
Envisioning Sketch Recognition: A Local Feature

Based Approach to Recognizing Informal Sketches

by

Michael Oltmans

S.M. Electrical Engineering and Computer Science, Massachusetts
Institute of Technology (2000)

B.S. Computer Science, Northwestern University (1998)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 22, 2007

Certi�ed by. .
Randall Davis

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Envisioning Sketch Recognition: A Local Feature Based

Approach to Recognizing Informal Sketches

by

Michael Oltmans

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2007, in partial ful�llment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Hand drawn sketches are an important part of the early design process and are an
important aspect of creative design. They are used in many �elds including electri-
cal engineering, software engineering and web design. Recognizing shapes in these
sketches is a challenging task due to the imprecision with which they are drawn. We
tackle this challenge with a visual approach to recognition. The approach is based
on a representation of a sketched shape in terms of the visual parts it is made of.
By taking this part-based visual approach we are able to recognize shapes that are
extremely di�cult to recognize with current sketch recognition systems that focus on
the individual strokes.

Thesis Supervisor: Randall Davis
Title: Professor of Computer Science and Engineering

2

Acknowledgments

I've spent over a quarter of my life in grad school at MIT. It has been an amazing 9

year �lled with many enriching moments and good friends. But it hasn't always been

easy and I've relied heavily on my colleagues, family and friends to get me through.

First, I would like to thank my advisor, Randy Davis, for supporting me �nancially

and intellectually throughout my time at MIT. He has been a wonderful advisor,

always putting the needs of his students �rst. He has managed to simultaneously

encourage, put up with, and (when necessary) curtail my tendency to tinker with our

computing infrastructure. When we moved into Stata, he took a windowless o�ce

(complete with mysterious and unpleasant aromas) for himself so that his students

could have a spacious work area. His ability to root out the core issues of any problem,

even when the problem is not in his core expertise, has been invaluable on countless

occasions. I would also like to thank him for supporting and encouraging me during

my year as a programmer.

I would also like to thank Trevor Darell and Rob Miller for their advice and

comments on my work. Their diverse backgrounds from di�erent parts of AI and

HCI have provided many important insights into my work both directly and through

the courses and seminars I've taken from them.

The small but growing pen-based computing community has been a great source

of intellectual stimulation at the annual workshops and conferences. I have been

inspired by the work presented in this community and can't wait to see what comes

out of it next.

The (no longer aptly named) Design Rational Group started as a few loosely

related research projects and has developed into a cohesive research group. In addition

to being a tremendous source of intellectual stimulation and inspiration to me it has

produced some of my best friends at MIT. Mark Foltz was a great mentor to me. He

taught me to love Linux, con�gure the dickens out of it, and perhaps most importantly

he taught me to play hockey. Christine Alvarado started at MIT the same year I

did and we have been close friends ever since. She has been an inspiration to me

3

academically and supported me through several emotionally di�cult times. Likewise,

Tracy Hammond has always been there for me pushing me intellectually, culinarily,

and musically. I owe a great deal to her friendship. Metin Sezgin, Jacob Eisenstein,

Aaron Adler, Sonya Cates, Tom Ouyang, and Olya Veselova have all injected a great

deal of loving friendship, messing around, and intellectual support to our group. I'd

also like to acknowledge my friend Josie who was our o�ce mate during her asbestos

exile.

Krzysztof Gajos challenged me both personally and intellectually on our daily

�smoke� breaks (which involved tea but no smoke) on the steps of NE43.

My friends Sameer Ajmani, Michael Ross, and John Winn also deserve special

mention for helping me get through those �rst two years of courses. I couldn't have

done it without our study sessions together and the good times we had.

Likewise Serkan, Leonel, Timko, Steve, and Geo� made my �rst years at MIT a

true joy. To you all, I raise a glass of heart warming SoCo.

Outside of the lab and the o�ce I have had a host of marvelous roommates.

Nati Srebro and I were randomly thrown together by the MIT housing lottery and

we remained roommates for �ve more years. Hiking, coming home at midnight to

marvelous feasts, and countless debates on the important issues of the world (is debate

a sport?), were just a few of the perks of our years as roommates. The addition of

Liz, and now Edden, to his family has also been a wonderful experience for me. Liz

is a dear friend as well, and I can't wait to get to know Edden as he grows up. My

other roommates Bryan Quinn, Maddog and Brooke also remain good friends. I even

managed to go to the weddings of all three of my roommates last summer, all of which

were marvelously creative, individual, and wildly fun.

I'd also like to thank Jaime Teevan for being my cardboard pod buddy and an

amazing friend. Her strength of character is an inspiration to me. I'd also like to

thank her and Alex for letting me be a part of their children's lives. My time with

Cale, Dillon, and especially Gri�n has been priceless and made me realize how much

fun (and work) kids can be.

Many groups within MIT and the AI Lab (now CSAIL) provided much needed

4

relief from the academic pressures of life at MIT: GSL for feeding me, Tuesday hockey

for teaching a Minnesota boy how to skate, MITOC (in particular the organizational

phenom, Chris Glazner) for reminding me of my love for the outdoors and introducing

me to the beauty of winter in the Whites, and all of the IM sports that made me

feel more like a jock than at any other point in my life. The MIT IM system is an

amazing organization, its breadth and openness to players of all levels has been the

main reason I haven't turned into a marshmallow. I'd also like to thank Rodney

Daughtrey for being a partner in sporting crime. He may have left the AI lab before

I started but he still shows up for numerous IM events and has become a good friend.

I'd also like to thank all of the friendly and helpful people across the hall in T!G

for all of their technical support. The are the great unsung heroes of CSAIL. My

conversations with friends at other institutions and departments have always put

me in awe of what an amazing job they do. Plus, they make entertaining lunch

conversation. Special thanks go to Noah and Jon for letting me continually pester

them with Linux questions and crippled hardware, I've learned a tremendous amount

from them. I'd also like to thank Jack, Ron, and Anthony for keeping the roof above

our heads, the mice out of our hair, and �xing anything and everything that's broken.

My time as den mother of GSB [30] has been a weekly pain in the derriere and a

wonderful stress reliever at the same time. I owe much of my sanity to this weekly

gathering. I'd like to thank all the Girl Scouts and all of the den mothers that

proceeded me. I eagerly await the weekly missives from my successor(s).

I would also like to thank all of the people on my soccer team, CFN (Crispy Fried

Noodles). They have been an amazing group of teammates and friends. In particular

Brian Leclerc deserves special mention for organizing the team and recording statistics

on who played and scored in every game we have ever played, including the �rst 50+

games, in which we never won a game. CFN also deserves boundless gratitude for

being the soccer team that changed my life by introducing me to Janina Matuszeski.

Janina, has been my unyielding support during my �nal years at MIT. She made

sure I ate, slept, and had clean clothes even during the longest hours of thesis writing.

She has been an amazing source of statistical knowledge, intellectual vigor, compan-

5

ionship and love. I cannot thank her enough.

And of course I couldn't have made it without my family. Being so far away from

them has made me appreciate them even more. While at MIT my friendship with my

little sister has grown tremendously. She and her boyfriend Justin are a vital part of

my life as both family and friends.

To my parents, I owe everything. They got me started with my �rst computer (a

TI-99/4A) and encouraged me to learn Basic. They even taught themselves enough

Basic to write a program that used the speech synthesizer to quiz me on my spelling

words; no small task for a programmer, let alone a dentist and an English teacher1.

Their unconditional love and support has been unwavering. I admire them as consci-

entious people, as dedicated workers, and most of all as the perfect parents.

Thank you all.

1Of course she is an English teacher who is also the founder of an online high school and has no
shortage of computer skills.

