quest to a variety of solutions (“project the information,” “display
it on a PDA,” “print it on a printer”)

3. The Intelligent Room should choose a solution based both on how
well the solution meets the users’ needs and how well it minimizes
the use of costly or rare resources and

4. It should make this decision at runtime so that it can respond to a
changing set of requests and a changing environment.

1.1 What is a resource manager for a smart space

What we mean by a resource manager is a system capable of performing
two fundamental tasks: resource mapping and arbitration .

By resource mapping (a.k.a. match-making) we mean the process of
finding out what actual resources can be taken into consideration given
a specific request.

By arbitration we mean a process of making sure that, at a min-
imum, resources are not being used beyond their capacities. At best,
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arbitration ensures–via appropriate allocation of resources to requests–
optimal, or nearly optimal, use of scarce resources.

This paper is concerned with management of higher-level resources.
While OS level management (memory, CPU time, etc.) is of course im-
portant, and load-balancing of computationally intensive agents over
multiple machines is also, we limit our focus to higher-level resources
such as physical devices and large software components (see [28] and
[22] for an example of a system that deals with resources in a smart
spaces at the OS level). Our concerns lie with, for example, projec-
tors, multiplexors, wires, displays, modems, user attention, software
programs, screen real estate, sound input and output devices, CD play-
ers, drapes, and lamps.

1.2 Some definitions

For clarity, we define here some potentially ambiguous terms.

Metaglue Metaglue [10, 21, 26] is the multi-agent system forming the
software base for all work at the Intelligent Room Project. Metaglue
manages agent-to-agent communication via Java’s RMI system.
Agents can start and obtain references to other agents via a reliesOn
method. All agents have unique IDs; part of an ID is the “occupa-
tion” which is the top-level interface the agent implements. Agents
are also collected in societies so multiple users and spaces can have
distinct name-spaces. Metaglue makes it easy to coordinate the
startup and running of agents on any number of machines with
differing operating systems.

Agent Agents are distinct object instances capable of providing ser-
vices and making requests of the resource manager. This means
agents themselves are considered to be a type of resource (see be-
low) because they provide services.

Device A physical or logical device is something akin to a projector,
screen, or user-attention; devices are often, but not necessarily rep-
resented by agents. Devices provide services and so are resources.

Service Services are provided by agents and devices; a single agent or
device can provide more than one service and any kind of service
can be provided by a number of agents or devices. This is explained
in more detail in Section 4.1.

Resource A resource is a provider of a service. Both agents and phys-
ical devices are resources. For example, a physical LED sign is a
resource (providing the LED sign hardware service) obtained and



746 Krzysztof Gajos, Luke Weisman and Howard Shrobe

used by the LEDSignTextAgent which is in turn a resource (provid-
ing TextOuput service and LEDSign service) that can be obtained
and used by any other agent needing such a service.

2 Our work to date

This paper is based on our work on the Intelligent Room Project [8,
9, 5] at the MIT AI Lab, including otherwise unpublished research on
resource management. Below we summarize our results relevant to this
paper in order to give the reader a better idea of how we arrived at our
observations.

Over the past two years we have developed several resource man-
agement tools for the Intelligent Room. The tools differed in approach
and level of sophistication. At the two extremes we have Namer and
Rascal [15]. Namer only does context-based name resolution (i.e. some
service mapping but no arbitration). Rascal, on the other hand, is a
very complex system that uses a rule-based language (JESS, [13]) for
representing knowledge about agents’ services and needs, as well as for
service mapping, and uses a constraint satisfaction engine (JSolver, [7])
for arbitration. All of our resource managers implement a common in-
terface which allows us to interchange them without changing any of
the other code in the system. The reason for having several different
resource management schemes was motivated by more than just the
need to find the right solution: it is our assumption that different re-
source mangers will be used in people’s various mobile personal spaces
(with one or two devices and where computation is scarce) and large
and well-equipped static spaces.

As mentioned before, Rascal is our most complex resource manager,
conforming to most of the design principles laid out in this paper.
Currently Rascal does not deal with issues of privacy and access control
and we have only just began work on cooperation mechanisms.

Rascal relies on agents having external descriptions of themselves.
Such descriptions include a list of startup needs, a list of provided ser-
vices (each with a list of its own needs) and descriptions of all possible
requests for resources the agent may make in its life-cycle.

Knowing startup needs and needs for providing particular services
allows Rascal to ensure that before it assigns a particular agent to
provide a service in response to a request, all of the needs of that
new agent (and its underlings) can be satisfied. For example, if some
agent requests a TextOutput device and the possible candidates are
SpeechTextOutput and GuiTextOutput, Rascal will ensure that either
speech generation is available for SpeechTextOutput or a computer
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screen is available for GuiTextOutput, before assigning either candidate
to the requester. Additionally, knowing agent’s startup needs also allows
us to dynamically choose what particular machine an agent should be
started on.

So far our software has been installed in six spaces of four differ-
ent kinds: three small offices, one small living room, one large office
(also used for small meetings), and a twelve-seat conference room. The
instrumentation of these spaces varies widely; we have a single dilap-
idated projector and a couple of lights in one of the small offices on
one hand, and six projectors and a large number of A/V devices in the
conference room on the other. Our living room has two projectors, a
TV, several cameras, and A/V equipment.

3 On-demand agent startup - reasoning about
absent agents

An agent system in a smart space should have a way of autonomously
starting agents on-demand and consequently the resource manager
should be able to reason about agents that are not alive right now
but could be brought to life if needed.

Because on-demand agent startup is one of the basic features of
Metaglue, we have taken it for granted but many other agent systems
do not support it. Hence we will now briefly argue why on-demand agent
startup is a desirable feature of an agent system in charge of a smart
space and then discuss the consequences for resource management.

3.1 Why support on-demand agent startup in smart spaces

Most agent systems deal with very dynamic, spontaneously created and
often unstable collections of agents. Therefore, creators of such systems
have to refrain from making assumptions about what is available in
the system at any given time and usually have to resort to dynamic
discovery, direct negotiation or other such techniques when an agent
looks for a service or resource (e.g. [18, 23, 12]). This general attitude
has been assumed by creators of agent systems controlling smart spaces.
Standard Jini [2] implementation and Hive [20] are good examples of
such systems.

Smart spaces, by the virtue of being based on stable physical envi-
ronments, impose a special set of constraints on the underlying software
infrastructure. It is true that a lot of adaptivity is still needed – new
components can appear and disappear, people come and go, devices are
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brought in and removed–but at the same time we benefit from assuming
certain level of persistence.

It is a feature of a physical space that most of its components are
static in the sense that they are usually there. If one day a space con-
tains lights, A/V equipment, projectors, and telephones, it is reason-
able to expect that those devices would be present the next day as
well. They will be there whether we are using them or not. This level of
predictability can (and should) be reflected by the underlying software
infrastructure. This is not to say, of course, that the software should
not be capable of dynamically accepting new components.

