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L C SOverview

• Motivation for early fusion of audio and video.
– Why is it hard?
– Why is it useful?

• A statistical model consistent with the approach.
• Information theoretic perspective.
• Algorithmic description
• Applications of the method

– Video localization of speaker
– Audio Enhancement
– Audio/video synchrony



2

L C S

• Who is there?  (presence, identity)
• Which person said that? (audiovisual grouping)
• Where are they?  (location)
• What are they looking / pointing at?  (pose, gaze)
• What are they doing?  (activity)

Perceptual Context

• Who is there?  (presence, identity)
• Which person said that? (audiovisual grouping)
• Where are they?  (location)
• What are they looking / pointing at?  (pose, gaze)
• What are they doing?  (activity)

L C S
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blah blah blah
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blah blah blah

blah blah 
blah blah

computer, 
show me the 
PUI 
presentation

Is that you talking?

A perceptual link between user and device:
• detect and recognize user  
• confirm that utterance was from user
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blah blah blah
blah blah blah

blah blah blah
blah blah blah

blah blah 
blah blah

computer, 
show me the 
PUI 
presentation
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L C SInformation Loss

video
features

audio
features

decision
logic

decision
logic

Data Processing Inequality : processing data can only destroy information

1( ; ) ( ; )I C F I C X≤ 2 1( ; ) ( ; )I C F I C F≤X

C

L C SWhen should we “fuse” data?

video
features

audio
features

Signal Level
•high dimension
•complex joint statistics

decision
logic

decision
logic

Feature Level
•moderate dimension
•complex joint statistics

Decision Level
•low dimension
•discrete statistics

•Data fusion implies estimating the joint statistics of two or more data sources.
•The point of “fusion” is dictated by a tradeoff between robustness/simplicity.
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L C SA Compromise

video
features

audio
features

Estimate density in 
the “feature” space 

•How might we (implicitly) model the joint statistics?
•What objective criterion is appropriate adapting the mapping from signals to 
features?

Feedback from objective criterion 
of the joint statistics guides the 
audio/video feature extraction

L C SAssociative Modeling at the 
Signal Level 

consistent not

Question: How do we quantify “consistent”?

Sounds and motions which are consistent 
may be attributed to a common cause…
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L C SA Simple Independent Cause 
Model

A

B

C

V

U

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,p A B C U V p A p B p C p U A B p V B C=

f(V,β)

g(U,α)

person speaking monitor flickerfan noise
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L C SU conveys information about V 
through the joint of (A,B)
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L C SV conveys information about U 
through the joint of (B,C)
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L C SA Big Mess!!

A

B

C

V

U

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

, , , , , ,

, ,

, ,

, , , ,

p A B C U V p A p B p C p U A B p V B C

p U p A B U p C p V B C

p V p B C V p A p U A B

p U V p A B C U V

=

=

=

=

L C S

Suppose a partitioning of U and V 
exists such that:

then…

Bear in mind we still have the task 
of finding it.

Separating Functions
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L C S

becomes

Separating Functions
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L C S

or

Separating Functions

A

B

C

VB

UA

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

, ,

A

B B B

A

B B C

C

p A B C p A p B p C

p U A p U B p V B p V

p U p B U p V B

p A

C

p C p U A p V C

=

=

UB

VC



9

L C S

or

Separating Functions

A

B

C

VB

UA

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

, ,

A B B C

B B

B B B

C

B

A C

A

p A B C p A p B p C

p U A p U B p V B p V C

p U p B U p V

p V p B V p U B

p

B

p A p C p U A p V

A p C p U C

C

A p V

=

=

=

UB

VC

L C SSummarizing Common 
Information
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L C SFusion of Audio/Video 
Measurement using Mutual 
Information

( , )i vg v α

( , )i ag a α

•Choose the mapping parameters such that the mutual information between the 
extracted features is maximized (i.e. project onto a maximally informative 
subspace.

L C SFusion of Audio/Video 
Measurement using Mutual 
Information

( , )i vg v α

( , )i ag a α

•By maximizing MI, we are summarizing the common information in the 
measurements, (i.e. which is related to their common cause).
•From the information theory perspective, the joint of the feature variables is a 
proxy for the “observable” part of their common cause.
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L C SMaximally Informative Subspace

i

T
v v if h V=

i

T
a a if h A=

•Treat each image/audio frame in the sequence as 
a sample of a random variable.
•Projections optimize the joint audio/video 
statistics in the lower dimensional feature space.

L C SFormally...
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•Mutual information quantifies the reduction in uncertainty (on average) about one random 
variable achieved by observing another.

•The entropy terms depend on the whether the random variable is discrete or continuous.
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L C SEntropy vs. Moments (i.e. 
correlation)

L C S

• Substitute approximation into integral and simplify

• Consequently, maximizing this approximation to entropy is equivalent to 
minimizing the chi-squared distance between the density, p, and the expansion 
density, q.

Approximating Differential 
Entropy
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L C SExact Evaluation of
Integral Criterion Gradient

Gradient of 
approximation can be 
computed exactly by 
evaluation of N 
functions at N sample 
locations.
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L C SVideo Localization of Single 
Speaker in the Presence of 
Motion Distractors

• Which pixels are “related” to 
the associated audio?

• Joint statistics of video and 
audio modalities are not well 
modeled by parametric forms.

• Slaney and Covell (NIPS ’00) 
demonstrate that canonical 
correlations (a second-order 
statistical measure) do not 
successfully detect 
audio/video synchrony using 
spectral representations.

• Classical sensor fusion 
approaches are formulated as 
joint Bayesian estimation 
problems, which is equivalent 
to MI in the non-parametric 
case.
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L C SDetecting (change) motion is 
not enough

•Red squares indicate regions with large pixel variance
•Variance image of sequence at left
•Magnitude of MAX MI video projection shown at center
•Inspection of the learned video projection coefficients tells us which pixels are 
associated with the audio signal.

L C SPixel Representation vs. Motion 
Representation

•Similar result using an optic flow representation [Anandan ’89] of motion in 
the video
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L C SAudio Enhancement

•Left channel

•Right channel

•Wiener (left)

•Wiener (right)

•MI (left)

•MI (right)

In this experiment, regions of the video are selected for enhancement 
(e.g. face detector, manually).

L C SWiener Filter Comparison

5.6 dB5.7 dB10.5 dB
SPG

(female voice)

9.2 dB8.9 dB10.43 dB
SPG 

(male voice)

Optical Flow-
Periodogram 

Representation

Pixel-
Periodogram 

Representation
Wiener filter
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L C SAudio-visual synchrony 
detection

MI:     0.68 0.61          0.19                 0.20 
Compute confusion matrix for 8 subjects:                    

No errors! 
No training!

Also can use for 
audio/visual 
temporal 
alignment….

L C SAn Admission 

But:We can incorporate prior models when available?

While sounds and motions may be consistent 
with each other, they are not always 
attributable to a common cause…
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L C SConclusions

• We’ve motivated a tractable and computationally feasible 
information theoretic approach to signal level fusion. 

• The method 
– starts from a simple assumption (consistency at the signal level)
– made little use of prior models 
– the statistical framework provides a clear methodology for 

incorporating prior models when their use is appropriate.
• Tracking, tracking, tracking…
• Audio-video synchrony is a straightforward application of 

the approach, the fact that we learn a generative subspace 
model allows us to do more…


