
In Proceedings of IJCAI-03

LADDER:
A Language to Describe Drawing, Display, and Editing in Sketch Recognition

Tracy Hammond and Randall Davis
Massachusetts Institute of Technology

200 Technology Square, NE43
Cambridge, MA 02139

{hammond, davis}@ai.mit.edu

Abstract

We have created LADDER, the first language to
describe how sketched diagrams in a domain are
drawn, displayed, and edited. The difficulty in cre-
ating such a language is choosing a set of prede-
fined entities that is broad enough to support a wide
range of domains, while remaining narrow enough
to be comprehensible. The language consists of
predefined shapes, constraints, editing behaviors,
and display methods, as well as a syntax for spec-
ifying a domain description sketch grammar and
extending the language, ensuring that shapes and
shape groups from many domains can be described.
The language allows shapes to be built hierarchi-
cally (e.g., an arrow is built out of three lines), and
includes the concept of “abstract shapes”, analo-
gous to abstract classes in an object oriented lan-
guage. Shape groups describe how multiple do-
main shapes interact and can provide the sketch
recognition system with information to be used
in top-down recognition. Shape groups can also
be used to describe “chain-reaction” editing com-
mands that effect multiple shapes at once. To
test that recognition is feasible using this language,
we have built a simple domain-independent sketch
recognition system that parses the domain descrip-
tions and generates the code necessary to recognize
the shapes.

1 Introduction
To date, sketch recognition systems have been domain-
specific, with the recognition details of the domain hard-
coded into the system. Developing such a sketch interface is a
substantial effort. We propose instead that recognition be per-
formed by a single domain-independent recognition system
that uses a domain specific sketch grammar (an approach used
with some success in speech recognition [Zue et al., 1990;
Hunt and McGlashan, 2002]). Programmers could then cre-
ate new sketch interfaces simply by writing a sketch grammar
describing the domain-specific information.

We have created LADDER, a sketch description language
that can be used to describe how shapes and shape groups are
drawn, edited, and displayed. These descriptions primarily
concern shape, but may include other information helpful to

the recognition process, such as stroke order or stroke direc-
tion. The specification of editing behavior allows the system
to determine when a pen gesture is intended to indicate edit-
ing rather than a stroke. Display information indicates what
to display after strokes are recognized.

The language consists of predefined shapes, constraints,
editing behaviors, and display methods, as well as a syntax
for specifying a domain description and extending the lan-
guage. The difficulty in creating such a language is ensur-
ing that domain descriptions are easy to specify, and that
the descriptions provide enough detail for accurate sketch
recognition. To simplify the task of creating a domain de-
scription, shapes can be built hierarchically, reusing low-
level shapes. Shapes can extend abstract shapes, which de-
scribe shared shape properties, preventing the application de-
signer from having to redefine these properties several times.
The language has proven powerful enough to describe shapes
from several domains. The language enables more accurate
sketch recognition by supporting both top-down and bottom-
up recognition. Descriptions of how shapes may combine
can aid in top-down recognition and can be used to describe
“chain-reaction” editing commands.

Our contribution is in creating LADDER, the first sketch-
ing language to incorporate editing, display, and shape group
information. To test our language, we have built a simple
domain-independent sketch recognition system that parses
the domain description and successfully recognizes shapes
based on these descriptions.

Section 2 describes the components of the language, in-
cluding the predefined shapes, constraints, editing behaviors,
and display methods available. Section 3 describes the syn-
tax and content of a sketch grammar designed in the language.
Section 4 describes a system we have implemented to test the
language and ensure that shapes in a domain can be recog-
nized based on their descriptions. Section 5 describes related
work done in the development in sketch languages.

2 Language Contents
The language consists of predefined shapes, constraints, edit-
ing behaviors, and display methods. Figure 2 shows an ex-
ample description for OpenArrow drawn in (Figure 1). The
description of a shape contains a list of components (the el-
ements from which the shape is built), geometric constraints
on those components, a set of aliases (names that can be used

nira
Text Box
Appeared in Proceedings of the 2003 Internaltional Joint Conference on Artificial Intelligence (IJCAI), pp.461-467



to simplify other elements in the description), editing behav-
iors (how the object should react to editing gestures), and dis-
play methods indicating what to display when the object is
recognized.

Figure 1: An open arrow.