On-demand agent startup is highly useful in any flexible space in a
variety of ways. For example, it allows us to make multiple instances
of an agent when we want to perform several versions of the same
task. Furthermore, it allows us to have very complex interrelationships
between agents and very large numbers of agents. Without on-demand
startup one needs to craft elaborate startup scripts or hand-start all the
agents in the system; both of these are infeasible when talking about
collections of forty agents or more, especially when considering that the
particular agents change depending on who is starting the system, the
various tasks the system is to accomplish, and the room the system is
being started in.

With on-demand startup, starting a single high level agent is suffi-
cient to obtain a service provided by that agent. This agent will then
request and, cause to be started, all other agents it needs in order to
do its job well.

Even with the convenience argument set aside, the following exam-
ple illustrates some additional benefits of being able to start agents
dynamically.

Example 1. Let us assume that the phone service is provided by the
phone agent. The agent needs a computer with a voice modem hooked
up to a phone line in order to provide its services. Imagine a system
consisting of several machines with voice modems hooked up to a single
phone line (e.g. in a shared graduate student office). If we did not allow
for on-demand agent startup, we would have to do one of the following:

1. Start the phone agent on a prespecified machine, running a risk
that if that machine goes down the service is no longer available.

2. Start an instance of the phone agent on every machine with a voice
modem and a connection – a rather misleading solution because
each of the agents would be advertising phone service but only one
of them would be able to provide it at a time because all of the
machines share a single phone line.
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Another immediate use for automatic agent startup has to do with
robustness and recovery: if an agent providing a computational ser-
vice goes down because of computer failure, it can be automatically
restarted at a new location.

We understand that this point has much potential for debate, and
so we will not dwell it as other aspects for and against it lie outside the
realm of resource management.

3.2 Impact on resource management

If we assume that on-demand agent startup is supported by the under-
lying software architecture, then it stands to reason that the resource
manager for such a system has to be able to reason about absent agents.

To the best of our knowledge, it is uncommon in agent architectures,
even those in charge of smart spaces, to have non-alive agents be taken
into account during any coordination efforts. It is our belief that taking
potentially available agents into account allows a resource management
system to make intelligent decisions about resource allocation as in
Example 1 in the previous section. (See also Example 2 in Section 4.3.)

An important consequence of embracing on-demand agent startup
is that we cannot rely on agents themselves to provide descriptions of
their needs and services as they might not be running. The resource
manager has to have access to such descriptions without having to in-
stantiate any of the agents. Rascal requires agent programmers to cre-
ate separate description files but other solutions could easily be created
(e.g. descriptions could be cached by the resource manager).

Implicit in Example 1 in the previous section is the assumption
that the system, and in particular the resource manager, has a way
of starting agents on a specific computer or virtual machine. Metaglue
provides such capability as one of its two main primitives. It is unclear
to us at the moment to what extent other systems support it.

4 Representation

In this section we concentrate on what knowledge should be contained
in the resource manager but not on how that knowledge should be
encoded. In particular we argue that when building a resource manager
for a smart space, the following key points should be observed:

– Represent resources in terms of the services they provide (e.g. text
output) as well as their type (e.g. scrolling LED sign).
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– Ensure that representations are rich enough to allow the requesters
to get the best tools for the job. In particular we caution those using
Java against using only interface names for describing resources.

– Ensure that the representation is capable of describing resources
that are not represented within the agent systems by agents or
other special proxy objects. Examples of such resources would be
hardware that is not directly controlled by the agent system but yet
is crucial for system’s performance (e.g. wires, low level computer
components such as modems, third party software modules, etc.)

4.1 Services not devices

To be truly useful, smart spaces have to be affordable, which implies
that it should be possible to build them out of mass produced, intercon-
nected components. This includes both the hardware and the software.
Hence we can imagine that in the future we will be getting packaged
software for our rooms and offices just as today we get it for our desktop
computers. Creating such programs, however, may prove very difficult.

It is already difficult to keep desktop computers similar enough to
make it possible for the same software to run on all of them. It will
certainly be even more difficult when it comes to smart spaces. People
take great pride in how they arrange their work and living environments
and so creators of software for smart spaces cannot impose how those
spaces should be arranged or equipped. While software creators for
desktop computers can require that a computer should be equipped
with a display, a CD-ROM and a sound card, they certainly cannot
require the same level of uniformity among smart spaces. Thus we have
to make it possible for applications to run in a variety of spaces with
diverse devices and configurations.

The differences among desktop computers have been minimized by
the use of software drivers for various devices installed in those comput-
ers. Hence, it does not matter what kind of a video card or a monitor
one has - the drivers are going to make all cards and monitors “speak
the same language” and provide the same services to all applications.

In intelligent spaces the situation will be even more difficult: not
only will spaces have different kinds of displays, ranging from little
TVs to large plasma displays, but some spaces may not have displays
at all. Thus we have to express the abilities of various devices in smart
environments in more abstract terms. As well as providing uniform
interfaces to devices, as is done on desktop computers, we propose
providing uniform interfaces to the services provided by those devices.
This distinction is more profound than it may at first appear. It comes
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from the fact that each service can, in principle, be provided by a
number of conceptually different devices and each device can provide
a number of distinct services. For example, on one hand, the “short-
text-output” service may be rendered by a computer display device, a
speech output device or by a one line scrolling-LED display. On the
other hand, the LED sign, as well as providing short text display, can
provide simple graphics and animation.

We are not unique in suggesting that devices represented by de-
vice drivers are insufficient for a smart space; a somewhat different
approach was suggested by Winograd [27]. Schubiger-Banz et al. [25]
argue for “addressing by concept” in all ubiquitous computing envi-
ronments (both spaces and/or collections of mobile devices). INS [1]
uses “intentional names” for all networked resources. EasyLiving [6]
also seems to represent resources in terms of services they provide.

4.2 Rich representation - rich requests

We now examine how the services should be represented by the resource
manager. The details are, of course, dependent on the particular im-
plementation.

Open Agent Architecture OAA [19], which relies on a facilitator
agent for all inter-agent communication and task brokerage, uses a
PROLOG-based ICL (Interagent Communication Language) for de-
scribing agents’ needs and capabilities. The language allows service
providers to describe the agents in terms of tasks they can perform and
not really in terms of resources they represent.

Decker [11] uses KQML for communicating needs and abilities of
agents.

A common tendency among Java-based systems (e.g. Jini [2], Hive
[20], Rascal [15, 14]), is to use the name of the interface (or interfaces)
that the resource implements, and a list of attribute-value pairs for
describing agents’ capabilities.

In this last case, an agent’s interface provides information on how
the agent’s capabilities should be invoked. It also often provides most of
the information on what the agent does. One of the advantages of using
interface names for describing agents is that interface “ontologies”, i.e.
APIs, are easily understood by programmers and some of them get
adopted by large communities. But it has to be stressed again, that the
interfaces should provide access to agent’s services. Thus an agent can
advertise a number of interfaces, one for each services it provides.

