
Sketch Recognition User Interfaces: Guidelines for Design and Development

Christine Alvarado
MIT CSAIL

Cambridge, MA 02139
calvarad@csail.mit.edu

Abstract

We present a free-sketch recognition-based tool for creat-
ing Microsoft Power Point diagrams. Unlike many previous
pen-based interfaces, this tool performs aggressive and ro-
bust recognition, allowing the user to sketch freely while the
system recognizes the sketched diagram and seamlessly im-
ports it into Power Point. Although pen-based user interfaces
have been developed and studied, little has been said about
the user interface issues involved in developing sketchrecog-
nition user interfaces. We present initial user interface guide-
lines for creating sketch recognition user interfaces (SkRUIs)
based on informal, iterative user studies of our Power Point
tool. Finally, based on our experience, we claim that a num-
ber of iterative design techniques developed for traditional
user interfaces cannot be readily applied to SkRUIs. We dis-
cuss which techniques are best suited to the design and devel-
opment of SkRUIs.

Introduction
In recent years there have been a number of developments
in pen and sketch-based interfaces (Landay & Myers 1995;
Newmanet al. 2003; Saundet al. 2003). To date, how-
ever, sketch recognition has not been reliable enough to use
extensively in these interfaces. To be usable, most current
pen-based computer design tools explicitly avoid recogniz-
ing users’ strokes, or aim to recognize only a restricted set
of symbols, often those drawn with a single stroke. We aim
to make sketch recognition reliable enough that it can be in-
corporated into sketch-based early stage design tools for a
wide range of domains. Users will be able to interact with
these tools by sketching their designs freely and naturally,
without having to use special gestures or commands to en-
able the system to understand their drawings. We call this
emerging class of interfacesSketch Recognition User Inter-
facesor SkRUIsto emphasize that they are not merely pen-
based interfaces, but also interfaces that perform free-sketch
recognition.

SkRUIs represent an important new style of interaction
that has been explored to only a limited extent in previous
work. Work by Mankoffet. al, for example, explores some
human computer interaction (HCI) aspects of recognition-
based systems by providing tools to handle ambiguity in a
wide range of recognition-based interfaces, including some
limited sketch recognition interfaces (Mankoff, Hudson, &

Abowd 2000). However, because of the difficulty of sketch
recognition, to date most pen-based research has focused ei-
ther on HCI or on sketch recognition technology, but not
both. Work in the first category has explored the user in-
terface challenges of building pen-based systems that per-
form only limited or no recognition (Newmanet al. 2003;
Andersonet al. 2004; Saundet al. 2003). Work in the
second category has focused on building robust recogni-
tion, but addresses the user experience to only a limited ex-
tent (Alvarado & Davis 2001b; Hammond & Davis 2002;
Lank, Thorley, & Chen 2000; Mahoney & Fromherz 2002).

This paper addresses both HCI and sketch recognition
by exploring the user interface aspects of a recognition-
based diagram creation tool that robustly recognizes natu-
rally drawn diagrams and automatically imports them into
Microsoft Power Point. Our tool combines the ease of draw-
ing on paper with Power Point’s sophisticated presentation
capabilities.

Robust recognition within this tool is achieved
through the use of a multi-domain sketch engine called
SketchREAD, presented in previous work (Alvarado &
Davis 2004). SketchREAD allows users to draw freely in a
number of domains and robustly interprets the user’s strokes
as they are drawn. Although not ready to be used in SkRUIs
for complex domains, SketchREAD may currently be used
in domains where the shapes have little overlap and are
drawn spatially separated, as in the Power Point diagrams
we consider here.

We explore a number of user interface challenges in in-
corporating free sketch recognition into a design tool, in-
cluding when to display recognition feedback, how to inte-
grate sketching with editing, and how the user should cor-
rect recognition errors. We present guidelines for creating
this type of SkRUI based on a series of informal user stud-
ies with a prototype implementation. These guidelines take
into consideration both the requirements needed to maintain
robust sketch recognition and what felt natural to users.

Finally, we evaluate the utility of a number of iterative de-
sign and evaluation techniques—including paper prototyp-
ing, heuristic evaluation, computer prototyping, and quali-
tative user testing on the complete system—for the devel-
opment of sketch recognition interfaces. We found that the
interactive nature of sketching made paper prototyping and
final system evaluation more informative than heuristic eval-

nira
Text Box
Appeared in AAAI 2004 Symposium on Making Pen-Based Interaction Intelligent and Natural, 2004. pp.8-14.