(define shape OpenArrow
(description "An arrow with an open head")
(components
(Line shaft)
(Line head1)
(Line head2))

(constraints
(coincident shaft.p1 head1.p1)
(coincident shaft.p1 head2.p1)
(coincident head1.p1 head2.p1)
(equal-length head1 head2)
(acute-meet head1 shaft)
(acute-meet shaft head2))

(aliases
(Point head shaft.p1)
(Point tail shaft.p2))

(editing
( (trigger (click_hold_drag shaft))
(action

(translate this)
(set-cursor DRAG)
(show-handle MOVE tail head)))

( (trigger (click_hold_drag head))
(action

(rubber-band this head tail)
(show-handle MOVE head)
(set-cursor DRAG)))

( (trigger (click_hold_drag tail))
(action

(rubber-band this tail head)
(show-handle MOVE tail)
(set-cursor DRAG))))

(display (original-strokes)))

Figure 2: The description for an arrow with an open head

The power of the language is derived in part from carefully
chosen predefined building blocks.

2.1 Predefined Shapes

The language includes a number of predefined primitive and
non-primitive shapes, usable as building blocks in describing
other shapes. The primitive shapes are Shape, Point, Path,
Line, BezierCurve, and Spiral. Circle, Arc, and Ellipse are
examples of non-primitive shapes included in the language
library; all three are more specific versions of the primitive
shape Spiral. The OpenArrow in Figure 2 is a non-primitive
shape built out of three primitive shapes.

The language uses an inheritance hierarchy; Shape is an
abstract shape which all other shapes extend. Shape provides
a number of components and properties for all shapes, includ-
ing boundingbox, centerpoint, width, and height. Each prede-
fined shape may have additional components and properties; a
Line, for example, also has p1, p2 (the endpoints), midpoint,
length, angle, and slope. Components and properties for a
shape can be used hierarchically in shape descriptions. When
defining a new shape the components and properties are those
defined by Shape, and those defined by the components and
aliases section.

2.2 Predefined Constraints
New shapes are defined in terms of previously defined shapes
and constraints between them. For instance, the OpenArrow
in Figure 2 contains the constraint (acute-meet head1 shaft),
which indicates that head1 and shaft meet at a point and form
an acute angle in a counter-clockwise direction from head1
to shaft. (Angles are measured in a counter-clockwise direc-
tion.)

A number of predefined constraints are included in the lan-
guage, including: perpendicular, parallel, collinear, same-
side, opposite-side, coincident, connected, meet, intersect,
tangent, contains, concentric, larger, near, draw-order, equal-
length, =, <, <=, angle, angle-dir, acute, obtuse, acute-
meet, and obtuse-meet. If a sketch grammar consists of only
the constraints above, the shape is rotationally invariant.

There are also predefined constraints that are valid only
in a particular orientation, including horizontal, verti-
cal, pos-slope, neg-slope, left-of, right-of, above, below,
same-H-pos, same-V-pos, above-left, above-right, below-left,
below-right, centered-below, centered-above, centered-left,
centered-right, and angleL, where (angleL line1 degrees)
specifies that the angle between a horizontal line pointing
right and line1 is degrees.

There is an additional constraint: is-rotatable, which im-
plies the shape can be found in any orientation. If is-rotatable
is specified along with an orientation-dependent constraint,
there must be an angleL, horizontal, or vertical constraint
specified, which serves to define the orientation and set a rel-
ative coordinate system. For example, the two angle-meet
constraints could have been replaced with:
(is-rotatable) (horizontal shaft)(neg-slope head1) (pos-slope
head2) (left-of shaft.p1 shaft.p2) (left-of head1.p2 shaft.p2)
(left-of head2.p2 shaft.p2),

in which case the shaft is the reference line.

2.3 Predefined Editing Behaviors, Actions, and
Triggers

Describing editing gestures permits the recognition system
to discriminate between sketching (pen gestures intended to
leave a trail of ink) and editing gestures (pen gestures in-
tended to change existing ink), and permits us to describe the
desired behavior in response to a gesture.

In order to encourage interface consistency, the language
includes a number of predefined editing behaviors described
using the actions and triggers above. One such example is
DragInside, defines that if you click-hold-drag the pen start-
ing inside of the bounding box of a shape, the entire shape
automatically moves with it.