We agree with designers of Hive and Jini in that the types of in-
terfaces implemented by an agent provide a lot of valuable information
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about agent’s capabilities and expected behavior. We also agree with
them in that the interface names are not sufficient for describing any
agent fully.

Just having interfaces and nothing else be an agent’s description is
not enough. Often a number of parameters, some of them continuous,
contribute to a service’s full description. Display services need to be
described in terms of resolution, size, color depth, brightness, etc. Hav-
ing detailed descriptions of services allows for more precise requests: an
agent that needs to show a map with a lot of detail, will request a high-
resolution color display, not just a display. At the same time, a mail
alert agent could deal with a very low resolution display as long as it is
visible and so would ask for the display without additional parameters.

4.3 Abstract resources

One important feature that distinguishes multi agent systems in charge
of smart spaces from other multi agent systems is that they reside
on the frontier between the physical and computational worlds. To
function well, those systems have to not only accept but also embrace
the physical world around them (we refer to this point again in Section
8).

As a consequence of this, it becomes necessary for the system to
explicitly describe not only the services provided by its agents but also
those provided by physical hardware and non-agent software present
on available computers.

A common approach to this problem is to add agents to represent
all needed physical and computational capabilities of the host environ-
ment. Hive, for example, uses “shadows” to represent physical devices
accessible on or from particular computers. Metaglue has agents that
represent individual devices. But how do we know where to start those
shadows or agents? An unsatisfactory way is when startup has to be
done by a human or by a script leaving the system with no way of
reasoning about it or taking action on its own. In case of Metaglue, the
device-controlling agents upon startup retrieve the name of a computer
they should tie themselves to. In our view, the agents that directly inter-
act with hardware or other software should be able to start dynamically
(see Section 3) and dynamically find the computers with all necessary
equipment and software.

Example 2. Currently in our system, the main way of providing the
speech-input service is with personal wireless microphones connected
to computers running third party speech recognition software. In our
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conference room we have several computers with the right software,
several microphones, and an audio mixer that allows us to route mi-
crophone signal to any of the computers.

When any of our agents requests speech-input service, Rascal, our
resource manager, checks the description of our speech input agent for
all of the services that it will need to provide the service. Those will
include a computer with a speech recognition engine, a microphone, and
a connection between the two. Neither the speech recognition engine
nor the microphones have software proxies in our agent systems yet
the resource manager is able to reason about them. Rascal ensures
that the speech-input agent starts on a computer with the right speech
recognition engine and will award a microphone that is not being used
for other tasks (e.g. teleconferencing) to the agent, and will ensure that
there exists a connection between the two (see Section 8 for discussion
of connections).

5 Arbitration

At the heart of resource management is arbitration. By our definition of
a resource manager, when two or more agents vie for the same limited
resource, the resource manager has to evaluate which gets what.

In this section we argue that arbitration is essential in any larger
system embedded in a smart space because it allows individual agents
and applications to be written without having to take other agents’
and applications’ needs into considerations. It also provides for the
most basic (but not the simplest) apparently smart behavior of a space.
Some arbitration schemes applicable in open agent systems, such as
marked-based resource allocation, will prove less effective. Cost-benefit
based on self-reported needs and preferences has proven a good solution
especially when combined with access control (which limits requests by
untrusted and potentially malicious or non-conforming agents).

In addition, in cases where a resource needs to be taken away from
a requester to satisfy a new, more urgent, request, every effort should
be made to find a replacement for the withdrawn resource.

5.1 Why arbitrate

Arbitration allows for easier implementation of individual agents: the
agent writer can view the world more selfishly than if there was no ar-
bitration mechanism. With arbitration in place, the agent programmer
can be sure that if any other agent needs resources more, the system
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will take care of necessary re-allocations (just like in properly multi-
tasking operating systems programmers do not need to worry about
yielding to other processes).

Another (obvious) benefit of arbitration is achieving apparent “in-
telligent” behavior of a space. Just like animals are expected to use
their body parts intentionally and in a coordinated fashion, we also
expect computer-steered spaces to be “aware” of the interface devices.

5.2 How to arbitrate

The simplest way of resolving ties among requests is to award a re-
source to the most recent request. For many reasons this may prove
to be insufficient. For example it would not be desirable for a new
email notification to take over a screen during a video conference with
one’s boss. Hence there exists need for some analysis before allocating
resources. Rascal, for example, uses a simple cost-benefit analysis (de-
tails in [15, 14]) to decide who should be awarded a particular service.
This scheme relies on agents accurately and honestly reporting how ur-
gently they need a resource. This approach is potentially problematic
in that it allows for malicious or inaccuarate representation of one’s
needs.

A more natural and simple approach to arbitration in potentially
open systems in smart spaces seems to be one in which some access con-
trol mechanism is used in conjunction with some priority-based scheme.
In such a situation the access control mechanism would weed out re-
quests from untrusted and unauthorized agents and then a priority
mechanism would decide which of the trusted and authorized requesters
should get what resources. In a model where agents can act on behalf
of spaces or people, the role-based access control model [24] seems a
viable option. We discuss the need for access control further in Section
10.1.

Other approaches had been developed with open systems in mind,
notably some based on market mechanisms [3, 4]. Those approaches
require existence of a central “bank” and some sort of currency. Such
approaches, in their natural form, are not well suited for smart environ-
ments. It should not be possible, for example, for someone thousands of
miles away to buy control of the room with their extra virtual currency.

Because resource managers can take resources away from requesters,
it is reasonable for a requester to keep a resource even after finishing
a task if it expects it may need the resource again in near future. For
example, a email notification agent may want to keep its output channel
as it is desirable for the sake of consistency in space’s behavior for those
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notifications to come through the same channel unless there is a good
reason to change.

5.3 Arbitration should allow for clever re-allocations

Consider the following scenario: a space is equipped with a TV set, LCD
projector, VCR, video mux, and some computers. The VCR (that also
acts as a TV receiver) can be connected to either the projector or to
the TV set through the video mux. The computer, however, can only
be connected to the projector.

The user is watching the news on the projector, this being the best
resource to satisfy a request for a large display. Then the user hears
some really important news and decides to share it with a friend while
watching the rest of the newscast and so she requests her email agent.
With our simpler resource management schemes in place, the projector
would be taken away from the news and allocated to the email agent.
The more desirable behavior, in this situation, would be for the news-
cast to be moved over to the TV set and the email to be then displayed
on the projector.

The point here is that in many cases the only way to accommodate
a new request is to take a resource away from one of the currently active
requests. The disturbance can often be minimized, however, by reallo-
cating the old request to a different service. The insight here is that the
sets of services that can satisfy various requests overlap only partially
and the relationships are often more complex than just proper inclusion
(see Figure 1). The reason for it is two-fold: first, different kinds of de-
vices can provide different sets of services; second, physical connections
for different kinds of signals are routed differently (so, for example, in
one of our spaces the video signal goes through a multiplexer and thus
can be connected to either of the projectors or to a TV set, while VGA
connections are hard wired).