6

Contents

1 Introduction 14

1.1 Motivation . 17

1.2 Challenges . 19

1.2.1 Signal and Conceptual Variation in Sketches 20

1.2.2 Overtracing . 21

1.2.3 Segmentation . 22

1.3 Approach Overview . 23

1.3.1 Summary of Isolated Shape Classi�cation 25

1.3.2 Summary of Shape Localization 29

1.3.3 Terminology . 30

1.4 Results Overview . 30

1.5 Contributions . 32

1.6 Outline . 32

2 Representation of Visual Parts 34

2.1 Bullseye Features . 35

2.2 Strokes Have Direction . 37

2.2.1 Making Features Rotationally Invariant 38

2.2.2 Binning Point Orientations . 39

2.2.3 Calculating Stroke Direction 40

2.3 Stroke Preprocessing . 41

2.4 Calculating Distances Between Bullseyes 41

7

3 Representation of Shapes 44

3.1 The Codebook . 45

3.2 Match Vectors . 46

3.3 Discussion . 48

4 Recognition 50

4.1 Support Vector Machine Training and Classi�cation 50

4.2 Shape Localization . 51

4.2.1 Selecting Initial Candidate Regions 51

4.2.2 Classifying Initial Candidate Regions 52

4.2.3 Forming Predictions by Clustering Initial Candidate Regions . 53

4.2.4 Selecting a Final Set of Predictions 55

5 Evaluation 57

5.1 Circuit Sketch Data Set . 58

5.2 Circuit Symbol Evaluation . 60

5.2.1 Bullseye and Match Vector Evaluation 60

5.2.2 Zernike Moment Classi�er . 62

5.3 Power Point Symbol Evaluation . 64

5.4 Full Sketches . 66

5.4.1 Evaluation Criteria . 67

5.4.2 Evaluation of the Classi�cation of Candidate Regions 67

5.4.3 Evaluation of Final Predictions 70

6 Related Work 72

6.1 Sketch Recognition . 73

6.1.1 Recognition Based on Strokes 73

6.1.1.1 Gesture Recognition 73

6.1.1.2 Hierarchical Shape Descriptions 74

6.1.2 Recognition Based on Global Properties of Shapes 76

6.1.3 Recognition Based on Appearance 77

8

6.1.4 Discussion . 78

6.2 Computer Vision . 79

6.2.1 Local Feature Representations 79

6.2.2 Recognition Based on Visual Parts 80

6.3 Future Directions . 82

6.3.1 Shape Localization . 82

6.3.1.1 Invariant Interest Points 82

6.3.1.2 Model Fitting . 85

6.3.2 Developing a Design Tool . 85

7 Contributions 87

Bibliography 89

9

List of Figures

1-1 Symbols used to represent common analog circuit components. 15

1-2 A range of drawing styles as demonstrated from examples in our dataset

of analog circuit sketches. 16

1-3 Touch-up strokes are made on top of previous strokes to ��x� their

appearance. In the diode drawn above, the indicated stroke was made

to close the gap between the top and the lower right corners of the

triangle. 18

1-4 This simple circuit poses a number of challenges to symbol recognition.

The resistors have a varying number of peaks. The right-hand stroke

of the capacitor is overtraced and drawn with the same stroke as the

wire it is attached to. The resistor on the bottom has a gap between

the strokes. 20

1-5 Several examples showing di�erent types of overtracing. The dots show

where each stroke started and ended. 21

1-6 A capacitor drawn with a di�cult to segment stroke. The right hand

bar was drawn with the same stroke as the wire. 22

1-7 The circle in the voltage source, on the left of the circuit, was the �rst

part of the sketch to be drawn. The entire rest of the sketch was then

drawn before �nally adding the �+� and �-� signs to the voltage source.

These types of patterns make it impractical to segment shapes by the

timing of the strokes. 23

10

1-8 Two di�erent visual parts: one for a voltage-source and one for an ac-

source. Each sub-division of the disc is a histogram bin. Darker bins

contain more ink pixels than the the lighter colored bins. 26

1-9 A summary of the match vector construction for the resistor shown in

top part of the �gure. The codebook with two parts is shown on the

left. The three parts calculated at various points on the resistor are

shown along the top. Each codebook part is compared to each of the

input parts. The distance between each pair is shown in the table. The

match vector is then formed by taking the minimum value in each row.

This represents the degree to which each codebook part is present in

the input shape. 28

1-10 The three resistor symbols and three ground symbols shown above

were correctly classi�ed by our system. These examples demonstrate

the range of noise and variation that our system can handle. 31

1-11 An example of a sketch in which all of the shapes were correctly local-

ized and identi�ed. 31

2-1 An example of a visual part calculated on a diode symbol 35

2-2 Shape context features represent the �ne detail of each of the resistors

near the center and are only slightly changed by the conceptual vari-

ation near the outside of the feature. This suppresses the signal noise

and provides robustness to conceptual variation. 36

2-3 The �rst bullseye shows the histogram oriented to the x-axis; the �rst

bin is just above the x-axis. In the second bullseye, the histogram

boundaries are rotated relative to the interest point's orientation to

make it rotationally invariant; the �rst bin is on the bottom. In the

third bullseye, the bins are rotated by an additional half bin width to

prevent the stroke from lying along the boundary. 38

11

2-4 The point orientations are a third dimension in the histogram. Each

spatial bin counts the number of points in the bin's region appearing

at each orientation. The histogram on the right shows the orientations

of the points in the dark colored bin. 40

3-1 Match vector construction. 47

4-1 The steps in selecting a �nal set of resistor predictions for a sketch. . 54

5-1 Shapes in the HHreco dataset. 58

5-2 Example circuit diagrams from our data set 59

5-3 Symbols used in the circuit sketches. 59

5-4 Correctly recognized circuit symbols 61

5-5 This �gure shows a sampling of some of the incorrectly classi�ed shapes,

in column one. The shape it was classi�ed as is shown on the right.

Many errors are made on shapes that are very similar to shapes from

other classes. In particular the grounds, capacitors and batteries ap-

pear similar when viewed in isolation. 63

5-6 HHreco shapes have almost no variation. The shapes above were drawn

by one of the users. 64

5-7 Confusion matrix resulting from running the isolated classi�er on re-

gions that signi�cantly overlap a shape, but may not be exactly cropped

to that shape. The evaluation includes wire shapes which were ex-

tracted from the sketches by �nding regions that did not overlap other

shapes. Overall the classi�er correctly identi�ed 92.3% of the shapes. 68

5-8 Correlation between overlap and score for each candidate region. Higher

scores generally indicate a greater overlap of the predicted shape and

the actual shape. 69

5-9 Precision-Recall graph for the full sketch processor. 70

12

List of Tables

5.1 The confusion matrix for the circuit symbols. Each row shows the

number of shapes of a given type that were assigned to each class.

For example, 9 ac-sources were classi�ed as current-sources. The last

column shows the recall (# correctly identi�ed / total # for that class). 62

5.2 The cumulative confusion matrix for the results of running the bullseye

and match vector classi�er on the HHreco dataset. Each row contains

the times each class was assigned to a shape of that type (e.g. 16 arches

were incorrectly classi�ed as moons). 66

13

Chapter 1

Introduction

Hand drawn sketches are an important part of the early design process in many do-

mains, including electrical engineering, software engineering and web design, and have

been shown to be an important aspect of creative design [39]. Drawing conventions

and symbols have developed over time to represent common structures and compo-

nents. In each of these domains the symbols that designers use (e.g. the symbols for

analog circuit components in Figure 1-1) provide a visual shorthand that enables them

to rapidly visualize a design and understand how it will function. With the growing

popularity of the TabletPC and other pen input devices, we are poised to capture

these drawings with digital ink. Unlike real paper and ink, digital sketches can be

augmented and automatically interpreted by a recognition system. A system that

can recognize hand-drawn symbols can convert a sketch directly into formal, domain

speci�c models of the sort used in CAD, UML, SPICE or PowerPoint. In this way

sketching can become a �uid part of the design process, rather than an independent

step followed by formal modeling or drafting.

Sketching allows designers to revise and evolve their designs rapidly. To preserve

this �uid process of design creation, it is our position, that it is best if the interface

does not show the user cleaned-up versions of their strokes and the results of the

recognition system. This type of feedback interrupts the creative process and forces

the designer to attend to the interface and recognition system. The merits of sketching

without receiving recognition feedback have also been argued in [19]. We refer to

14

JFET
Bipolar Junction
Transistor (BJT)

Voltage
Source

Unspecified
Current-sourceAC-Source

Ground Battery (II) DiodeCapacitor Battery (I)Resistor

Figure 1-1: Symbols used to represent common analog circuit components.

sketching without the interruptions of the recognition system as free sketching. Freely-

drawn sketches can vary widely from careful and neat to sprawling and messy. A range

of sketches from our dataset of analog circuit sketches is shown in Figure 1-2.

As a result of this fast-paced design process the sketches are often rough and

imprecise. This poses a number of challenges to our goal of sketch recognition. The

roughness of the sketches requires a new approach to recognition that di�ers from

the approaches commonly taken towards sketches that are drawn more carefully and

precisely. Our approach is based on the appearance of the ink on the page. This is in

contrast to much of the sketch recognition literature, which focuses on properties of

the strokes and their spatial and temporal relationships to one another. We use and

adapt techniques developed in the �elds of computer vision and machine learning to

represent and classify shapes based on the visual �parts� they are composed of.