Figure 1: The final design of our Power Point diagram creation tool.

Figure 2: A close-up of the top of the Power Point diagram creation tool.



(a) A sketched diagram (b) The sketched objects are automatically
imported into Power Point

(c) The recognized objects replace
the user’s strokes

Figure 3: An example illustrating the interaction between the Power Point window and the diagram creation tool.

uation and computer prototyping. We believe the results of
our exploration will help guide the design process of future
SkRUIs.

Application
We constructed sketch recognition-based Power Point di-
gram creation tool in order to explore the user interface chal-
lenges in creating SkRUIs. With this tool users may create
diagrams consisting of shapes (ellipses and quadrilaterals)
and connectors (lines and arrows) by sketching them on a
Tablet PC. The system recognizes the different shapes as
they are drawn naturally—the user does not have to perform
any additional action to indicate which shape is being drawn.
Users can draw the strokes in any order and may use any
number of strokes for each shape. Sketch recognition is per-
formed using an engine described in other work (Alvarado
& Davis 2004).

The interface design is shown in Figures 1 and 2. Our
sketch recognition application communicates with Power
Point, but runs in a separate window. The user sketches
diagrams directly onto a reproduction of the slide; these
sketches are recognized and automatically imported into
Power Point.

Our goal was to make the interaction between our dia-
gram creation tool and Power Point as seamless as possible.
One way in which we accomplished this goal was to ensure
that the diagram creation window and Power Point appli-
cation are automatically synchronized to contain the same
information without requiring any explicit action from the
user. When switches to the Power Point window (or clicks
the “Show” button), the recognized objects are added to the
Power Point slide (Figure 3(b)). When the user switches
back to the diagram creation tool, the recognized objects ap-
pear on the slide in place of the user’s strokes (Figure 3(c)).
(Note that although the user’s strokes are recognized as they
are drawn, recognition feedback is not given until after the
objects are added to Power Point.) The diagram tool also au-
tomatically updates its content in response to changes made
within Power Point. As one example, the slide showing in
the diagram creation system is automatically updated to re-
flect the current slide visible in the sketch recognition win-

dow.
Our tool also provides a number of editing capabilities

including the ability to move and delete portions of the di-
agram. Our system performs free-sketch recognition, at-
tempting to recognize all of the user’s strokes as pieces of
a diagram. Developing pen-based editing commands that
would not be mistaken for sketched strokes was not triv-
ial. One way that we accomplished this goal was to include
an explicit editing mode, which the user enters by clicking
the arrow toggle button at the top of the window (Figures 1
and 2). In edit mode, the user may select a single item by
putting her pen on it or select one or more items by dragging
a box around them (Figure 4). A selected item appears high-
lighted (Figure 5). While in edit mode, the user cannot draw
new items. To resume drawing the user must tap the pencil
button at the top to return to sketch mode.

Standard edit mode makes it easy for the system to distin-
guish between sketched strokes and editing gestures, but we
found that users often forgot to return to sketch mode and
would try to draw while still in edit mode. We introduced
online edit modeto make the interaction between editing and
sketching more intuitive. To allow the user to edit while still
in sketch mode, we provide a selection gesture that is not
easily confused with sketched strokes. To select an item us-
ing online edit mode, the user holds down the pen until the
cursor changes from a pencil to an arrow. If the user is on
top of an item, that item becomes selected. If the user is not
on top of an item, the pen can be used to drag out a selection
box to select multiple items. When the user lifts her pen,
the system returns to sketch mode and the user may sketch
new items. However, her selected items remain highlighted,
indicating that these items may be moved or deleted using
the same pen movements and commands as in edit mode.
Pen strokes that begin on top of the selected item will be
interpreted as editing gestures rather than sketched strokes.

In our initial interviews, users expressed a desire to add
unrecognized annotations to their diagrams. In response, our
system supports both recognized drawing, where the user’s
strokes become clean Power Point objects, and unrecog-
nized drawing, where the user’s strokes appear on the slide
exactly as they were drawn. Automatically distinguishing



Figure 4: The user drags a selection box

Figure 5: A selection is made

between recognized diagrams and unrecognized annotations
is currently an unsolved problem for a free-sketch recogni-
tion system. Instead, the user can explicitly switch between
recognized and unrecognized drawing using the combo box
at the top of the window (Figure 2).