Allowing for re-allocations makes arbitration among requests much
more complex: whenever a resource manager receives a request for a
resource, it has to look for a solution that satisfies not only the new
request but all of the old ones as well (as far as possible). In other
words, a simple task of selecting the best resource for a request turns
into a global constraint satisfaction problem.

One point to keep in mind, of course, is that re-allocations are costly.
If we move the newscast from a projector to a TV,the user is bound
to find it distracting. In some cases disturbance will be minimal, for
example a mail notification agent will not mind a re-allocation if it
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TV Set
Projector

LED Sign

Speech Output

Text OutputVideo and TV

Video conferencing

Fig. 1. Different kinds of tasks can be performed with different but overlap-
ping possible sets of devices: both the TV set and the projector can be used
for watching videos or tv while only the projector can be used for teleconfer-
encing. At the same time, the projector, the LED sign or the speech output
can be used for text output.

happens between notifications—the next time it will simply use a dif-
ferent output device. It’s more serious in case of agents that may have
to rebuild a lot of their state after re-allocation. Some examples of this
would be a camera which was carefully focused on a face or area of the
room, or an Internet browser with all of its browser history.

Reasoning about the cost of a re-allocation has to be a part of the
overall arbitration process. In Rascal, requesters can specify how costly
a re-allocation would be to them and the cost can vary between zero
and the cost of taking the service away altogether. The cost of a re-
allocation in Rascal has two components: the fixed cost specified by the
requester and the difference in utility between the new request and the
old request (with the stipulation that it cannot be smaller than zero).

6 Ownership of resources over time (resources vs.
tasks)

In this section we argue that many of the services provided by agents
in a smart space (e.g. display service provided by a projector) are not
tasks and therefore they should be managed differently from tasks.
In particular requesters should be given ownership of resources over
periods of time. Agents need to own their resources as they are often
engaged in long-term jobs that can be changed or modified. We discuss
all of this by comparing what we mean by resource management with
task management performed by the faciliator agent in the Open Agent
Architecture (OAA) [19].
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Open Agent Architecture (OAA) is a good example of an agent
system that could control a smart space and that also has a complex
inter-agent facilitation scheme. What needs stressing, however, is that
the OAA “facilitator agent” actually performs task management and
not resource management. That is, the facilitator agent will break down
a task into simpler sub tasks and allocate those to individual agents
who can fulfill them best. It will not, however, ensure that all of the re-
sources needed for the tasks are available and not in use by other agents.
Hence OAA is well suited for a task like sending the current Boston
weather report to all of requester’s friends. The task will be broken
into components, appropriate information obtained and message sent.
OAA is not well suited for tasks that cannot be thought of as point-like
in time. Implicit in the OAA model is the assumption that agents can
never conflict over the use of scarce resources. Task management is, of
course, very important but in a system that controls a physical space
with a large number of scarce resources task management should work
hand in hand with a resource manager.

It is more natural to think of many agents as having a life cycle,
and going independently about their own long-term jobs. For example,
an agent listening to and recording conversations in the room in order
to be able to bring back audio snippets via keyword searching, needs
resources over an extended period of time to complete its job. Showing
a movie can be thought of as a task but it can be interrupted, modified,
or abandoned in the middle. It can also prevent other agents from using
a display for their jobs. In that sense, showing a movie is different from
the OAA view of a task.

7 Third party resource request annotation

Once the core resource management system is in place, it should be easy
to write modules that do specific types of reasoning and then use that
reasoning to annotate requests to limit or reassess possible matches.
Often knowledge of the world has direct impact on the appropriate na-
ture of a specific resource to a specific request–this knowledge being
outside either the resource manager’s realm of expertise or the request-
ing agent’s knowledge–and it is imparative that it be easy to have a
third party entity contribute such knowledge.

For example, say a user is in a particular room and desires to play
a song via his SongPlayer agent. The user would start his agent that
would then ask for and locate the bits of the given file, and then attempt
to gain access to another agent which would play the actual file. This,
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of course, would be a resource request for an agent with the ability to
play sound.

However, there is also another criterion to the desired agent: loca-
tion. If the user has been wandering from room to room, it is important
that the sound playing agent used be in the room the user is in. This
is knowledge that needs to be appended to the request, but neither the
resource manager nor the song requesting agent would appropriately
have this knowledge.

It would be a violation of normal notions of modularity if the Song-
Player agent had to check the user’s location and annotate its resource
request. It also seems unwieldy for the resource manager to be responsi-
ble for finding and maintaining this knowledge; certainly if this knowl-
edge were in the resource manager’s domain, then much other knowl-
edge would be as well. Furthermore, the nature of a flexible agent sys-
tem is knowledge itself is unlikely to be codified in a universal standard,
and so the resource manager would be responsible for translating the
output of various other agents into proper resource request annotations.
Solving this problem is definitely an active area of research, but in this
case it make for a massively large and unwieldy project in the writing
of the resource manager.

The best solution we found is to have third party agents that ex-
tend the functionality of the resource manager. Authors write agents or
functions which pattern match on resource requests and add then addi-
tional criterion to those requests as appropriate. In the example above,
a distinct other agent which tracks the user eavesdrops on all resource
requests and annotates any relevant ones to only consider physically
local possibilities.

Request annotations should be able to happen in two ways. The first
is modifying the request before a list of possible matches is generated.
The second method is filtering the possible matches at the tail-end
of the process, after the list of possible resources has been generated.
Regardless of method, third party annotators allow for a real compono-
tization of the agents; without them either one or the other agent on
any given transaction needs to know too much about the significance
of the job at hand. The idea is to have dumb objects wired together
smartly to get thinking results, not to have heavyweight objects that
are hard to write or maintain.

A further advantage of third party annotators is being able to pro-
vide the room with a way of dynamically adapting to equipment failures
by writing modules that extended reasoning about certain particular
resource allocation problems. For example, if we had an agent that
could tell if a projector was broken by looking at the screen with a
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stearable camera, we could easily have an agent update the resource
manager so all resource requests for projectors automatically remove
that projector from consideration.

Furthermore, having the ability to have third party annotators should,
we hope, serve nicely in the future when contemplating adding large
features to the system such as access control (see Section 10.1). Once
the model of requesting resources and receiving them is established,
pretty much anything can be thought of as modifying or changing the
appropriateness of a given resource to a given request–namely annotat-
ing a preexisting request.

8 Connections

One style of resource that deserves special attention are connections.
Connections are a vital piece of the background of a smart space, and
a system with a resource manager that fails to manage them is bound
to end up in serious trouble.

The way our room is wired, we have several muxes and switches
allowing for information to flow from source devices (cameras, VCRs,
microphones) to output devices (projectors, TV sets, modems). Com-
puters are also integrated into this web as either sources or sinks. We
also have some trunk wires connecting muxes to muxes, for example,
which can only carry one signal at a time. This, of course, is a limited
resource. We are a long way from the time when the optimal carrier of
all information signals (audio, video, etc.) is the same Ethernet, and
until then we need to take into account the specialized wires in an intel-
ligent space. This often means we do not have a fully connected graph
of signal sources and sinks, and so the physical connections themselves
are a limited resource that needs management.