We �rst describe how the visual parts are represented, then show how these parts

can be used to describe shapes. We describe how these part-based representations

are used to train a classi�er to distinguish between shapes. Finally, we discuss how

the isolated shape classi�er is used to locate individual shapes in a sketch.

We demonstrate the e�ectiveness of these representations and algorithms on sketches

of circuit diagrams. We �rst evaluate the classi�er on isolated shapes that have been

extracted by hand from the sketches and demonstrate correct classi�cation of 89.5%

of the symbols. We then evaluate a detector built on top of the isolated shape classi-

15

(a) (b)

(c)

Figure 1-2: A range of drawing styles as demonstrated from examples in our dataset
of analog circuit sketches.

16

�er that localizes and identi�es shapes in complete sketches. The full sketch processor

is able to correctly locate and identify 74% of the shapes.

1.1 Motivation

Our goal is to construct a sketch recognition engine that is suitable for design sketches

drawn in the absence of any incremental feedback to the user and without imposing

constraints on how the user must draw. This type of unconstrained drawing is impor-

tant when the user is focused on brainstorming and on iterating designs quickly. We

want to free the user from being interrupted, prompted, or otherwise made aware of

the recognition system until she is ready to use the results of the recognition process.

This is in contrast to many current sketch interpretation systems that immediately

show how the strokes are interpreted, typically by replacing the original strokes with

the inferred shapes. These interactive systems are an e�ective replacement for cur-

rent menu- and toolbar-driven design tools because they allow the user to express the

forms they are designing without having to select actions and tools from the toolbar.

However, we want to do more than replace these interfaces, we want to bring the com-

puter into the initial design process. When the goal is to jot something down quickly

or explore early design possibilities, a less intrusive style of interaction is preferable.

Others have also noted the merits of non-interactive interfaces (and interfaces that

do not beautify strokes) [19, 2, 1, 17].

Unfortunately, this goal cannot be achieved simply by using an existing recognition

system and postponing the feedback until the user requests it. This is not plausible

because most current approaches depend on the feedback process to simplify the task

of recognition. Feedback allows the user to repair recognition errors early on, so that

an error in recognizing one shape does not lead to errors in other nearby shapes.

For example, a common problem occurs when the system incorrectly groups together

strokes from two di�erent symbols. This results in both symbols being recognized

incorrectly and can lead to further segmentation and recognition errors in other,

nearby symbols. Conversely, the absence of corrective action by the user provides

17

(a) Diode symbol (b) Sketched diode with a touch-
up stroke

Figure 1-3: Touch-up strokes are made on top of previous strokes to ��x� their ap-
pearance. In the diode drawn above, the indicated stroke was made to close the gap
between the top and the lower right corners of the triangle.

implicit feedback to the system that it has correctly recognized the shapes drawn

so far. With this implicit feedback the system does not need to attempt to regroup

or reinterpret the current set of interpreted symbols and strokes. Not reconsidering

con�rmed recognition results limits the search space of possible stroke groupings and

interpretations to strokes not included in the con�rmed results. As observed by

Alvarado [3], this greatly reduces the number of combinations of strokes and shape

hypotheses that need to be evaluated as new strokes are added. Because current

interactive recognition systems rely on these shortcuts provided by the interactive

process, we cannot directly apply them to freely drawn sketches in which there is no

interactive feedback.

Applying current systems to freely drawn sketches is also complicated by the fact

that sketches made in interactive systems and in free sketching interfaces di�er. In

an interactive interface the user is drawing new ink next to shapes that have been

redrawn and typically cleaned up by the recognition system. Phenomena such as

touch-up strokes, which are made to tidy up a previous stroke, are unnecessary in

this context because the original stroke is immediately replaced by a perfectly straight

line. Freely drawn sketches, on the other hand, frequently contain touch up strokes

(e.g., in Figure 1-3). Interactive interfaces eliminate the need for such phenomena

and therefore current recognition systems have not been designed to handle them. In

18

contrast, recognition in the context of freely drawn sketches must be able to handle

these types of phenomena.

Additionally, feedback can teach the user what the recognition system is capable

of recognizing. As a result the user can (and often does) change sketching style so that

the sketch is easier to recognize. For example, the user draws a stroke she intends

to be a square but the system recognizes it as a circle and displays the circle on

the screen. The next time she needs to draw a square she may draw each side of

the square with a separate stroke to avoid this error. Free sketches don't have this

feedback so the user's behavior does not adapt to the system's limitations. The result

is that freely drawn sketches have a wider range of drawing styles than interactive

sketches.

Having described the motivation for a recognition system capable of handling

freely drawn sketches, we proceed to outline the precise phenomena that make non-

interactive design sketches di�cult to recognize. We then present our arguments for

why we use an approach based on computer vision and machine learning to handle

these challenges.

1.2 Challenges

A number of challenges arise in recognizing freely drawn sketches. A series of examples

from the sketches in our dataset help illustrate them.

The principal challenges are:

• Shapes vary on both a signal and a conceptual level.

• Users draw strokes that overtrace previous strokes, and that may not be neces-

sary to depict the shape being drawn.

• Segmenting strokes into groups corresponding to individual shapes is a complex

task.

The simple circuit shown in Figure 1-4 demonstrates a number of these challenges,

which we discuss in detail below.

19

Figure 1-4: This simple circuit poses a number of challenges to symbol recognition.
The resistors have a varying number of peaks. The right-hand stroke of the capacitor
is overtraced and drawn with the same stroke as the wire it is attached to. The
resistor on the bottom has a gap between the strokes.

1.2.1 Signal and Conceptual Variation in Sketches

The key di�erence between conceptual and signal variation has to do with the user's

intent. Signal noise involves variations that the user did not intend, while concep-

tual variation re�ects the variety of ways in which some symbols can be drawn. To

understand the challenges of signal and conceptual variation in sketches, consider

the top-most and bottom-most resistors in Figure 1-4. There are two ways in which

these resistors vary. First, the one on the bottom contains a gap. This is an example

of signal level noise because these two strokes were intended to touch but they did

not. Other examples of signal noise include lines that are wiggly instead of straight,

corners that are rounded instead of pointy and lines that are intended to be parallel

but are touching.

Second, the resistor on top has four peaks, while the one on the bottom has three.

This is an example of conceptual variation because this is not an accidental slip of

the pen or imprecision on the part of the user. Rather, it is an acceptable variation

on the resistor symbol.

Signal noise is a problem because even two shapes intended to be the same are

never identical; there is always some amount of signal noise that makes them di�erent.

The recognition system must be able to abstract away from this level of noise to

compensate for the gap in the resistor.

20

Figure 1-5: Several examples showing di�erent types of overtracing. The dots show
where each stroke started and ended.

At the same time, it must be able to distinguish di�erent types of shapes that

vary in small ways. For example, both capacitors and batteries consist of a pair of

parallel lines. The only di�erence is that the battery has one line shorter than the

other. The recognition system must allow some noise in the lengths of the lines but

still be sensitive to the fact that too much variation in this length changes the identity

of the shape. Chapter 2 shows how we summarize the appearance of small portions of

shapes in a way that abstracts from the noise but preserves enough of the appearance

to distinguish between similar shapes of di�erent types.

Conceptual variation is a problem because the classi�er must either learn a sepa-

rate model for each variation or be able to generalize across these variations. We show

in Chapter 3 how we construct a representation that allows a classi�er to generalize

across a range of variations.

1.2.2 Overtracing

Another common challenge is the presence of overtraced strokes. An overtraced stroke

is one in which the user lays ink on top of previously existing ink, as, for example,

the right hand stroke of the capacitor in 1-4 and the examples in 1-5. As discussed in

[27] users draw on top of previous strokes for a number of reasons, including trying to

emphasize an aspect of the drawing, tidying up a previous stroke or making a faint

stroke darker.

Many sketch recognition systems assume that each stroke or part of a stroke maps

to a single part of a shape. This complicates the recognition of overtraced symbols

21

Figure 1-6: A capacitor drawn with a di�cult to segment stroke. The right hand bar
was drawn with the same stroke as the wire.

because the ink that visually appears as a single line is actually made up of multiple

strokes. The recognizer must attempt to remove or join these strokes together to rec-

ognize the shape correctly. This in turn requires the system to determine whether two

strokes are intentionally overtraced or simply drawn close together. As we demon-

strate below, taking a visual approach to recognition avoids the di�culty of de�ning

the exact set of criteria to make this distinction. In general, overtracing does not

change the visual appearance of the shape in a substantial way therefore a visual

approach to recognition is well suited to recognizing overtraced shapes.