When defining a new editing behavior particular to a do-
main, there are two things to specify: the trigger – what sig-
nals an editing command – and the action – what should hap-
pen when the trigger occurs. The language has a number of
predefined triggers and actions to aid in describing editing
behaviors.

For instance, in Figure 2, the OpenArrow contains three
editing behaviors. The first editing behavior says that if you
click and hold the pen over the shaft of the OpenArrow,
when you drag the pen, the entire OpenArrow will translate
along with the movement of the arrow. The second editing be-
havior states that if you click and hold the pen over the head



of the arrow, the head of the arrow will follow the motion of
the pen, but the tail of the arrow will remain fixed and the
entire OpenArrow will stretch like a rubber band (translat-
ing, scaling, and rotating) to satisfy these two constraints and
keep the OpenArrow as one whole shape. All of the edit-
ing behaviors also change the pen’s cursor as displayed to the
sketcher, and display moving handles to the sketcher to let the
sketcher know that she performing an editing command.

The possible editing actions include wait, select, deselect,
color, delete, translate, rotate, scale, resize, rubber-band,
show-handle, and set-cursor. To give an example:
(rubber-band shape-or-selection fixed-point move-point

[new-point])

translates, scales, and rotates the shape-or-selection so
that the fixed-point remains in the same spot, but that the
move-point translates to the new-point. If new-point is not
specified, move-point translates according to the movement
of the pen.

The possible triggers include: click, double-click, click-
hold, click-hold-drag, draw, draw-over, scribble-over, and
encircle. Possible triggers also include any action listed
above, to allow for “chain-reaction” editing.

Shape groups allow designers to define “chain-reaction”
editing behaviors. For instance, the designer may want to
specify that when we move a rectangle, if there is an arrow
head inside of this rectangle, the arrow should move with the
rectangle.

2.4 Predefined Display Methods

An important part of a sketching interface is controlling what
the user sees after shapes are recognized. The designer can
specify that the original strokes should remain, or instead that
a cleaned version of the strokes should be displayed. In the
cleaned version, the original strokes are fit to straight lines,
clean curves, clean arcs, or a combination.

Another option is to display the ideal version of the strokes.
In this case, lines that are supposed to connect at their end
points actually connect and lines that are supposed to be par-
allel are actually shown as parallel. In the ideal version of the
strokes, all of the noise from sketching is removed.

It may be that we don’t want to show any version of the
strokes at all, but some other picture. In this case, we can ei-
ther place an image at a specified location, size, and rotation,
or we can create a picture built out of predefined shapes, such
as circles, lines, and rectangles.

The pre-defined display methods include: original-strokes,
cleaned-strokes, ideal-strokes, circle, line, point, rectangle,
text, color, and image. Each method includes color as an op-
tional argument.

3 Specifying a Domain Description
A domain description contains a list of the domain shapes
and shape groups, as well as definitions for each of them. De-
scriptions can be hierarchical and can refer to other shapes
in the language. This section provides examples from the
domain description sketch grammar of UML (Unified Mod-
elling Language) class diagrams [Booch et al., 1998].

3.1 Indicating Domain Definitions
The compiler uses a list of domain shapes and shape groups
to confirm that each shape is properly defined and to speed
recognition by creating recognizers only for sub-shapes
needed by the domain.

3.2 Defining Shapes
A domain shape is a shape that is meaningful in the do-
main. Geometric shapes usually occur in several domains and
are the building blocks of the domain shapes. For instance,
in the domain of UML class diagrams, the domain shapes
(followed by their geometric shape component) are: general
classes (represented by rectangles), interface classes (circles),
interface associations (lines), dependency associations (open-
headed arrows), aggregation associations (diamond-headed
arrows), inheritance associations (triangle-headed arrows),
information associations (dotted lines or dotted open arrows).

A shape definition includes primarily geometric informa-
tion, but can include other drawing information that may be
helpful to the recognition process, such as stroke order or
stroke direction. A shape definition is composed of seven
sections. All sections are optional except the components sec-
tion.

1. The description contains a textual description of the
shape, e.g., “an arrow with a triangle-shaped head.”

2. The is-a section specifies any class of abstract shapes
(Section 3.3) that the shape may be a part of. This is
similar to the extends property in Java. All shapes extend
the abstract shape Shape.