Due to this, we enter all our connections into the manager as “con-
nection resources”. When an agent requests, say, a VCR and projector
combination, they also request the collection of resources consisting of
the path of connections leading from the VCR to the projector.

We keep the connection aspects of the system very much behind
the scenes as an extension to the resource manager. Just because they
are a crucial piece does not mean that they need to be in the forefront
of a high-level agent programmer’s attention. Agents can just ask for
resources with the caveat that they are connected, and do not look at
the resources involved in the connecting itself at all. The connection
extension to the resource manager forges the actual path.
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9 Special requests

We have discovered a need for a few “special requests” for resources that
seem to lie a bit outside the parameters discussed above. Happily, these
are extensions of above, and can be added layers on top of the existing
system. We will briefly discuss them in the following sub-sections.

9.1 “Screen saver”

Many agents may want to use resources for a low-level background effect
if the resources are not being used for something else. For example, the
news ticker or weather forecast agent may want to use the LED sign if
there is no better use for it.

The “Screen Saver” type of request gets automatically re-filled af-
ter the resource is taken away, used, and then released by some other
agent. It is a way of the agent saying, in effect, “I want these resources
whenever they are free. If you take them away, then give them back
when they become free again.”

The advantage of this approach is that it prevents a busy wait on
the agent’s side. Without “Screen Saver” requests, an agent would have
to poll the resource manager from when it has lost its resource until it
obtains it again.

An alternative solution would be to have blocking requests, which
would also work. We have not closely examined this option, however.

9.2 Auto upgrade

When a resource being used by an application is released, it is worth
checking to see if other agents would be better served by getting that
resource now that it is available. Agents can specially request that they
do not mind being switched to a better resource at any time.

9.3 High-urgency short-term loans

Some requests are for more task-oriented reasons. In these cases, a re-
source may be needed only for a brief moment. For example, an alert
agent might briefly need the speakers of the room to inform a room
occupant that there is a call waiting. If the occupant was watching
a movie, it would be much more smooth if the alert agent could just
borrow the audio for a moment and then give it back. Without bor-
rowing, the original agent would have to re-request the lost resources,
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and again we would have the polling situation described in the previous
sub-section 9.1.

Loans, of course, make cost analysis in the resource manager even
more difficult and we have found no easy answers as of yet.

10 Future

In this section we talk about two issues in resource management in
smart spaces that we have identified as important but have not yet
researched in depth.

10.1 Access control

The real world is full of access control mechanisms. In particular, there
are many ways in which access to spaces and enclosed equipment is
restricted to certain people. The same is true of information. It stands
to reason that agents acting on behalf of people should be subject to
similar constraints their owners. If Alice does not have a key to Bob’s
office, then she is probably not supposed to be able to use his VCR
either. We can take this parallel a step further and introduce some
more interesting problems.

All members of our lab have a right to enter our conference room.
They also have the right to control all of the a/v equipment, the lights,
etc. To what extent should this right be extended to their electronic
proxies? Should people be granted access to the devices when they
are not physically present in a space, e.g. while on a trip to a faraway
country? Should the access to the devices only be granted to authorized
people on the condition that they are physically present in the space?

If we assume that physical presence is required of most people, let
us take another scenario into consideration. Our research group has a
meeting and one of the members is in a different city and needs to
teleconference with us. During the meeting she needs to show us some
of her results. Should she then be allowed to control our projectors and
our slide show software? Should telepresence be treated equally with
physical presence? Should perhaps one of the people physically present
at the meeting grant her the permission? If so, who should have the
rights to grant permissions to others?

As we said before, we are not clear yet how access control should be
performed in a smart space but we are quite certain that the resource
manager would have to be a part of the process. After all, it is the re-
source manager that grants agents access to particular resources. Thus
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the resource manager needs to be able to find out what resources the
requester has rights to.

10.2 Cooperation

As research on smart spaces progresses, it becomes more and more
likely that several spaces will be controlled by the same software. A
number of people will be moving from one smart space to another and
will expect to be able to make various requests in those spaces. They
will also expect some of their agents to “follow” them. Building a single
resource manager that would manage resources of all the spaces and
all the people is clearly impractical. hence, there will have to be a
number of resource managers, each representing a particular collection
of resources and requesters. Given that spaces may border with each
other or be enclosed by one another, and also given that agents acting
on behalf of people will need to use resources provided by spaces, it is
necessary for resource managers to communicate with one another to
perform optimal resource allocation.

11 Contributions

We have outlined a number of issues that we found to be important in
the design of high-level resource management systems for smart spaces.
Smart spaces are a relatively new research area and few projects have
reached a point where resource management would become critical. We
believe, however, that all projects will eventually face these problems
once their basic infrastructure is in place and multiple, independently
developed, applications are being ran in a space at the same time.
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1 Introduction

For the past six months, I have been integrating several experimental,
cutting-edge technologies developed by my colleagues at MIT as part
of the MIT LCS/AIL Oxygen project. This paper gives a snapshot of
this work-in-progress.

Project Oxygen is a collaborative effort involving many research
activities throughout the Laboratory for Computer Science (LCS) and
the Artificial Intellegence Laboratory (AIL) at the Massachusetts In-
stitute of Technology (MIT). The Oxygen vision is to bring an abun-
dance of computation and communication within easy reach of humans
through natural perceptual interfaces of speech and vision so compu-
tation blends into peoples’ lives enabling them to easily do tasks they
want to do – collaborate, access knowledge, automate routine tasks and
their environment. In other words, pervasive, human-centric computing.

At first blush, this catch-phrase appears vacuous. Today, computers
are certainly pervasive; it is likely, at this moment, you are within 100
meters of a computer. Computers are certainly human-centric; what
else can they be? On the other hand, computers are not yet as pervasive
as is electricity or water. Although computers perform jobs required by
humans, they do not feel human-centric – humans must conform to an
unnatural way of communicating and interacting with computers. Fi-
nally, the tasks described have little to do with computation; computer-
mediated functions is a more accurate term but sounds awkward.

The vision and goals of the Oxygen project are described in detail
elsewhere [11, 2, 1], the purpose here is to show how many maturing
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Fig. 1. An overview of the Oxygen Infrastructure, showing the division into
three parts: H21, a handheld digital device, N21, the network infrastructure,
and E21, the environment infrastructure.

technologies can be integrated as a first step towards achieving the Oxy-
gen vision. There are research efforts at other universities and research
institutions that roughly share the same vision, however, each institu-
tion focuses on integrating their own maturing technologies. Oxygen
has a three-pronged approach by dividing the space into three broad
categories: the H21, a hand-held device, the N21, an advanced network,
and the E21, a sensor-rich environment (see Figure 1).

In what follows, an Oxygen application is described in terms of
its human-centric features as well as the required technologies. It is
important to keep in mind that this is just one of many applications
and that it is merely a vehicle to explain how many technologies can be
integrated and how to create the infrastructure necessary to enable the
introduction of context into applications making them more “natural”
to use.