1.2.3 Segmentation

Segmentation is the problem of grouping the strokes and parts of strokes that corre-

spond to a single shape. Several phenomena make this task di�cult. For example,

the �rst part of the capacitor in the lower left of Figure 1-4 (enlarged in Figure 1-6)

is drawn with a single stroke going from the wire, up to the top of the right hand bar

and then back down. There is then a spatial gap followed by the second bar and then

the connecting wire. The di�culty lies in designing a general set of rules for when a

new shape starts and the old one ends. If we look only at whole strokes, the entire

wire will be included in the capacitor symbol. If we look only at connected strokes

we will break the capacitor into two shapes. If we break the stroke into fragments at

corners and changes of direction (e.g. [9, 35, 34]) there are 5 fragments to consider

(the two wires, the left hand bar, the right hand bar and the fragment connecting

from the top of the right bar down to the wire). These 5 fragments can be combined

into 10 di�erent groups of 2 fragments each. Considering groups of 3 fragments (e.g.

to also search for a symbol commonly made of 3 fragments) increases the number of

22

Figure 1-7: The circle in the voltage source, on the left of the circuit, was the �rst
part of the sketch to be drawn. The entire rest of the sketch was then drawn before
�nally adding the �+� and �-� signs to the voltage source. These types of patterns
make it impractical to segment shapes by the timing of the strokes.

combinations to 20. In general the number of possible groupings of stroke fragments

grows combinatorially and quickly becomes too large of a space to search for valid

shapes.

This combinatorial blowup can be reduced by searching only for groups containing

strokes drawn consecutively in time, as in [15]. However, users do not always draw all

of one symbol before drawing the next one, such as the voltage source described in

Figure 1-7. In an analysis of digital circuit sketches, 14% of all the non-wire symbols

were drawn with non-consecutive strokes [5]. Because this interspersing of strokes

between shapes is a common phenomena, grouping strokes according to the order in

which they were drawn is not su�cient to perform segmentation.

In Chapter 3, we describe how we scan a sketch for shapes visually. By scanning

visually, as opposed to trying to explicitly group fragments of strokes, we sidestep the

challenges that stroke-based systems must wrestle with.

1.3 Approach Overview

In this thesis, we show that handling freely drawn design sketches with an approach

based on vision and machine learning is an e�ective way of dealing with signal noise

and conceptual variation. In addition, it enables us to handle the extra noise inherent

in freely drawn sketches that are more di�cult to recognize with conventional tech-

niques. As mentioned above, our decision to eliminate interactive feedback from the

23

interface means that we cannot make use of the shortcuts that recognizers in many

current interactive systems employ. Our system's ability to handle these challenges,

without relying on the shortcuts provided by interactive feedback, distinguishes us

from much of the sketch understanding literature. We achieve this by stepping back

from the stroke-by-stroke interpretation of the sketch and recognizing shapes based

on their appearance.

The visual appearance is the impression that a set of strokes on the page conveys to

the user, independent of how the individual strokes were drawn. A visual approach

to recognition processes the combined ink produced by the strokes and identi�es

shapes by interpreting the patterns and distribution of the ink on the page. This is in

contrast to stroke-based systems, which recognize shapes according to the properties

of individual strokes or groups of strokes (e.g., the order in which strokes were drawn,

how close the endpoints of two strokes are, or which parts of the stroke correspond

to corners).

The handling of overtracing nicely illustrates the distinction between a visual

and a stroke-based approach. An overtraced stroke looks fundamentally the same

regardless of the number of times it is overtraced. It may become slightly wider and

darker but the overall appearance of the ink on the page does not change. In contrast,

the stroke-based representation changes as each stroke is added. A visual approach to

recognition can process the heavily overtraced stroke in the same way as the original

stroke, but the stroke based approach must explicitly deal with issue of combining or

removing the additional strokes.

The advantages of a visual approach to recognition are particularly well suited to

freely drawn sketches because the user bases her understanding of the sketch and her

subsequent actions on what the ink looks like. In contrast, when using an interactive

system, the user sees the system's interpretation and bases her actions on what the

system has recognized, rather than the original appearance of the strokes. As a result,

freely drawn sketches contain more phenomena of the type described above, such as

overtracing, di�cult-to-segment stroke sequences, and strokes that are noisier and

less precisely drawn. Unlike a stroke-based recognition system, an appearance-based

24

system does not get thrown o� by these types of phenomena because it is looking

for visual patterns in the sketch, not in individual strokes or in the way the strokes

were drawn. The user only cares what the ink looks like as she draws, so visual

recognition is better aligned with the user's perception of the sketch than a stroke

based approach.

1.3.1 Summary of Isolated Shape Classi�cation

Our approach to classifying shapes is based on a representation of their visual parts.

The part-based representation is used to train a classi�er to distinguish between

shapes based on their parts. To better understand our representation of visual parts

and the role that they play in recognition, we �rst describe a common stroke-based

approach that uses semantic parts to recognize shapes. Understanding the use of

semantic parts will make clear how part-based representations abstract away signal

noise. It also provides a point of contrast between semantic parts and our visual

parts.

A common approach to recognizing sketched shapes is to recognize them in terms

of the semantic parts that they are made of and the constraints between those parts

(e.g. [3, 4, 17, 18, 26]). The parts are often geometric primitives such as lines, arcs

and ellipses, while the constraints are typically geometric properties and relationships

such as parallel, perpendicular, and touching. A rectangle, for example, is described

as four lines, the endpoints of which should connect to each other at right angles.

In the stroke-based approach, recognition is performed by �rst fragmenting the

input strokes into segments that can each be approximated by a line, arc, or ellipse.

Then, if an assignment of geometric primitives to components of the shape can be

found such that all of the constraints are satis�ed, the shape is recognized.

In this process, the geometric primitives are an intermediate representation be-

tween the full shape and the raw strokes. The noise in the raw strokes is abstracted

away in the conversion from strokes to geometric primitives. The noise in the strokes

can more easily be handled at the level of geometric primitives (rather than at the

level of the entire shape) because they are, by de�nition, simple structures, and it is

25

Figure 1-8: Two di�erent visual parts: one for a voltage-source and one for an ac-
source. Each sub-division of the disc is a histogram bin. Darker bins contain more
ink pixels than the the lighter colored bins.

easy to evaluate how well a primitive approximates a stroke segment.

The classi�cation of a shape based on its primitive parts is insulated from the

stroke level noise and can focus on accounting for the conceptual variation allowed

for the shape. For example, the fact that rectangles can have di�erent relative and

absolute side lengths is implicitly represented by the lack of constraints on the height

and width of the rectangle.

In taking a visual approach to recognition, we wanted to preserve this elegant

division of representation in which shapes are described as collections of parts and

their allowable conceptual variations, while being insulated from signal noise by the

process of identifying the parts themselves. We do this by calculating visual parts,

instead of semantic parts.

In our representation, a visual part is an abstraction of the appearance of a region

of the shape. A visual part does not generally correspond to a semantic part of a

shape (e.g. one of the lines in a rectangle); instead it represents the appearance of a

region of the shape (e.g. the top right hand corner of a rectangle). Many visual parts

are calculated for a drawn shape, representing overlapping regions of the shape.

Our representation of parts is based on the shape context features developed in

[7]. Each visual part is a circular region that is subdivided into rings and wedges, like

a dartboard, as shown in Figure 1-8. Each of the subdivisions of the circular region is

a histogram bin that measures how many pixels of ink are contained in that region.

26

The part is represented as a vector formed from the counts in each bin. As can be

seen in the �gure, visual parts are more complicated than geometric primitives. This

allows us to represent a wide variety of shapes, including shapes that can not easily be

described with geometric primitives. For example, a spiral is very hard to describe in

terms of relationships between lines and arcs, yet, using visual parts we can learn the

patterns of pixels that a spiral generally contains. We provide a formal description of

the parts and discuss their properties in detail in Chapter 2.

To recognize a sketched symbol, we represent it based on the parts it contains

and then train a classi�er to distinguish shapes based on those parts. The part-

based representation insulates the classi�er from the signal noise and allows it to

learn which parts appear in each type of shape. As mentioned above, the parts do

not correspond to semantic components of the shape so the part-based representation

does not represent a decomposition of the shape.

To form the representation, we �rst calculate the visual parts at a sampling of

locations that cover the sketched symbol (depicted in the top of Figure 1-9). Typically,

50 parts are calculated for a shape.

In the next step we make use of a standard vocabulary of parts. The standard

vocabulary allows us to describe each sketched symbol in terms of the same set of

parts. The vocabulary of parts is called the codebook and is represented by the

column of parts on the left side of the �gure. The codebook generally contains 100

di�erent parts. To represent the sketched symbol in terms of the codebook, we �rst

compare each part in the codebook to each of the parts calculated from the sketched

symbol. The distances between each such pair make up the matrix in the center

of the �gure. The distance between two parts measures their visual di�erences by

comparing their histograms.