3. The components section lists the components of the
shape. For example, the TriangleArrow in Figure 3 is
built out of the OpenArrow from Figure 2 and a Line.
Components can be accessed hierarchically.

4. The constraints section specifies relationships between
the components. For example, in the TriangleArrow in
Figure 3, (coincident head3.p1 head1.p2) specifies that
an endpoint of head3 and an endpoint of head1 are lo-
cated at the same point.
The constraints section can specify both hard con-
straints, such as the one listed above, and soft con-
straints, which are specified by the keyword soft. Hard
constraints are always satisfied in the shape, but soft con-
straints may not be. Soft constraints can aid recognition
by specifying relationships that usually occur. For in-
stance, in Figure 3 the shaft of the arrow is commonly
drawn before the head of the arrow, but the arrow should
still be recognized even if this constraint is not satisfied.

5. The aliases section allows us to compute certain prop-
erties and name them for use later. For instance, in Fig-
ure 3, head1 is defined and used in a constraint for sim-
plicity. Components specified in the aliases section can
be accessed hierarchically. For instance, TriangleAr-
row uses head and tail from the OpenArrow in Fig-
ure 2.

6. An editing section specifies how the shape can be
edited. Common editing commands involve movement



and deletion of the shape. Each editing behavior must
specify a trigger and an action listed in Section 2.3.
Shapes can be defined to be moved as a whole rather
than having to move individual lines. For instance, in
Figure 3, one editing behavior for the TriangleArrow
indicates that if the user presses and holds the pen on
the shaft for a brief period, the pen will drag the entire
TriangleArrow when moved.

7. A display section specifies what should be displayed on
the screen when the shape is recognized. This section is
generally included only for domain shapes, not for ge-
ometric shapes. In the UMLInheritanceAssociation in
Figure 4, the arrow will be displayed using straight lines
for the arrow head and the original stroke for the shaft.

(define shape TriangleArrow
(description "An arrow with a triangle-shaped head")
(components
(OpenArrow oa)
(Line head3))

(aliases
(Line shaft oa.shaft)
(Line head1 oa.head1)
(Line head2 oa.head2)
(Point head oa.head)
(Point tail oa.tail))

(constraints
(coincident head3.p1 head1.p2)
(coincident head3.p2 head2.p2)
(soft draw-order shaft head1)
(soft draw-order shaft head2))

(editing
( (trigger (click_hold_drag shaft))
(action

(translate this)
(set-cursor DRAG)
(show-handle MOVE tail head)))...))

Figure 3: The description for an arrow with a triangle-shaped
head.

(define shape UMLInheritanceAssociation
(is-a UMLGeneralAssociation)
(components
(TriangleArrow arrow))

(aliases
(Point head arrow.head)
(Point tail arrow.tail)
(Line shaft arrow.shaft))

(display
(original_strokes arrow.shaft)
(cleaned_strokes arrow.head1 arrow.head2 arrow.head3))

Figure 4: The domain shape UML Inheritance Association is
defined by the geometrical shape TriangleArrow from Fig-
ure 3.

3.3 Defining Abstract Shapes
In the UMLInheritanceAssociation defined in Figure 4, the
is-a section specifies that the UMLInheritanceAssociation
is an extension of the abstract shape UMLGeneralAssocia-
tion. Abstract shapes have no concrete shape associated with
them; they represent a class of shapes that have similar at-
tributes or editing behaviors. These attributes can be defined
once in the abstract shape description rather than for each do-
main shape. For instance, in Figure 2 and Figure 3, notice that
the OpenArrow and the TriangleArrow have identical edit-
ing behaviors defined. Rather than repeatedly listing these

editing behaviors in each shape, we could create an abstract
shape which specifies these editing behaviors.

An abstract shape is defined similarly to a regular shape,
except it has a required section instead of a components sec-
tion. Each shape that extends the abstract shape must define
each variable listed in the required section, in its components
or aliases section.

Figure 5 presents a diagram of the inheritance hierarchy for
the abstract and non-abstract shapes in the UML class dia-
grams domain. In UML, UMLDependencyAssociation, the
UMLInheritanceAssociation, the UMLAggregationAsso-
ciation, the UMLInformationAssociation, and the Inter-
faceAssociation are all links represented by arrows or lines
and all have the same editing behavior. Thus, we can create
the abstract shape UMLAssociation, which lists the editing
behavior of these shapes. Figure 6 shows the abstract shape
description of the UMLAssociation. Notice that the required
variables are used when defining editing behaviors.