The features that are not included in our diagram creation
tool, including copy and paste, alignment, and adding text to
the diagram, can be performed by the user in Power Point.
We discuss below how distributing these features between
the diagram creation tool and Power Point affected the user’s
experience.

System Evaluation
Throughout the design process, we used a number of forma-
tive, or early-stage, evaluation techniques to guide the sys-
tem’s design. The recognition technology to support SkRUIs
is still emerging, and consequently these interfaces have not
been previously studied from a UI perspective. Of course,
our eventual goal is to build SkRUI-based tools that provide
a quantitative improvement over existing tools. However,

to enable the construction of powerful tools, we still need
a better qualitative understanding of what users want from
these interfaces. Accordingly, here our goal was to under-
stand users’ perceptions of our tool and what they wanted
from such a tool, rather than to prove that we had created an
effective system.

We used several evaluation methods throughout the de-
sign process. Our design/evaluation stages included a paper
prototype tested with users, a low-fidelity computer proto-
type both tested with users and evaluated using heuristics,
and the final system tested with users.

Each user-focused evaluation method involved three users
recruited from within the MIT graduate student community.
All users had recently worked on creating presentations, al-
though one was not very familiar with Power Point. Our
participants reflected the target community for this tool in
that graduate students often create presentations for teach-
ing and seminars. The participant who was unfamiliar with
Power Point allowed us to understand what aspects of our
sketch recognition system were challenging for users unfa-
miliar with the complete system, not just the diagram cre-
ation interface.

In each test, users were read a high-level introduction to
the diagram creation tool that briefly described what the sys-
tem could and could not do, but did not describe how to use
it. Following this briefing, each user was asked to perform
three prototypical diagram creation tasks using our diagram
creation tool. Each task was selected to explore a specific
aspect of interacting with the system. The first task explored
how the user used the tool to create a new drawing, begin-
ning with the task of creating a new slide (which is done in
Power Point). The second task explored the interaction be-
tween the pen-based creation tool and keyboard text entry.
In this task we asked users to create a diagram and then la-
bel it using Power Point. Our system does not support hand-
writing recognition, and we wanted to see if this presented
a problem or if users felt comfortable using the keyboard to
enter text. The third task explored the interaction between
sketching and editing using the pen. We asked the user to
sketch a diagram and then move and delete pieces of the di-
agram and then continue to draw.

Design Guidelines
Our design/evaluation process gave us insights into what
users wanted from sketch recognition user interfaces. In
this section we give guidelines and advice for incorporat-
ing sketch recognition into diagram creation tools based on
this design/evaluation process and our knowledge of the re-
quirements for robust sketch recognition.

Display recognition results only when the user is done
sketching. The system should display recognition results
after a user has completed sketching, rather than after every
stroke. Previous work has suggested that recognition feed-
back can distract the user during the design task (Honget al.
2002); we have observed this effect in previous work (Al-
varado & Davis 2001a). In response, our diagram creation
interface did not display recognition feedback while users
sketched. We found that users sketched their diagrams with-



out pausing between shapes and did not appear to expect
recognition feedback. Only one user paused after drawing
his first stroke, expecting that stroke to be recognized, and
he acknowledged that his expectations were based on his in-
teraction with our previous recognition interface.

We stated above that the system should wait until the user
is done sketching to display recognition results. Unfortu-
nately, determining when a user is done sketching is a dif-
ficult problem. Implicit cues such as how long the user has
paused since her last stroke are not always reliable. Particu-
larly in design tasks, users may pause in the middle of their
design, but do not want to receive recognition feedback at
this point.

In determining when a user is done sketching, our obser-
vations suggest that a SkRUI should rely on explicit cues.
In our evaluation, we found window focus was a reliable in-
dicator that the user had completed a sketch: When users
had completed a sketch, they usually switched back to the
Power Point window. Users also clicked the “Show” button
at the top of the window (Figure 2). Neither method of indi-
cating they were done drawing seemed to inconvenience the
user because they could perform these actions at their own
convenience. We conclude that asking the user to explicitly
inform the system when a diagram is complete is a viable
option for a SkRUI.