The representation of the sketched symbol is a vector of distances that indicates

the degree to which each of the codebook parts appears in the sketched symbol. This

vector of distances is called the match vector. It is calculated by �nding the minimum

distance in each row of the matrix. In the �gure, the �rst codebook part is very similar

to the second part in the resistor (distance of 0.028). As a result, the �rst entry in

27

Input parts

C
o
d
e
b
o
o
k

0.4250.3070.102

0.2350.0280.372

The input shape:

Match Distances

.102

.028

Match
Vector

Min

Min

Figure 1-9: A summary of the match vector construction for the resistor shown in top
part of the �gure. The codebook with two parts is shown on the left. The three parts
calculated at various points on the resistor are shown along the top. Each codebook
part is compared to each of the input parts. The distance between each pair is shown
in the table. The match vector is then formed by taking the minimum value in each
row. This represents the degree to which each codebook part is present in the input
shape.

28

the match vector is very low (0.028). This indicates that the �rst codebook part is a

close match to one of the parts in the input resistor. The second codebook part, on

the other hand, has a higher minimum distance (0.102) which indicates that it is less

well matched to the resistor.

Using the match vector representation, we train a classi�er to learn the di�erences

between shape classes and to learn the allowable variations within a shape class. In

our example, the classi�er could learn that the �rst codebook part in the �gure is a

good indicator that the symbol is a resistor.

The visual parts insulate the shape descriptions from the signal noise in the strokes

in two ways. First, each bin in the histogram summarizes the amount of ink in that

region. The ink within the bin can appear in any con�guration or location within the

bin, without changing the representation of the part. For example, the part calculated

for a straight line and the part calculated on a somewhat wiggly line will have similar

histograms because the wiggles in the line will generally fall into the same bins as the

straight line. At the same time, the histogram representation contains information

about the larger scale features of the symbol. As a result it abstracts the noise and

preserves the signal.

The second way parts insulate the classi�cation from signal noise is in the way

that are used to describe a shape. When describing an input shape we determine how

closely each part in the codebook matches a part in the input shape. The determi-

nation of the degree to which a part appears is based on a distance measure between

parts that measures their visual di�erences. This distance measure is designed so that

it returns low values for parts that are visually similar even if their histogram counts

are not exactly the same. When we build the representation of the input shape in

terms of the codebook of parts, the distance measure provides insulation from signal

noise by allowing parts to match even if they are not identical.

1.3.2 Summary of Shape Localization

The second task that our system performs is the localization of shapes in complete

sketches. This is done in three stages. First, we scan the input sketch to identify

29

a large number of candidate locations. These locations may contain a shape, part

of a shape, parts of multiple shapes, or nothing at all. The second step is to apply

the classi�er described above to each of the candidate locations. This produces many

overlapping predictions for where shapes may be in the sketch. The third step is to

sort through these candidates and produce a �nal set of predictions of where shapes

are in the sketch. This is done by combining groups of predictions with the same class

label and similar locations. The �nal set of predictions produced by the grouping stage

is the �nal output of our system.

1.3.3 Terminology

As described above, we use the term part to refer to a visual pattern in a region of

a shape. This is in contrast to semantic parts that are often subcomponents of an

object (e.g. a wheel is part of a car). Many overlapping visual parts are used to

represent the appearance of a shape. The visual parts are used to classify shapes but

do not decompose a shape into distinct components in the same way that semantic

parts do. We could have used the term image patch to refer to parts. This term

(as well as part) has been used in the computer vision literature to refer to features

calculated based on the appearance of a small region of an image. However, the term

part, while not aligned with the de�nition of semantic parts, provides a good intuition

for how our classi�cation works. We will also refer to parts as features due to their

use in classi�cation.

1.4 Results Overview

Our system has been evaluated on two data sets: on a data set of freely drawn circuit

diagrams, described in [31], and on the HHreco data set of isolated PowerPoint style

shapes from Hse et. al. [21]. The circuit sketches were drawn in the context of a

circuit design task in which users were asked to draw complete sketches without any

feedback. For this data set, we evaluated the performance of the system on both

manually segmented, isolated shapes and on the full localization and classi�cation

30

Figure 1-10: The three resistor symbols and three ground symbols shown above were
correctly classi�ed by our system. These examples demonstrate the range of noise
and variation that our system can handle.

Figure 1-11: An example of a sketch in which all of the shapes were correctly localized
and identi�ed.

task. For the isolated task the classi�er correctly identi�ed 89.5% of the shapes.

Several challenging examples of shapes that were recognized correctly are shown in

Figure 1-10.

On the more di�cult task of locating and identifying shapes in complete sketches,

our system correctly detected 74% of the shapes with a precision of 26%. An example

sketch is shown in Figure 1-11 in which all of the symbols were localized and identi�ed

correctly.

We used the HHreco dataset to train and test our classi�er on isolated shapes and

report 94.4% accuracy. This is comparable to the results of 96.7% reported in [20]. In

Chapter 5 we discuss the di�erences between the two datasets and the implications

for our system's ability to handle noisy sketches.

31

1.5 Contributions

Our primary contribution in this thesis is a method of visually classifying shapes in

freely drawn sketches. Our visual approach to recognition is able to recognize shapes

that contain signal noise and conceptual variation, overtraced and touch-up strokes,

and complex stroke patterns, which current stroke based recognition systems cannot

recognize reliably.

We demonstrate how the concept of visual parts used in visual object recognition

can be used to form a representation of shapes based on a canonical list of parts. By

recording the match distance between each part in the input shape, and each element

in a canonical list of parts, we represent the likelihood that the input shape contains

the given canonical part. This part-based representation based on the quality of

matches is then used to train a classi�er to recognize the di�erent shape classes.

The parts are based on shape context features [7] and have been adapted to online

sketches by using the stroke trajectory information to make them rotationally invari-

ant. The trajectory information is also used to add information to the representation

of the parts, improving their ability to discriminate between shapes.

Finally, we demonstrate how the classi�er can be used to localize the shapes

contained in the sketch, by scanning an input image visually. Our system is able to

localize and identify shapes independent of the number and ordering of strokes in the

sketch.

1.6 Outline

The remainder of this document will describe the representation of parts (Chapter

2) and the representation of shapes in terms of those parts (Chapter 3). In Chapter

4, we describe how we train a classi�er to distinguish between shapes from di�erent

shape classes based on their parts and how the classi�er is used to visually scan a

complete sketch for shapes. In Chapter 5 we present an experimental evaluation

of the e�ectiveness of these representations and classi�cation techniques on a set

32

of complicated, messy, sketches of analog circuit diagrams. We also compare those

results to several related techniques. We then discuss, in Chapter 6 how this work

relates to other e�orts in the sketch recognition and vision literature. Finally we

summarize our work in Chapter 7.

33

Chapter 2

Representation of Visual Parts

Our recognition algorithm is based around the idea of identifying shapes according

to the visual parts that they are made of. This chapter discusses what the parts are,

how we calculate them, and what properties they have.

As discussed previously, we want to focus our recognition on the appearance of a

shape, not on the individual strokes used to make them. But classifying a shape at the

level of pixels is di�cult because of the wide range of signal and conceptual variation.

Comparing two drawings of the same shape by overlaying them and counting the

overlapping pixels, may indicate no more than a few pixels in common. Small shifts

in where the strokes were drawn and signal noise in the two drawings will prevent

them from lining up precisely.

Instead, we represent the shape as a collection of �parts� where each part represents

the appearance of a portion of the shape. We can then base our classi�cation of the

shape on the parts that it is composed of. For example, if the parts are arcs, corners,

and straight lines, a square can be distinguished from a circle because it will be

composed of line and corner parts instead arc parts. As we will show, the parts are

more complicated than simple lines and corners but we have found this intuition to

be useful in describing how they are used.

34

Figure 2-1: An example of a visual part calculated on a diode symbol

2.1 Bullseye Features

There are several properties that parts must have to represent the shapes in our

domain and to be e�ective in distinguishing between shape classes. First, they should

be invariant to the types of signal noise described in the previous chapter. Second,

they should be expressive enough to represent a large range of parts, so the classi�er

will have enough information to discriminate between shapes from di�erent classes.

For example, if our parts were limited to just straight lines and right angles, it would

be impossible to distinguish a square from an �X� shape. Third, we need a distance

measure between the parts that returns small values for parts that are visually similar

and large values for parts that are visually di�erent. We will use this distance measure

for several purposes including grouping similar parts together to use as a canonical

vocabulary.