(define abstract-shape UMLAssociation
(is-a Shape)
(required
(Point head)
(Point tail)
(Line shaft))

(editing
( (trigger (click_hold_drag shaft))
(action

(translate this)
(set-cursor DRAG)
(show-handle MOVE tail head)))...))

Figure 6: The description for the abstract class UMLAssoci-
ation.

3.4 Defining Shape Groups
A shape group is a collection of domain shapes that are
commonly found together in the domain. Defining shape
groups provides two significant benefits. Shape groups can be
used by the recognition system to provide top-down recogni-
tion, and “chain-reaction” editing behaviors can be applied to
shape groups, allowing the movement of one shape to cause
the movement of another.

In the domain of UML class diagrams, there are six le-
gal shape groups that describe the visual relationship between
UML associations and UML classes. For example, one shape
group consists of an association combined with a general
class, such that the tail of the association is inside or near the
general class shown in Figure 7 and described in Figure 8. A
shape group definition is similar to that of a shape definition.

Figure 7: An association attached to a class at its tail.

If a single shape in a sketch can be part of many instances
of a shape group, then we place the key word multiple before
the component shape of the shape group. In UML Class Dia-
grams, for example, a single UMLAssociation can be part of
only one instance of a shape group, while a single UMLClass
can be part of many instances of UMLGenClassGenAssoci-
ationTail.



Figure 5: The inheritance diagram of UML Class Diagram shapes.

(define shape-group
UMLGenClassGenAssociationTail

(description "A general class attached to
the tail of a general association")

(is-a UMLAssociationAttachedTail)
(components
(multiple (GeneralClass ct))
(GeneralAssociation r)))

Figure 8: Description of the shape group from Figure 7.

3.5 Defining Abstract Shape Groups
Abstract shape groups definitions allow the reuse of shared
properties across multiple shape groups. The definition of a
UMLAssociationAttachedTail in Figure 9 indicates that the
tail, but not the head, of the association is inside the class,
preventing us from having to redefine the constraints many
times, and allows us to define one general editing behavior
for many shapes. An editing behavior for the UMLAssocia-
tionAttachedTail indicates that whenever you move a UML-
Class that is attached to the tail of a UMLAssociation, the
head of the UMLAssociation remains fixed in its original lo-
cation, but the tail of the UMLAssociation remains attached
to the UMLClass as it moves; the UMLAssociation acts like
a rubber band (translating, scaling, and rotating) to satisfy
these constraints.

(define abstract-shape-group
UMLAssociationAttachedTail

(required
(Association r)
(Class ct))

(constraints
(contains ct r.tail)
(!contains ct r.head))

(editing
(trigger (translate ct))
(action (rubber-band r r.head r.tail))))

Figure 9: Definition for an abstract shape group.

3.6 Defining Constraints
We believe the language contains sufficient constraints to de-
fine a broad range of domains. When an additional con-
straint is needed, it can be defined using a macro facility. The
sections of a sketch-constraint definition include description,
components, and constraints.

4 Testing
4.1 Examples of Shapes Described in the

Language
We have evaluated the language by showing that it can de-
scribe a wide variety of symbols from a number of different
domains. We have used it to describe over a hundred shapes

(define constraint centered-in
(description "Tests if shape1 is centered inside shape2")
(components
(Shape s1)
(Shape s2))

(constraints
(contains s2 s1)
(coincident s1.center s2.center)))

Figure 10: Definition for the constraint centered-in.

from the domains of UML class diagrams, mechanical engi-
neering diagrams, course of action diagrams, and letters of
the alphabet. Illustrative examples are given below.

Polygon
A PolyLine (shown in Figure 11a), may contain a variable
number of line segments. A variable number of components
is specified by the key word vector and must specify the min-
imum and maximum number of components. If the maxi-
mum number can be infinite, the variable n is listed. For in-
stance the PolyLine must contain at least two lines, and each
line must be connected with the previous. The definition of a
Polygon easily follows from the definition of the PolyLine

Figure 11: (a)Poly Line (b) Dashed Open Arrow (c) Stick
Figure

(define shape PolyLine
(components (vector Line vl[2,n]))
(constraints (coincident vl[i].p2 vl[i+1].p1))
(aliases (Point head vl[0].p1)(Point tail vl[n].p2)))

(define shape Polygon
(components(PolyLine poly))
(constraints(coincident poly.head poly.tail)))

Figure 12: Shape Description of a Polygon.