Finally, although we claim the system should wait until
the user is done sketching to provide recognition feedback,
it is acceptable to give feedback even if the user is only
temporarily done sketching. In some cases, users stopped
sketching, switched to the Power Point window (to add text
to their diagrams, for example) and then returned to the di-
agram creation tool to continue sketching. In these cases
it was acceptable that recognition had occurred before they
were completely done with the diagram because they were
not actively sketching when the recognition was performed.
Users did not seem to mind adding sketched strokes on top
of recognized diagrams.

Provide obvious indications to distinguish free sketch-
ing from recognition. Allowing the user to draw strokes
that remain unrecognized by the system (e.g., an informal,
sketched annotation next to a clean recognized diagram)
presents a challenge for a SkRUI. Because SketchREAD
recognizes freely drawn sketches, where symbols can be
composed of more than one stroke, it is difficult to deter-
mine when the user wants her strokes recognized and when
she wants them to remain unrecognized. To support this
functionality, we provide explicit “free sketch” and “recog-
nition” modes. The combo box at the top of the window
(Figure 2, currently set to “Shape and Connector diagram”)
indicates the system’s current recognition mode.

We found that users could understand the difference be-
tween the modes, but many users forgot what mode they
were in, despite the label at the top of the window. One user
drew an entire digram in free-sketch mode and could not fig-
ure out why the system failed to recognize his strokes. The
system needs to use more obvious clues (such as changing
the cursor or the stroke style, perhaps) to help users remain
aware of what recognition mode they are in.

Restrict recognition to a single domain until automatic
domain detection becomes feasible.Although our ap-
plication supports the recognition of only one domain—
relationship diagrams—we would eventually like to build a
tool that supports the recognition of more than one domain.
We experimented with such a system in our early paper pro-
totypes, asking users to draw both relationship diagrams and
circuit diagrams. In this prototype, user’s had to explicitly
choose the recognition domain before creating a diagram.
This explicit choice was necessary because the paper proto-
type simulated our actual recognition engine, which needs
to know in which domain the user is drawing. Automatic
domain detection represents a technical challenge that our
system cannot yet handle, so we asked users to explicitly
choose the domain using a combo box at the top of the dia-
gram creation window.

Despite this request, users tended to attribute universal
recognition capabilities to the system and did not under-
stand that they had to specify a particular domain. For ex-
ample, we asked users to draw a relationship diagram im-
mediately after they had drawn a circuit diagram. If they
failed to change the recognition domain, we indicated that
their sketch had been incorrectly recognized as a (messy)
circuit diagram. None of our three users performing this
task correctly switched domains, and none of them could
figure out what had gone wrong. We conclude that single-
domain tools will be most effective until automatic domain
detection becomes a feasible alternative, or until we explore
more effective ways to help the user understand the system’s
underlying recognition model.

Incorporate pen-based editing. The system should in-
corporate as much editing capability as possible (including
copy, paste, alignment, resizing, etc.) into a sketch-based
diagram creation interface because users wanted to simulta-
neously create and clean up their drawings. In our final test-
ing, one user repeatedly redrew a circle until it was the exact
same size as another on the screen, then carefully aligned
it with two she had already drawn. The ability to copy,
paste, and align her objects could have saved a consider-
able amount of effort. Although this behavior may not be
as prevalent for rough design tasks, based on previous work
(Alvarado & Davis 2001a; Adler & Davis 2004), we antic-
ipate that users will still want the ability to copy and paste
parts of their drawings.

Sketching and editing should use distinct pen motions.
The system should support pen-based editing gestures that
are distinct from any pen movement the user would make
while sketching. These gestures allow the user to avoid ex-
plicitly specifying sketching and editing mode, but should
be specifically designed designed so that they are not easily
confused with inking strokes in a free-sketch system.

SkRUIs require large buttons. When given the option of
buttons, menus, and keyboard shortcuts, users chose to use
the button with few exceptions. We found that these buttons
should be larger than traditional buttons because of the dif-
ficulties in targeting with the pen: In our initial tests, users
could not reliably click buttons that were the same size as



those designed for a mouse-based interface. When we en-
larged the button-size they had no trouble.