The shape context features described in [7] are well matched to these goals and

have been applied with good success to the problems of detecting objects in images

and recognizing hand written digits. Shape context features are calculated at a point

and represent the appearance of a circular region surrounding that point. The central

point of the shape context feature is called the interest point. The circular region

around the interest point is divided into wedges, like a dartboard, by a series of

concentric rings and pie slices, as shown in Figure 2-1. Each of the wedges in the

circular region is a histogram bin that counts the number of ink points contained

inside it. The appearance of the ink within the region is represented by the vector

containing the point counts for each bin.

35

Figure 2-2: Shape context features represent the �ne detail of each of the resistors
near the center and are only slightly changed by the conceptual variation near the
outside of the feature. This suppresses the signal noise and provides robustness to
conceptual variation.

By representing the appearance of the region with the histogram of points, we

smooth out some of the signal noise in the shape. To see this, consider comparing

two line segments that each have some amount of �wiggliness.� If we compare the

locations of each pixel by overlaying one line on the other, there is unlikely to be much

overlap. In contrast the corresponding bins for each line will have approximately the

same number of points in them because the points are allowed to vary by a small

distance without changing which bin they fall into.

As shown in Figure 2-1, the radial bins are not evenly spaced; the two outer

rings are further apart than the inner rings. The rings are spaced so that they are

separated equally in log-space. They are spaced like this so that the inner bins are

smaller and represent more detailed information about the appearance, while the

outer bins contain more general information. In this way the outer bins represent

the �context� for the detailed inner bins. This is useful for our goals of suppressing

signal noise, being able to represent a wide range of appearances, and still having

enough �exibility to handle conceptual variations. The two shape contexts shown for

the two resistors in Figure 2-2 demonstrate the suppression of noise and robustness to

conceptual variation. The resistors contain di�erent numbers of peaks and the peaks

have di�erent vertical positions relative to the wires, but the shape context features

still have approximately the same amount of ink in the corresponding bins.

The radius of a shape context is chosen such that it spans the majority of the

36

input shape. The part of the shape falling in the central bins is represented in detail

and the rest of the shape is represented more coarsely thus providing the context for

the central bins. In order to represent the entire shape, a shape context is calculated

every 5 pixels along the the strokes in the shape. This sampling is much smaller than

the radius of each shape context so it produces a set of overlapping representations

that represent each part of the shape at a �ne level of detail.

Unfortunately, the term shape context is used widely in the sketch recognition

literature to refer to the context in which a shape appears: e.g., a chimney can be

recognized in the context of the house it is attached to. To avoid confusion with the

concept of shape context in the sketch recognition literature [4, 18, 37] we will refer

to these features as bullseye features, or simply bullseyes.

2.2 Strokes Have Direction

Although we focus on non-interactive systems, it is still the case that we use digital

sketches as our input, and not scanned images. Thus we can make use of the sequence

and timings of the individual points that make up each stroke. We refer to each

stroke as a trajectory of points that is based on the temporal ordering of the points.

These trajectories are incorporated into our representation of the shapes to aid in the

recognition. However, it is important to note that we are only using the trajectory

of the stroke and not any information about the sequence of the strokes. In this way

we do not add any constraints on the order or way in which the user must draw the

components of each shape.

We can use the trajectory information to label each point with the direction that

the pen was moving in when that point was created. The next two sections explore

how direction information can be used to make bullseye features rotationally invariant

and increase their representational power by adding the relative point orientations to

the representation.

37

1

2

3

4

6

5

7

8 1

2

3

4
6

5

7

8

1

23

4

6

5

7

8

Figure 2-3: The �rst bullseye shows the histogram oriented to the x-axis; the �rst bin
is just above the x-axis. In the second bullseye, the histogram boundaries are rotated
relative to the interest point's orientation to make it rotationally invariant; the �rst
bin is on the bottom. In the third bullseye, the bins are rotated by an additional half
bin width to prevent the stroke from lying along the boundary.

2.2.1 Making Features Rotationally Invariant

In many domains, including circuit sketches, symbols can be drawn at any orientation.

To account for this the bullseyes are rotated to align with the direction of the stroke

trajectory. By calculating the bullseye's histogram relative to the stroke direction,

instead of relative to the x-axis, the bullseyes are rotationally invariant and do not

change when the shape is drawn at a di�erent orientation. This is illustrated in

Figure 2-3. This is the technique suggested in [7], where the orientation of the edge

in an image is used to orient the features. In our case we do not have to rely on the

calculation of the edge orientation calculated from a bitmap image, we can use the

stroke trajectory to calculate the direction. Using the stroke trajectory is bene�cial

because each point has a clearly de�ned direction based on the motion of the pen.

In contrast, edges extracted from images do not have clearly de�ned directions at all

points. For example, if two strokes cross one another at right angles the intersection

point has two clear orientations. These two orientations are easily determined by the

stroke trajectory but are more di�cult to extract from a bitmap image. By computing

the histogram using relative orientations a shape will have the same representation

independent of its orientation on the page.

Two details must be dealt with to achieve true invariance and to maintain the

robustness of the features. First, identical looking strokes can be drawn starting from

either end. Because bullseyes measure angles relative to the trajectory of the stroke

38

the representation will change depending on the direction the stroke was drawn. We

resolve this issue by treating each bullseye as two di�erent histograms, one for the

original direction and one for the reverse direction. The reverse oriented histogram is

calculated by reordering the bins; the entire histogram does not need to be recalcu-

lated because the bin counts are the same but their order is changed. We make use of

this duplicate representation when comparing two bullseyes (as described in Section

2.4). When we compare two bullseyes, a and b, we use a custom distance function

that returns the minimum of the distances between a and the original histogram (bφ)

and the reversed histogram (bφ+π), e.g., dist (a, b) = min (dist (a, bφ) , dist (a, bφ+π)).

As a result the distance between two bullseyes calculated at the same point on strokes

drawn in opposite directions will be 0.

A second issue that arises as a result of orienting the bullseye's primary axis along

the stroke is that, by de�nition, the stroke is traveling directly along a boundary of

the histogram. The inherent noise in stroke trajectories results in the points along

the stroke falling haphazardly onto either side of this boundary. We eliminate this

e�ect by orienting the bullseye to the interest point's orientation and then rotating

it by an additional amount equivalent to half a bin's angular width. The example in

Figure 2-3 demonstrates this. While this does not eliminate the problem of a stroke

falling along a histogram bin, it does alleviate it for this common case.

2.2.2 Binning Point Orientations

The stroke direction can be used to add a dimension to the histogram by including

it as a third dimension. As every point in the histogram is associated with a stroke,

each point has a direction corresponding to the direction the pen was traveling when

that point was created. We add this direction into the histogram, providing a count

of how many points fall into each spatial bin at each direction. This is depicted in

Figure 2-4.

To make the representation independent of the direction each stroke was drawn

in, the added dimension contains the orientation of each point instead of its direction

(e.g. the orientations are in the range 0 to π). The rotational invariance is preserved

39

0° 0-45 45-90 90-135 135-180

Figure 2-4: The point orientations are a third dimension in the histogram. Each spa-
tial bin counts the number of points in the bin's region appearing at each orientation.
The histogram on the right shows the orientations of the points in the dark colored
bin.

by measuring the orientation relative to the orientation of the bullseye feature.

This adds additional information to our bullseyes and allows them to more pre-

cisely distinguish the regions they represent. For example, a single spatial bin can

distinguish between a horizontal and a vertical line. In both cases the same number

of points may fall into a particular spatial bin. However, within that bin the points

will be placed in di�erent orientation bins.

The use of the orientation of the points in each bin has also been used in the

vision literature in SIFT features [25]. SIFT features have been found to be highly

reliable features for detecting objects in photographic images. To our knowledge, the

hybrid shape context with SIFT like bins has not previously been integrated with

stroke trajectories.

2.2.3 Calculating Stroke Direction

To calculate the direction of the pen at a point along the stroke we �nd the tangent to

the stroke at that point. However, due to the imprecision of pen movements, the tan-

gent calculated at consecutive points can be signi�cantly di�erent, even along stroke

segments that appear straight. We deal with this in the traditional way, calculating

the tangent by �tting a line to a window of points immediately preceding and follow-

ing the point. We have found that calculating the tangent over a window of 19 points

generally provides good results. We use orthogonal distance regression to �nd the

best �t line because it accurately models the fact that both the x and y dimensions

40

have errors that should be modeled. Linear regression models only the errors in the

y values and tends to give unstable results for vertical and near vertical segments.