Dashed Open Arrow
A DashedOpenArrow (Figure 11b) is made from a Ope-
nArrow, and a Dashedline, which in turn contains at least
two line segments. When given a third argument specifying
a length, the constraint near states that two points are near to
each other relative to a given length.

Stick Figure
The definition of a stick figure (Figure 11c) shows how we
can create new components to help describe shapes. It creates



(define shape DashedLine
(components (vector Line vl[2,n]))
(constraints (collinear vl[i].p1 vl[i].p2 vl[i+1].p1)

(!(intersect vl[i] vl[i+1])
(near vl[i].p2 vl[i+1].p1 vl[i].length))

(aliases (Point head vl[0].p1)(Point tail vl[n].p2)))

(define shape DashedOpenArrow
(components (OpenArrow oa)(DashedLine dl))
(constraints (near oa.tail dl.head oa.shaft))
(aliases

(Point head oa.head)(Point tail dl.tail)))

Figure 13: Description of a dashed line and a dashed open
arrow.

a new line between the feet for use in defining constraints,
ensuring that both feet lie below the body.

(define shape StickFigure
(description "a stickfigure with two arms and two legs

all sloping down at 45 degrees")
(components (Circle head)(Line body)

(Line larm)(Line rarm)(Line lleg)(Line rleg))
(alias (Line feet_space (new Line (lleg.p2 rleg.p2))))
(constraints (meet head body.p1)(!(intersect body head))

(is-rotatable) (vertical body) (meet body larm.p1)
(meet body rarm.p1) (coincident larm.p1 rarm.p1)
(acute larm body)(acute body rarm)(left-of larm rarm)
(coincident body.p2 lleg.p1)(coincident body.p2 rleg.p1)
(obtuse body lleg)(obtuse rleg body)
(perpendicular larm rarm)(perpendicular lleg rleg)
(near body.p1 rarm.p1)(parallel rarm rleg)
(parallel larm lleg)(!(intersect feet_space body))
(equal-length lleg rleg)
(equal-length larm rarm))

Figure 14: Description of a stick figure.

4.2 System Implementation
We built a simple domain-independent recognition system to
test whether sketches can be recognized from our domain
descriptions. The system parses a domain description into
Java code and Jess (a rule-based system that interfaces with
Java) [Friedman-Hill, 1995] rules, and uses them to recog-
nize sketches. For example, using the domain description
for UML, the system successfully recognized hand-drawn
sketches of all of the shapes in Figure 5 regardless of over-
lap.

Domain Description Parsing
The domain description is parsed to create recognition code,
creating at least one Jess rule (containing the shape recogni-
tion information), and one Java file (describing the shape), for
each shape description. The system then uses the Jess rules
to recognize sketches.

Jess Rule Example
The rule automatically generated for the TriangleArrow
from Figure 3 is shown in Figure 15. If a shape description
contains a vector, such as that of the DashedArrow in Fig-
ure 13, two Jess rules are created, one containing the base
case, and the second containing a recursive rule.

Stroke Preprocessing
The recognition system has several stages of recognition.
First, each time a stroke is drawn, the stroke is pre-processed
[Sezgin et al., 2001] into either Point, Line, Curve, Arc, or a
combination thereof, allowing users to draw objects in a sin-
gle stroke or with multiple strokes. These primitive shapes
are then asserted to a Jess database.

(defrule TriangleArrowCheck
;;Get the parts of the triangle arrow
?f0 <- (Subshapes OpenArrow ?oa $?oa_list)
?f1 <- (Subshapes Line ?head3 $?head3_list)
(OpenArrow ?oa ?oa_shaft ?oa_head1 ?oa_head2 ?oa_head ?oa_tail)
(Line ?head3 ?head3_p1 ?head3_p2)

;;Make sure that the openarrow and line don’t share any subparts.
(test (uniquefields $?oa_list $?head3_list))

;; Get the subpart of the open arrow since they are referenced
(Line ?oa_shaft ?shaft_p1 ?shaft_p2)
(Line ?oa_head1 ?head1_p1 ?head1_p2)
(Line ?oa_head2 ?head2_p1 ?head2_p2)