The pen must always respond in real time. We are try-
ing to build a system that is as natural as sketching on pa-
per. To accomplish this goal, the system must not allow
the computation demands of recognition to interfere with the
user’s drawing. It is acceptable thatrecognitionnot occur in
exactly real time; users tolerated a slight recognition delay
once they were done drawing. However, it is extremely im-
portant that the demands of recognition not overwhelm the
system’s ability to display the user’s strokes exactly when
they are drawn. In our tests, when the user’s strokes were de-
layed, users became agitated, repeatedly drawing the same
shape until it appeared under their pen as they drew. These
added strokes confused the recognition system, causing it to
add extra shapes to the user’s diagrams. Because the users
thought they had drawn a single shape, they could not un-
derstand the existence of the extra shapes in the diagram.

As recognition technology improves, the potential for
building more powerful SkRUIs will increase. We believe
these initial guidelines will help researchers build usable and
intuitive systems that make use of this new class of interface.

Iterative Design and Evaluation Techniques
Iterative UI design involves user evaluation early in the de-
sign process when designs are relatively easy to change. It-
erative design is widely supported as an effective approach
to UI development, and a number of standard iterative eval-
uation techniques have been developed including paper pro-
totyping, heuristic evaluation, low-fidelity computer proto-
typing, and Wizard of Oz techniques. However, these tech-
niques were developed for traditional button, keyboard and
menu-based Graphical UIs (GUIs) or speech recognition in-
terfaces, and we found that many of them are not well suited
to the development of SkRUIs. We briefly introduce the
techniques mentioned above, and then we discuss the char-
acteristics of SkRUIs that make the application of these tra-
ditional techniques difficult and present suggestions as to
which techniques may best be used for SkRUI development.

The goal of each iterative evaluation is to determine how
well a user can understand and use an interface and to un-
cover the confusing or unusable aspects of the interface.
This evaluation can (and should) be done at all stages of a
system’s implementation. Paper prototyping is used to test
an interface before any implementation takes place. The user
interacts with a paper version of an interface, while a human
controller manipulates the paper to allow the user to under-
stand how the computer system would respond. Low-fidelity
computer prototyping is used to evaluate a more polished in-
terface without having to construct the entire back-end. In
this type of testing, the system produces canned responses
to a few commonly performed user tasks. Finally, infor-
mal, qualitative user testing on the complete system can be
performed to uncover interface problems before quantitative
studies are run. At each of these stages, the interface can
also be evaluated without users by examining it according to
a number of established heuristics (Nielsen ).

There are two main differences between SkRUIs and tra-

ditional GUIs that affect the applicability of various design
techniques. First, SkRUIs are generally not command-based
interfaces. Sketching is a creative process, and the user does
not think of her strokes as commands to the system. This
characteristic differentiates SkRUIs not only from GUIs, but
also from most speech recognition interfaces, in which the
user speaks in order to issue commands to the system. Sec-
ond, unlike in a GUI, the freedom of sketching relative to
button clicks or menus makes it difficult to reliably antici-
pate the user’s actions.

Based on these observations, we suggest that any pro-
totype evaluation tool must match the user’s expectations
of the system’s reactivity. Paper prototyping is useful, be-
cause the user does not expect a real-time reaction to her
strokes and is content with an explanation about what the
computer’s reaction will be in the implemented system. On
the other hand, we found that any reactive computer proto-
type must have a fully implemented recognition back end,
because when the user works with a computer, she expects
immediate and exact reactions to her strokes, even if she is
informed that the system is a prototype with limited func-
tionality.

Heuristic evaluation also had limited utility in our tests
because it did not involve an kind of interaction between the
user and the system. While it was useful to catch “standard”
UI problems such as the lack of sufficient help and docu-
mentation, also could not evaluate the user’s understanding
of the system’s response because it is based on an analysis
of a static version of the interface.

Wizard of Oz techniques, in which a human secretly acts
as the computer by interpreting the user’s strokes and gener-
ating the proper response, would be useful for the iterative
design of SkRUIs, but they will be difficult to construct due
to unpredictability of user input. Wizard of Oz techniques
rely on the “wizard’s” ability to quickly produce a system re-
sponse for the user’s input. In a speech recognition system,
this task is challenging but has been effective ((Dahlback,
Jonsson, & Ahrenberg 1993)). A Wizard of Oz system for
SkRUI design faces the added challenge of handling two-
dimensional input (e.g., the wizard cannot simply respond
with a recognized symbol, he also must place the symbol in
the appropriate location on the screen).