Although the orthogonal distance regression is more costly to compute, we have found

that the more stable direction measurements are worth the extra computation.

2.3 Stroke Preprocessing

When calculating bullseyes for a shape we �rst scale the shape so that the maximum

distance between any two points in the shape is 75 pixels. The scaling process pre-

serves the aspect ratio of the shape. This ensures that the bullseyes cover a similar

percentage of the shape independent of its original size. We perform the scaling on

the individual points, so unlike scaling a raster image, no resolution is lost when

reducing the size of a shape.

After the shape has been size normalized we resample the points along the strokes

to have an approximately constant separation along the stroke. This resampling is

done because the bullseyes are intended to represent the amount of ink within each

bin. The data points in our data set were sampled by a Tablet PC at a constant

temporal frequency so the distances between consecutive points along a stroke will

vary with the speed that the user was moving the pen. Therefore, we must resample

the points to be sampled at a constant spatial frequency. For each stroke, we �rst

remove consecutive points that have the same location. This often occurs when the

pen is moving slowly and the tablet records multiple samples at the same location.

Next, we interpolate additional sample points along the stroke until no two consec-

utive points have a distance greater than 1 pixel. This ensures that the points are

nearly constantly spaced.

2.4 Calculating Distances Between Bullseyes

The next chapter describes how to build a representation of shapes in terms of a

standard vocabulary of bullseye parts. In order to build the vocabulary and determine

41

which parts are present in a shape, we need to be able to measure the di�erence

in appearance of two bullseyes. It is important that two bullseyes that represent

neighborhoods with similar appearances have small distances. By similar appearances

we mean that corresponding bins have approximately the same proportions of points.

We calculate the distance between two bullseyes by comparing their vectors of

bin counts. We have chosen the ∆ measure: 4 (p, q) =
∑

i
(pi−qi)

2

pi+qi
. It is similar to

the common χ2-distance (χ2 (p, q) =
∑

i
(pi−qi)

2

qi
), except the normalization term (the

denominator) is the sum of the bin heights being compared instead of just the target

bin's weight. This variation makes the distance symmetric. It is often the case that a

pair of corresponding bins are both empty, so we assign that term in the sum a value

of zero so it does not contribute to the total distance.

One property of the bullseyes, discussed above, is that the inner bins represent

the �ne detail and the outer rings represent the context for the patterns in the inner

rings. To preserve this property when performing the comparison, we want di�erences

in the outer bins to be less important than di�erences in the inner bins. The outer

bins are larger than the inner bins and therefore more points generally fall into them.

The di�erence of a few points in an outer bin is generally small compared to the total

weight of the two bins being compared, and the normalization term in the formula

above reduces the contribution of these bins to the total distance.

This normalization factor means that small di�erences between heavily weighted

bins result in relatively small e�ects on the total distance between two histograms.

In this way the outer bins contribute less to the total distance than equivalent point

di�erences in the small bins. However, in the case of larger di�erences the outer bins

contribute more heavily to the total distance because of the larger number of points.

To account for this, we reweight the bins by their size in the x-y plane. We normalize

each bin by a linear factor based on its length in the radial dimension. We use a

linear instead of a squared factor because strokes are linear features and contribute

additional points at a linear rate. Consider two bins, one with twice the width of the

other. A single stroke passing through them both will leave the larger bin with twice

42

as many points, not four times as many1.

Finally, after reweighting the bins by their size in the x-y plane we normalize the

total weight of the histogram to be 1 to avoid di�erences arising from the total number

of points in a region. This is important for recognizing overtraced strokes because

they will contain many more points in each bin. Normalizing the total histogram

weight to 1 makes sure that the absolute di�erences in bin counts are not important.

1If the user shades in a region by repeatedly stroking back-and-forth through it, the relationship
will be quadratic instead of linear. However, this rarely occurs in the types of sketches addressed
here.

43

Chapter 3

Representation of Shapes

The previous chapter described how a set of bullseye parts is calculated for a shape.

Starting with this collection of bullseye parts we need a way to classify that shape as

one of the possible shape classes. Because the number of parts in each shape varies

with the stroke length and the wide range of possible parts, it is unlikely that any

two shapes will have the same set of parts. In this chapter we discuss our method

of encoding the input shape relative to a standard vocabulary of bullseye parts. By

encoding a shape relative to a standard vocabulary a shape can be classi�ed according

to which of the standard parts is present in an input shape. For example, if one of the

standard parts is a zig-zag pattern, the presence of that part will be a good indicator

that the shape is a resistor.

We form the standard vocabulary of parts, called the codebook, by calculating

bullseye parts for all of the shapes in a training set of shapes. These parts are then

clustered into groups of parts that represent patches with similar appearances. One

part is selected from each cluster and is used as one of the parts in the standard

vocabulary. The next chapter describes how a classi�er is trained to recognize an

input shape based on which standard parts the input shape contains.

44

3.1 The Codebook

The standard vocabulary of parts is called the codebook. In forming the codebook

we need to de�ne a standard vocabulary of bullseye parts that will provide the basis

for the classi�er to learn which parts appear in each shape class. We have found that

we were able to achieve good results by selecting a set of parts that span the range of

parts that appear in the training set. To �nd the spanning set we �rst calculate the

collection of bullseye parts for each shape in our training set. We then cluster them

into groups of similar parts. Finally, we form the codebook by using a representative

from each cluster center as one of the codebook entries.

To perform the clustering we use a quality threshold (QT) clusterer, which forms

clusters such that the distance between any two members of a clusterer is under a

threshold. The distance between parts is calculated as described in Section 2.4. The

algorithm begins with the �rst point as a seed for its own cluster. It repeatedly

adds the closest point to the cluster until there are no points remaining that can be

added without going over the threshold distance. The algorithm records the cluster

members, returns them to the list of unused points and repeats the process starting

with the second point as the cluster seed. After repeating this process for all possible

cluster seeds, it selects the cluster with the most points, removes those points from the

list of unused points, and repeats the process with the remaining points. To improve

e�ciency, instead of trying each point as a cluster seed, we randomly selected 20

points as seeds and choose the largest cluster formed from those 20 seeds.

The clusterer computes the distance between every pair of parts to be clustered.

This results in n2 distances being computed in order to cluster n parts. To limit the

computation required we randomly select 1000 bullseye parts from the training set

instead of using all of the calculated parts. We ensured that there were an equal

number of bullseyes taken from each shape class to avoid biasing the clustering. We

empirically determined 0.4 to be a good cluster width, producing more than the 200

desired clusters. The clustering is terminated after �nding the 200 largest clusters.

45

3.2 Match Vectors

One way to classify a shape is to examine the parts that are present in that shape.

The parts of the shape being classi�ed can be compared to a model of which parts

generally occur in each of the shape classes. For example, the presences of a zig-zag

part, intuitively, is a good indication that the shape is a resistor.

To do this we form a representation called a match vector that represents the

degree to which each of the codebook parts appears in the input shape. Given an

input shape we calculate a set of bullseye parts. We then summarize those parts in

terms of the codebook parts. The representation formed from the summary needs to

contain only the information needed to distinguish between shape classes; it does not

need to represent all aspects of the shape. In particular it is not important that we

be able to reconstruct the original input shape from the summary information.

The construction of a match vector for a simple example is shown in Figure 3-1.

The two element codebook is shown on the left of the �gure. The bullseye parts

calculated from the input shape are shown along the top. The size of the codebook

and the number of sample parts from the input has been greatly reduced for this

example.

Using the distance function (as de�ned in Section 2.4) we calculate the distance

between each codebook part and each input part (shown in the array in the �gure).

The distances provide a measure of how similar the input part is to the codebook

part. The list of distances from a codebook part to the input parts is summarized by

�nding the smallest distance in each row. This minimum distance is called the match

value and represents the degree to which the codebook part appears in the input

shape. A small match value indicates that the codebook part is likely to appear in

the input, e.g. the �rst codebook part in the �gure that has a match value of 0.028.

Conversely, a large match value indicates that the codebook part is unlikely to appear

in the input, e.g. the second codebook part that has a match value of 0.102.

A vector is formed from the match values such that there is one match value for

each corresponding codebook part. We call this vector of match values the match

46

Input parts

C
o
d
e
b
o
o
k

0.4250.3070.102

0.2350.0280.372

The input shape:

Match Distances

.102

.028

Match
Vector

Min

Min

Figure 3-1: Match vector construction.

47

vector.