;; test for that the constraints hold
(test (coincident ?head3_p1 ?head1_p2))
(test (coincident ?head3_p2 ?head2_p2))

=>
;; Triangle Arrow has been successfully found
;; Set the aliases
(bind ?shaft ?oa_shaft)(bind ?head1 ?oa_head1)
(bind ?head2 ?oa_head2)(bind ?head ?oa_head)
(bind ?tail ?oa_tail)

;; Tell the recognition system that there is a Triangle Arrow
(bind ?nextnum (addshape TriangleArrow ?oa $?head3_list ?shaft

?head1 ?head2 ?head ?tail))

;; Tell the Jess system that there is a Triangle arrow
(assert (TriangleArrow ?nextnum ?oa ?head3 ?shaft ?head1 ?head2

?head ?tail))
(assert (Subshapes TriangleArrow ?nextnum (union$ $?oa_list

$?head3_list)))

;; Triangle Arrow is a domain shape. Assert it.
;; Conflicts will be resolved elsewhere.
(assert (DomainShape TriangleArrow ?nextnum (time)))
(assert (CompleteSubshapes OpenArrow ?oa $?oa_list)))

Figure 15: Automatically generated Jess Rule for the Triangle
Arrow.

Recognition of Shapes
Recognition is handled by the Jess rule based system. We
have automatically generated templates for the Jess system to
fill in. Once Jess finds the appropriate components, the rule is
fired and the constraints are tested. The constraints are Java
functions with which Jess interacts. All possible shapes are
found, even if the shapes share lines or other components. If
the shape can be a domain shape (i.e., a final shape in the
domain), the shape is asserted as a domain shape.

Domain Shapes
When domain shapes are created, a rule fires in Jess confirm-
ing that no two found domain shapes share the same sub-
components. If two domain shapes do share subcomponents,
one domain shape is retracted. The domain shape chosen
to remain is the one containing more primitive components
(following Ockham’s Razor); if the two shapes contain the
same number of components, the shape created first is cho-
sen, since previously chosen recognitions have higher prece-
dence. If a domain shape is found, then the recognition sys-
tem displays the shape as the designer specified and editing
commands can then be performed on the shape.

5 Related Work
Shape description languages, such as shape grammars, have
been around for a long time [Stiny and Gips, 1972]. Shape
grammars are studied widely within the field of architecture,
and many systems are continuing to be built using shape
grammars [Gips, 1999]. However, shape grammars were
developed for shape generation rather than recognition, and
don’t provide for non-graphical information, such as stroke



order, that may be helpful in recognition. They also lack ways
for specifying shape editing.

Within the field of sketch recognition, there have been
other attempts to create languages for sketch recognition.
Bimber et. al [2000] describe a simple sketch language using
a BNF-grammar. The language describes three-dimensional
shapes hierarchically. This language allows a programmer to
specify only shape information and lacks the ability to spec-
ify other helpful domain information such as stroke order or
direction and editing behavior, display, or shape interaction
information.

Mahoney [2002] uses a language to model and recognize
stick figures. The language currently is not hierarchical, mak-
ing large objects cumbersome to describe. Caetano et. al.
[2002] use fuzzy relational grammars to describe shape. Both
Mahoney and Caetano lack the ability to describe editing, dis-
play, or shape grouping information.

The Electronic Cocktail Napkin project [Gross and Do,
1996] allows users to define domain shapes by drawing them.
A shape is described by the shapes it is built out of and the
constraints between them. The Cocktail Napkin’s language is
able to describe only shape.

Jacob [Jacob et al., 1999] has created a software model
and language for describing and programming fine-grained
aspects of interaction in a non-WIMP user interface, such as
a virtual environment. The language is very low-level making
it difficult to define new interactions, and, in the domain of
sketching, does not provide a significant improvement to cod-
ing the domain-dependent recognition system from scratch.

The language described in this paper is being used in sev-
eral other systems, including sketch learning from example
[Veselova, 2002], smart compiling using HMM’s [Sezgin,
2002], and an intelligent Bayesian network context oriented
sketch recognition system [Alvarado et al., 2002].