The sample application is that of a seminar presentation support
system. The next section gives an overview of the application. Section
3, reviews many of the technologies that will go into this application.
Section 4, shows how they integrate to form the application. A prelim-
inary programming language and middleware support is described in
Section 5.
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2 A computer-mediated, seminar presentation
system

This section describes a computer-mediated seminar presentation sys-
tem. As you read through the description, compare it to how presenta-
tions are given today. Although a laptop with programs like Powerpoint
or Freelance attached to an LCD projector is a vast improvement over
the old days of foils or 35mm slides, the human has given up a de-
gree of control, freedom, and naturalness. The system described below
provides for a more natural human interface.

Alice is to give a seminar about her O2.5 project. As she walks into
the seminar room, she allows herself to be be identified as the speaker.
She does not need to carry a laptop with her slides on it – all of her
files are globally accessible. Alice tells the system how to find her talk
by simply supplying enough keywords to uniquely identify the file she
wants. Her files are well indexed and so she merely describes the file
in human terms and not with some bizarre syntax. The system knows
where she is and marshals all the physical components that may be
needed for her to control the display.

Alice wants to control the display so that it matches her current
desires. A seminar is a live event and the dynamics depend on the
audience and speaker. Although it is crucial that she control the pre-
sentation, this control should be of minimal distraction. The same is
true for the audience – they should be able to see the visual content,
hear her commentary, and take notes at the same time. Moreover, un-
expected events should be handled in a natural way.

Even today, Oxygen technologies can make a computer-mediated
presentation a more natural experience. In particular, three natural
ways to control the slides are provided, as opposed to the traditionally
way where Alice either clicks the mouse or hits the enter key. It is
computer-centric to force the speaker to always walk over to the laptop
in order to advance the slide. A wireless mouse is only a partial solution
as it requires that something be held in a hand. For Bob this might
be fine, but Alice likes to use a laser pointer to highlight objects on
the screen and she finds holding two objects to be very awkward. An
integrated pointer/mouse is no better since it now requires attention
to find the correct button.

Alice can use her laser pointer to highlight words, draw lines and
sketches, as well as to switch between slides. Holding the pointer in
the bottom right corner means to advance to the next slide. A camera
looking at the screen interprets Alice’s laser pointer gestures. But not
all humans like to use laser pointers. Some people, especially when they
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are continuously engaged in speaking, like to use verbal commands to
control the presentation. This is done with a microphone and software
that continuously tries to understand commands. All three modes of
control will always be active, allowing the speaker to use whatever is
convenient.

There is more to a presentation than just advancing slides. Alice
may want to see her notes, see the next slide before the audience, skip
a slide or present the slides in a different order. A laptop, handheld, or
any other personal communication device can be used by the speaker.
To skip to a different slide without anyone knowing it, is a task that
is easily performed by simply clicking on a different slide image on her
personal display. The personal display must remain consistent with the
public display. So, whether Alice says “Next Slide,” chooses a slide from
her private computer (handheld or laptop), or uses the laser pointer,
both displays are updated.

The audience should also have a choice of ways to observe the pre-
sentation. They can look at the large projection screen in the front of
the room, as is usually the case, or they may choose to view the pre-
sentation on their own personal digital device. The output is simulta-
neously broadcast to these devices. Some people in the audience might
like to take notes and have them correlate with the presentation itself.
We propose broadcasting a URL or some other identification symbol
for the current contents. This can be either used to display the slide on
the laptop, or be inserted into their notes. Later on in the privacy of
their own room, these notes can be merged with an archived version of
the talk. The archived version will match the presentation rather than
the original file. Alice may have many “emergency” slides prepared that
will be shown only in response to a question.

To summarize, there are several output modalities: the LCD projec-
tion, a broadcast of the current content, an archival copy that can be
accessed afterwards, and the ability to correlate the public presentation
with her own personal view of the presentation.

Lastly, Alice also has “meta” operation control - e.g. switching to
a different presentation package, such as a browser or Mathematica, or
even to the contents of another presentation. She should also be able
to control whether or not content is broadcast or archived.

3 Technology overview

Research into many technologies that support the above scenario being
pursued as part of Project Oxygen. Once again, we wish to emphasize
that there are many competing technologies being developed elsewhere.



Project Oxygen: An Initial Experience 769

Fig. 2. The seminar room can be assembled from off-the-shelf components.
The laptop controls the LCD, camera, microphone, and the networking parts
of connecting to the file system, broadcasting, and archiving. The H21 is used
by the speaker for personal notes and skipping slides. This application makes
use of many of emerging technologies being pursued at the Lab. for CS and
AI Lab at MIT.
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We deliberately ignore them for several reasons1. First, to do justice to
them all would make this article too large. Second, close physical prox-
imity is usually required when making use of experimental, research
systems. While it is possible to do this remotely for one component, it
is nearly impossible do this for a number of research projects. We wish
to provide feedback to these other research projects before they are
ready for prime-time and we deliberately try to use them in some un-
intended way. While there are similar efforts in many of the intelligent
or instrumented rooms, our example is simply geared towards exposing
how components interact even with commodity hardware. As fun as it
is, the particular demo of an oxygenated presentation is not the goal.

3.1 The Handy 21 (H21)

Although the commercial sector has been cranking out all kinds of
hand-held devices, there is still much research to be done. The H21
should replace the plethora of communication gadgets with a single
portable device. In particular, it should combine at least the functions
of a cellular phone, wireless Internet connection, pager, radio, as well
as a music and video player/recorder. Packing all this functionality
into a single device appears to make it too heavy to be portable. So,
industry strives to find the right set of combinations and to then sell
add-ons to fill-in the missing pieces. The Oxygen approach is different:
all that is needed is a minimal set of components built into the hardware
with software and reconfigurable hardware used to provide whatever
functionality is needed.

The SpectrumWare project [13] is developing a multipurpose com-
munications system that can be programmed to receive and transmit
many different types of signals in order to form a “communications
chameleon.” One can program the H21 to be a radio, cell phone, or
television receiver. To fit in a small space it will need configurable
hardware.

The RAW project [3] is developing a chip that will deliver unprece-
dented performance, energy efficiency and cost-effectiveness because of
its flexible design, by exposing its wiring to the software system, the
chip itself can be customized to suit the needs of whatever application
is running on it. The Raw chip could be incorporated into a single de-

1 The author wishes to apologize to all those who do not agree with these
reasons. In a future, expanded version of this paper, many competing tech-
nologies will be cited. The author would be happy to learn about an rele-
vant research.
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vice that could perform a wide variety of applications: encryption or
speech recognition, games or communications.

The commercial sector also understands the need for low-power de-
vices, especially handheld ones. However, to make substantial improve-
ments, it is important to re-examine computer architecture from basic
principles. The SCALE project [6] is aimed at doing just that.