We believe that a powerful Wizard of Oz framework for
SkRUIs, while useful, may not be ready in time for the de-
velopment of the initial SkRUIs. Due to the difficulties of
creating low-fidelity computer prototypes, we suggest that,
rather than rather than spending time creating a computer
prototype with canned responses to the user’s actions, the
designer should focus on implementing a strong recognition
back end with a front end that can be easily modified.

Future Work and Conclusion
The diagram creation tool presented here is an early pro-
totype, not yet ready for deployment or formal user stud-
ies. We aim to extend its functionality and conduct a more
formal comparison between this system and Power Point to
help us better understand the utility of our system. A more
formal evaluation will also help us refine the design and
evaluation guidelines presented in this paper.



In conclusion, we have discussed a new class of user inter-
face that is not only pen-based, but free-sketch recognition-
based. As recognition technology improves, the potential for
building SkRUIs will increase. SkRUIs are, of course, fun-
damentally user interfaces, and it is cruicial always to keep
in mind the user’s perspective when building any UI. We
presented an early-stage SkRUI developed with an explicit
focus on the user’s perspective. Based on iterative design
of this interface we gave guidelines for the development of
SkRUIs and discussed the strengths and weaknesses of ex-
isting iterative evaluation techniques for the development of
future SkRUIs. We believe that the work presented here is
an important first step for developing sketch recognition in-
terfaces that are both intelligent and usable.

References
Adler, A., and Davis, R. 2004. Speech and sketching for
multimodal design. InProceedings of the 9th International
Conference on Intelligent User Interfaces, 214–216. ACM
Press.
Alvarado, C., and Davis, R. 2001a. Preserving the free-
dom of sketching to create a natural computer-based sketch
tool. In Human Computer Interaction International Pro-
ceedings.
Alvarado, C., and Davis, R. 2001b. Resolving ambiguities
to create a natural sketch based interface. InProceedings.
of IJCAI-2001.
Alvarado, C., and Davis, R. 2004. Sketchread: A sketch
recognition engine for any domain. InProc. of UIST ’04.
Anderson, R.; Anderson, R.; Simon, B.; Wolfman, S.; Van-
DeGrift, T.; and Yasuhara, K. 2004. Experiences with
a tablet pc based lecture presentation system in computer
science courses. InProc. SIGCSE ’04.
Dahlback, N.; Jonsson, A.; and Ahrenberg, L. 1993. Wiz-
ard of oz studies - why and how.Intelligent User Interfaces
(IUI93) 193–200.
Hammond, T., and Davis, R. 2002. Tahuti: A geometrical
sketch recognition system for uml class diagrams.AAAI
Spring Symposium on Sketch Understanding59–68.
Hong, J.; Landay, J.; Long, A. C.; and Mankoff, J. 2002.
Sketch recognizers from the end-user’s, the designer’s, and
the programmer’s perspective.Sketch Understanding, Pa-
pers from the 2002 AAAI Spring Symposium73–77.
Landay, J. A., and Myers, B. A. 1995. Interactive sketching
for the early stages of user interface design. InProceedings
of CHI 95, 43–50.
Lank, E.; Thorley, J. S.; and Chen, S. J.-S. 2000. An inter-
active system for recognizing hand drawn UML diagrams.
In Proceedings for CASCON 2000.
Mahoney, J. V., and Fromherz, M. P. J. 2002. Handling
ambiguity in constraint-based recognition of stick figure
sketches. SPIE Document Recognition and Retrieval IX
Conf., San Jose, CA.
Mankoff, J.; Hudson, S. E.; and Abowd, G. D. 2000.
Providing integrated toolkit-level support for ambiguity in
recognition-based interfaces. InProceedings of the CHI

2000 conference on Human factors in computing systems,
368–375.
Newman, M. W.; Lin, J.; Hong, J. I.; and Landay, J. A.
2003. DENIM: An informal web site design tool inspired
by observations of practice.Human-Computer Interaction
18(3):259–324.
Nielsen, J. Ten usability heuristics. Inuseit.com:
Papers and Essays. http://www.useit.com/papers/heuris-
tic/heuristiclist.html.
Saund, E.; Fleet, D.; Larner, D.; and Mahoney, J. 2003.
Perceptually supported image editing of text and graphics.
In Proceedings of UIST ’03.