6 Conclusion
6.1 Future Work
We plan to examine more domains to ensure that the language
contains the appropriate primitives. We would also like to
test our syntax on a wide user base. Large domains benefit
from visual diagrams, such as the one in Figure 5. We plan to
automatically generate some of these visual diagrams to help
with the grammar-writing process.

6.2 Contributions
We have created LADDER, the first language to describe how
sketched diagrams in a domain are drawn, displayed, and
edited. The language consists of pre-defined shapes, con-
straints, editing-behaviors, and display methods, as well as
a syntax for specifying a sketch grammar and extending the
language, ensuring that shapes and shape groups from many
domains can be described. The syntax simplifies the defini-
tion of new shapes by allowing shapes to be built hierarchi-
cally and by providing abstract shapes to contain common
shape properties. Shape groups describe how domain shapes
interact, and can provide information to be used in top-down
as well as bottom-up recognition. Shape groups can also
be used to describe “chain-reaction” editing commands. We
have built a simple domain-independent sketch recognition

system for testing that recognition is feasible based on the
descriptions provided.

Acknowledgments
This work is supported in part by the MIT Oxygen Collaboration.
and by a grant from Intel Corp.

The authors would like to thank Jacob Eisenstein for the name LAD-
DER and Jacob Eisenstein, Michael Oltmans, Mark Foltz, and Vi-
neet Sinha for their help in reviewing this paper.

References
[Alvarado et al., 2002] C Alvarado, M Oltmans, and R Davis. A

framework for multi-domain sketch recognition. AAAI Spring
Symposium on Sketch Understanding, pages 1–8, March 25-27
2002.

[Bimber et al., 2000] O Bimber, LM Encarnao, and A Stork. A
multi-layered architecture for sketch-based interaction within vir-
tual environments. Computer and Graphics, 2000.

[Booch et al., 1998] G Booch, J Rumbaugh, and I Jacobson. The
Unified Modeling Language User Guide. Addison-Wesley, Read-
ing, MA, 1998.

[Caetano et al., 2002] A Caetano, N Goulart, M Fonseca, and
J Jorge. Javasketchit: Issues in sketching the look of user inter-
faces. AAAI Spring Symposium on Sketch Understanding, 2002.

[Friedman-Hill, 1995] E Friedman-Hill. Jess, the rule engine for
the java platform. http://herzberg.ca.sandia.gov/jess/, 1995.

[Gips, 1999] J Gips. Computer implementation of shape grammars.
NSF/MIT Workshop on Shape Computation, 1999.

[Gross and Do, 1996] MD Gross and EYL Do. Demonstrating the
electronic cocktail napkin: a paper-like interface for early design.
ACM Conference on Human Factors in Computing, pages 5–6,
1996.

[Hunt and McGlashan, 2002] A Hunt and S McGlashan. Speech
recognition grammar specification version 1.0, w3c candidate re-
comentation. http://www.w3.org/TR/speech-grammar, 26 June
2002.

[Jacob et al., 1999] RJK Jacob, L Deligiannidis, and S Morrison. A
software model and specification language for non-WIMP user
interfaces. ACM Transactions on Computer-Human Interaction,
6(1):1–46, 1999.

[Mahoney and Fromherz, 2002] JV Mahoney and MPJ Fromherz.
Three main concerns in sketch recognition and an approach to ad-
dressing them. AAAI Spring Symposium on Sketch Understand-
ing, pages 105–112, March 25-27 2002.

[Sezgin et al., 2001] TM Sezgin, T Stahovich, and R Davis. Sketch
based interfaces: Early processing for sketch understanding. Per-
ceptive User Interfaces Workshop, 2001.

[Sezgin, 2002] M Sezgin. Generating domain specific sketch recog-
nizers from object descriptions. MIT Student Oxygen Workshop,
2002.

[Stiny and Gips, 1972] G Stiny and J Gips. Shape grammars and
the generative specification of painting and sculpture. Informa-
tion Processing, pages 1460–1465, 1972.

[Veselova, 2002] O Veselova. Perceptually based learning of shape
descriptions from one example. MIT Student Oxygen Workshop,
2002.

[Zue et al., 1990] V Zue, J Glass, M Phillips, and S Seneff. The mit
speech recognition system: phonological modeling and lexical
access. 1990 International Conference on Acoustics, Speech and
Signal Processing, pages 49–52, March 25-27 1990.