Rather than waiting for this research to come to fruition, the Oxy-
gen project will make use of commercial handheld computers. In fact,
it is doubtful that we will ever build our own device. More likely, we
will continue to modify and adapt commercial products that at a min-
imum, support Linux, audio and visual I/O, and multiple communica-
tion channels [4]. Although in an ideal world one will have the right
devices for the job, in reality that is usually not the case. It is thus
important to be able to make use of what is available. Users want to
get the job done and so we expect to support a wide range of devices.

3.2 Networking, naming and location management

One’s personal data should be easily and universally accessible. Having
a multitude of digital devices, each with some possibly inconsistent set
of data, is neither natural nor geared towards the needs of the human.
Having to remember a set of arbitrary names just to use a physical
device sitting in plain sight is also demeaning to the human user.

The self-certifying file system, SFS [14], is a universal, secure filesys-
tem that has a single global namespace but no centralized control.
Other similar filesystems require the users to use a particular key man-
agement system to provide security and authentication. SFS separates
key management from file system security, thereby allowing the world
to share the filesystem no matter how individuals chose to manage their
keys.

Within a building it is useful to know where things, including one’s
self, are physically located. The traditional approach is to have all
things periodically broadcast their identity and to have sensors spread
throughout the building that detect these things. To provide a degree of
privacy, among other reasons, the Cricket [7] location-support system
takes the opposite approach. Spread throughout the building are a set
of beacons. The beacons are a combination of RF and infrared signals
that broadcast physical and logical location information. Things in the
environment sense these beacons. Thus, a handheld knows where it is
located rather than the system knowing it. A person has the freedom
to reveal his or her location – usually when some service or resource
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is required. All sorts of devices need to be integrated into the system
having network connectivity and location awareness [12].

Knowing the location of things enables one to name digital devices
by their intended use rather than by some specific URL or IP address.
The Intensional Naming System [8] does just that by maintaining a
database of currently active devices along with attributes describing
their intended use. Devices periodically check-in to avoid having their
entries time-out. INS supports early binding for efficiency and late bind-
ing for mobility. With INS, it is possible to route packets to the LCD
projector that is located in the same room as the speaker or to route
messages to whatever display device is near the intended recipient.

3.3 Security and correctness

As evident by the central place of this subsection, the Oxygen Project
considers security and privacy as a central component of a human-
centric system. We are developing a personal identification device that
has two interesting features. It has a very simple interface, perhaps only
a single button to distinguish between identification and authorization
[12, 19]. The simpler the interface the easier it is to make the device
secure. The second feature is that identification mechanisms provide
privacy. A guiding philosophy is that privacy is the right to reveal infor-
mation about oneself. When one chooses to make use of public system
resources one is choosing to reveal information about one’s self. Various
schemes for secure, private group collaboration are being developed [19]
as well.

As computers continue their infestation of human activities, their
reliability becomes more important. Specifying the behaviors of inter-
acting systems is particularly challenging. Research efforts, I/O Au-
tomaton (IOA) [16] and Term Rewriting Systems (TRS) [5], aimed at
proving the appropriateness of collective behaviors, have focused on
precise and concise specifications.

3.4 Human interfaces

There is no question that verbal and visual interfaces to computers are
rapidly maturing and are already being successfully deployed. However,
speech and natural language systems need to extend beyond simple
dialog systems. The approach is to gather information from the speaker
in a number of ways, to fuse this with information from other sources
and to carry out tasks in an off-line fashion as well, so as to optimize
the users time [22]. This effort is also trying to make it easy to develop
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domain-specific speech interfaces; moving the creation of a interface
from an art to a science.

The focus on visual input system that recognize a range of ges-
tures tries to leverage multiple input devices. Just like stereo vision
makes it easier to differentiate objects, collaboration between multiple
monitoring devices simplifies many recognition tasks. For example, a
microphone array along with a array of cameras can be used to do
speech processing of all the conversations going on in a meeting, even
when several people talk at once [9]

On the output side, there is research aimed at building very large
displays. The challenge is to overcome the bandwidth problem of get-
ting all the pixels out of a computer. The approach is to embed pro-
cessing, connectivity, and display all in one package so that the pixel
generator is close to the pixel display, thereby creating a sufficiently
rich environment to mimic the Holodeck of Star Trek fame [18]. A re-
lated effort is to develop an economical method for displaying 3D using
an auto-stereoscopic display [17].

3.5 Collaboration

There is much to be done in the way of supporting computer-mediated
human collaboration. Teleconferencing has made strives in allowing col-
laboration between people who are widely spatially disjoint, but it is
still difficult to collaborate when people are temporally disjoint [21].
Much of this work is going on in the Artificial Intellegence Laboratory
at MIT and unfortunately, I only know a little bit about it. The seminar
presentation scenario described in this paper is just the beginning.

4 Implementing the seminar presentation system

We can now relate the technologies described in the previous section
with the needs of our seminar presentation system. The explanation
roughly follows the description in Section 2. We ignore traditional is-
sues like authorization and allocation of resources and application code
written in traditional ways.

When Alice enters the seminar room, she must be identified and the
presentation manager must be initiated. A simple tag broadcasts her
public key to her H21 or, if she does not have one, then to the room
computing E21 infrastructure. The H21, with Alice’s permission, will
initiate the seminar presentation manager application as an extension of
Alice’s computing environment. Rather than having applications run
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on machines with only a loose connection to the owner, they are all
under direct control of the initiator, who has the ability to interact
with them from any Oxygen supported I/O device..

Access to Alice’s presentation files is via the secure, global filesys-
tem, SFS. Advanced indexing systems, such as Haystack [15], will be
used to find files or slides within a file. The Cricket location manage-
ment system is being used to know where the presentation is occurring.
It is possible for the speaker and the audience to seamlessly move to a
larger seminar room without losing any content. The intentional nam-
ing system, INS, is used to route packets between the components of
the system and provide for fault tolerance and mobility. If one compo-
nent crashes, INS will help in finding an alternate or reconnect when
the component comes back online.

For the input modes, speech and vision processing is used. The
speech project, Galaxy, has been developed mostly for dialogs and is
being adapted to an active monitoring mode. The vision system [9] is
used for the initial laser pointer and later for human gesture recogni-
tion. A microphone array combined with a vision system that precisely
located the position of the speakers mouth is being developed to allow
the speaker more mobility. Recognition of drawing gestures, makes use
of technology underlying the Rational Capture project [10].

The presentation itself will be controlled in a conventional manner.
For powerpoint presentations running under windows, we use visual
basic to connect to the rest of the application middleware as well as to
control the presentation itself. For the speaker’s note view, a stripped
down web-browser is used with the application code written in Java.

The output side, at the moment, is the least sophisticated. We hope
to make use of the Auto-stereoscopic Display work that will enable 3D
image rendering and the Holodeck research that will support very large
active displays. In addition, capturing the experience for later review
will make use of the research in collaboration [21].

Finally, the presentation manager application is written in a special
“communication oriented” language and middleware, described in the
next section. Such communication oriented languages, along with IOA
and TRS research will lead to the development of correct distributed
systems that work first time out, and allow one to focus on performance
as the system scales.

5 The language overview

This section highlights the core of a communication oriented language
used to program some Oxygen applications. The work described in this
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section is preliminary and so the description is deliberately sketchy2.
Although, Java could be used, especially since most of the underlying
technologies provide a Java interface, our language lets the application
writer to focus on what is relevant, permits very aggressive optimiza-
tions and is more concise and precise.

At a high level of abstraction, there are only a few components that
need to be manipulated: nodes, edges, messages, and actions. Nodes are
just about anything that can be named and communicated via sockets.
An edge is a directed connection between nodes. A message is an entity
that flows along an edge. An event is the creation or destruction of one
of these components; thus there are only six different types of events.
Rules (or actions) make up the final component of the language. An
action consists of a trigger and a consequence. A trigger is an event, such
as the creation of a node or the destruction of an edge. A consequence
is also an event. For example, the existence of a message on an edge
can trigger a set of edges to be disconnected.

Fig. 3. A graphical view of the components and their connections

Nodes are named in a way that is compatible with the intentional
naming system [8] and consists of a collection of key/value pairs. When
a node is named, these pairs are matched against a database of existing,
functioning devices or services. For simplicity, any node can be created
or destroyed. In actuality, it is only the connection that is created or
destroyed when the node is a physical device or an enduring software
service. Connections are IP/Port specifiers; it is assumed that all de-
vices and third-party services have some kind of wrapper that converts
input and output to the appropriate formats. Rather than have a spe-
cial case to handle the case when a named node does not exist, it is

2 This work is so preliminary that the language has yet to be named.
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assumed that such nodes are created and then immediately destroyed.
The code to handle a non-existent node is exactly the same as the
code to handle a node that was connected but becomes disconnected
or destroyed.

Messages are self-describing and self-typed. They can be named,
as with nodes, by a set of key/value pairs but must include a loca-
tion, either a node or an edge. Very large messages or streams, such
as audio, video, or screen images are conceptionally the same as text
messages, but the implementation treats them different to ensure suf-
ficient performance. As each message moves through the system, it is
assumed to be created when it arrives at a location and destroyed when
it leaves that location. This permits actions to treat message events and
creation/destruction of node and edge events in the same uniform way.

All the action is, of course, with the actions. Actions are simple yet
powerful rules. Actions can be created or destroyed, just like all other
objects in the language, and are thus events. So, some event trigger
can create new actions or remove current ones. Actions are needed to
control what happens in a dynamic, sensor rich environment. When
one enters a room from the hallway, two events happen: the link to the
hallway is destroyed and the link to the room is created. Either of these
events can serve as triggers for a whole slew of actions.

Figure 4 shows the specification of the presentation manager. The
nodes are named using key/value pairs. The variable owner is a param-
eter of the system and is passed-in when the application begins. The
location specifier could be done in the same way, but in the code in the
Figure it is hardwired. Nodes, messages, and edges are all named to
make it easier to read the code. Two sets of actions are specified. One
disconnects the I/O devices. This, presumably is useful for situations in
which the speaker wishes to temporarily pause the current presentation
and to switch to a different one3. The first action is invoked whenever
there is a “pause” message on the dialog-in port. The consequence of
this action is to destroy the four edges that connect to the camera,
microphone, LCD, and broadcast process. These will be used by the
other application. The archiver is dedicated to this application and so
can remain connected. A second set of actions show another example
of disconnecting only the edges to the broadcaster and archiver nodes.

There is a middleware system that executes the language [20]. Ini-
tially it executes on a single machine, but soon will be made fault
tolerant and decentralized. Nearly all actions performed by the mid-

3 Hopefully, the speaker is not checking her mail during the presentation
itself!
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Application Name:
Seminar Presentation Manager ( owner )

Nodes:
microphone : [ “Device”, “microphone”, “Location”,“NE43-518” ]
camera : [ “Device”, “camera”, “Location”,“NE43-518” ]
input : [ “Process”, “input-collector”, “OS”,“Unix”,“Owner”, owner ]
ppt : [ “Process”, “powerpoint-displayer”, “OS”,“Windows”,“Owner”,
owner ]
ppt’ : [ “Process”, “speaker-notes”, “Platform”,“H21”,“Owner”, owner
]
lcd : [ “Device”, “lcd”, “Location”,“NE43-518” ]
broadcaster : [ “Process”, “broadcast-slides”,“OS”,“Unix”,“Owner”,
owner ]
archiver : [ “Process”, “archive-slides”, “OS”,“Unix”,“Owner”, owner ]

Edges:
mpause : [ “Message”, “pause”, “Location”, dialog-in ]
mresume : [ “Message”, “resume”, “Location”, dialog-in ]
mconfidential : [ “Message”, “confidential”, “Location”, dialog-in ]
mpublic : [ “Message”, “public”, “Location”, dialog-in ]

Messages:
ems: ( microphone , speech ) , esi: ( speech , input )
ecv: ( camera , vision ) , evi: ( vision , input )

eip: ( input , ppt ) , eip′ : ( input , ppt’ )
epl: ( ppt , lcd ) , epb: ( ppt , broadcaster )
epa: ( ppt , archiver ) ,

ep′i: ( ppt’ , input )

Actions:
( mpause , (!ecv , !ems ,!epl , !epb ) )
( mresume , (ecv , ems ,epl , epb ) )
( mconfidential , (!epb , !epa ) )
( mpublic , (epb , epa ) )

Fig. 4. Part of the communications program that expresses the connections.
There are always two implicit nodes: dialog-in and dialog-out. The actions
disconnect and reconnect the I/O devices on a pause or resume command.
Presumably this is used to switch to another presentation. Similarly, the
speaker may want to go “off-the-record” and show slides that are not archived
nor broadcast. Going “public” reestablishes these links.
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dleware corresponds to an event and events can be triggers for other
events.

Although, we expect that the language will be compiled for optimum
performance and reliability, it is also possible to interpret commands
during run time. A user can modify an application during run-time to
adapt to changing needs. The simple structure makes this easy to do
provided there is a way for a user to easily name nodes, edges, and
messages.

6 Conclusion

Scientific endeavors have always alternated between periods of deep
and narrowly focused research activities and periods of synthesis across
many fields. I believe we are in the midst of a new computer revolu-
tion. The relentless doubling of performance every 18 months, the even
faster exponential growth of the web and its communication infrastruc-
ture, and the maturing of many human-computer interface technologies
means that things will not stay the same. While industry is doing some
of this work, the emphasis is on producing products that are good at one
thing. Oxygen is not producing products, rather it is exploring what is
possible when one synthesizes the fruits of research across many fields.

This paper describes a work in progress. Not only is this system
still under development, but many of the technologies that it exploits
are also under development. The presentation manager is simply a data
point. It gives insight into the tools that will be needed in the future,
gives feedback to those researchers developing the components, and is
just one of several parallel efforts. These efforts will create the infras-
tructure necessary for the next decade. There is much to be done but
we must keep the goal in sight – computers must become easier and
more natural to use.
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