Thus the match vector represents how well each of the codebook parts matches

some part of the input shape. More formally, the match vector, V , contains one

match value, vi, for each codebook part ci. This vi element of the match vector is a

scalar value representing the minimum distance between ci and any one of the parts,

uj, in the input shape, U :

vi = min
uj∈U

[Distance (ci, uj)]

3.3 Discussion

The intuition we used above is that some codebook parts will closely match parts

from some shape classes and not from other classes. In addition to this information

the match vector also represents which codebook parts do not match well. This

information can also be used by the classi�er in making its classi�cation.

In forming the match vector we are recording only the distance of the best match.

We do not preserve any information about the distance between the codebook part

and any other input part. An alternative representation, used in [12], is formed by

�nding the codebook part that is most similar to each input part, then counting the

number of input parts that are closer to that codebook part than any other part. A

summary vector is formed with one entry per codebook part. Each entry contains

the count for the corresponding codebook feature.

Empirically, we found that our match vector representation based on the quality of

the matches performed better than this approach based on the quantity of matches.

This is most likely because we do not generally expect to see many instances of a

part in a single shape. Unlike photographs, the types of sketches we are handling do

not contain textured regions. Textured regions tend to produce multiple parts that

are visually similar. We believe that this is why the count-based representation is

e�ective for photographs but not for sketches.

Additionally, the distance of the best match contains important information. For

48

example, there may be a codebook part that is a good indicator of a particular shape

class if its match value is very small. A di�erent part may be a good indicator of a

particular shape class even if its match value is generally larger. One possible example

of this is distinguishing capacitors from batteries. In order to distinguish between the

small di�erence in the relative lengths of the two parallel lines, a very close match

may be required. In contrast distinguishing a resistor from a voltage source may

involve codebook parts that can match less closely and still provide good indications

to the identity of the shape.

49

Chapter 4

Recognition

This chapter describes an isolated shape classi�er that is trained to classify shapes

based on their match vectors. It then describes a full sketch processor that uses the

isolated classi�er to scan an input sketch and �nd the locations and identities of the

shapes in that sketch.

4.1 Support Vector Machine Training and Classi�-

cation

By representing the set of bullseye parts from an input shape in terms of our �xed

codebook we now have a representation with a �xed cardinality and ordering, corre-

sponding to the codebook entries. With this representation we can train a support

vector machine (SVM) [40] to learn the di�erences between di�erent shape classes

from labeled examples. The SVM learns a complicated decision boundary, based on

the match values in the match vector. This decision boundary separates the typical

match vectors of one shape class from those from another shape class.

This provides a way to distinguish one class from another, for example resistors

from capacitors. However, the ultimate task is to assign each input shape a single

label from the set of possible shape classes. This is accomplished using the common

one-vs-one strategy for combining a set of binary classi�ers. This is implemented by

50

training one classi�er to distinguish between each pair of shape classes. This results

in n(n−1)
2

binary classi�ers for n shape classes. For one input shape, the result from

each classi�er is counted as a vote for the class it predicted. The �nal decision is made

based on which class received the most votes. We used the Java implementation of

LibSVM [10] and its implementation of the one-vs-one strategy.

In addition to assigning each input shape a class label, the classi�er also assigns

a probability to the label that indicates how well the input shape matches the model

of the assigned class. The probabilities are calculated as described in [42] and imple-

mented as part of LibSVM. The probability estimates are used during the scanning of

full sketches to rank the classi�cations of candidate shapes, as described in the next

section.

4.2 Shape Localization

Up to this point, we have focused on the problem of classifying an isolated input

shape. We now move to the problem of �nding shapes in the context of a complete

sketch. The basic strategy is to run the isolated shape classi�er on a large number

of regions in the sketch and then combine the information from all of the regions to

form a �nal set of predictions of the locations and identities of shapes in the sketch.

There are several steps involved: selecting candidate regions, classifying the candidate

regions, and combining the classi�ed regions to form the �nal predictions.

4.2.1 Selecting Initial Candidate Regions

Candidate regions are selected by scanning a rectangular window over the input

sketch. The ink contained in the window is treated as a candidate shape. The scan-

ning is done by sliding the center of the window along the path of the pen strokes.

Every 10 pixels along the stroke, a snapshot is taken of the ink contained within the

bounds of the window. Each of these snapshots is a candidate region. The process

is repeated with several di�erent sized windows so that the system can �nd shapes

drawn at di�erent scales.

51

This produces a large number of overlapping candidate regions. As we describe in

Section 4.2.3, it is important that the candidate �nder produces overlapping regions.

However, to reduce the amount of computation we avoid selecting nearly identical

regions by not including a candidate that overlaps another candidate by more than

0.7. The amount of overlap is measured by the ratio of the area of the intersection to

the area of the union of the two regions.

We also do not include any regions that contain less than 10 points, as they are

too small to contain valid shapes.

4.2.2 Classifying Initial Candidate Regions

Once a candidate region has been selected, the ink contained within it is preprocessed

as described in Section 2.3. The candidate is then classi�ed by the isolated shape

classi�er. The classi�er assigns each candidate a predicted class label and a score

indicating the certainty of the prediction.

The classi�er is trained in a similar manner to the method described above for

classifying isolated shapes, but with two important changes. The �rst change is that

the classi�er is trained on an additional wire class. For the circuit sketches, many of

the candidate regions contain only wires. Therefore, the classi�er must be trained to

recognize these regions as wires so they are not classi�ed as one of the other shapes.

Wires do not generally have a speci�c shape in the same sense that other symbols,

such as resistors and capacitors, do. Because of their free-form nature, the classi�er

is trained to identify wire segments instead of complete wires. To generate training

examples of wire segments, the candidate �nder is run over each sketch in the training

set. Any candidate region that does not overlap any ground truth shape is used as an

example of a wire segment. These segments generally contain straight line segments

but the also include corners and other types of junctions where wires come together.

The wire segment regions are then used to train the classi�er in exactly the same way

it is trained on other shape classes.

The second change to the training of the classi�er is the addition of training

examples that are not perfectly aligned to an actual shape. The candidate �nder

52

rarely produces candidates that are exactly aligned to the actual shapes in the sketch.

Most regions contain portions of shapes, as well as ink from the surrounding wires

and other nearby shapes. Training the system on these types of regions allows it

to learn a wider range of variations for the shapes and helps the system to identify

regions that contain signi�cant portions of a shape, even if they do not contain the

entire shape. The extra training examples are generated by running the candidate

�nder on each training sketch. Any candidate region that substantially overlaps a

shape in the image is included as a training example.

4.2.3 Forming Predictions by Clustering Initial Candidate Re-

gions

After the candidate regions have been generated and classi�ed, the next task is to

combine them into a �nal set of predictions indicating the locations and identities of

shapes in the sketch. The candidate �nder generates many overlapping candidates

so each shape in the image is partially contained in many candidate regions. The

isolated classi�er is generally quite accurate (evaluation is shown in Section 5.4.2), as

a result there are generally many correct classi�cations for each shape in the sketch.

An example of all of the resistors detected in a sketch is shown in Figure 4-1(b).

There are several dense clusters of candidates on and around each of the resistors in

the sketch. For clarity only the central 20x20 pixel region of each candidate is shown

in the �gure.

In order to successfully make a �nal set of predictions for the locations and identi-

ties of the shapes, our system must be able to identify these clusters. The algorithm

for combining the initial set of candidates into a �nal set of predictions has two steps

that are repeated for each shape class: (1) forming initial clusters of candidates and

(2) splitting clusters that are too large into multiple predictions.

The initial set of clusters is found by using an expectation maximization (EM)

clusterer. The input to the clusterer is one vector for each of the candidate regions.

The vector is composed of the coordinates of the top-left and bottom-right corners

53

(a) The original sketch.

(b) The centers of regions identi�ed as resistors.

(c) The initial clusters formed by the EM clusterer.

(d) The �nal clusters found after splitting clusters with large standard devia-
tions.

Figure 4-1: The steps in selecting a �nal set of resistor predictions for a sketch.
Each box in (b) is the central 20x20 pixels of each candidate region that was classi�ed
as a resistor. The red (dark colored) boxes indicate high-scoring predictions and the
green (light colored) boxes indicate low-scoring predictions. The boxes in (c) show
the initial clusters found by the clusterer. The �nal set of resistor predictions are
shown in (d). The two resistors on the left and the the two resistors on the right were
split correctly. The two in the middle were too close to be split correctly.

54

the candidate's boundary. Each vector is weighted by the square of the score that

the candidate region received from the classi�er. The vectors are weighted because

the higher-scoring candidates generally contain more of the ground truth shape (we

analyze this relationship in Section 5.4.2) and should therefore have more in�uence on

the �nal location of the cluster. Squaring the scores further accentuates the impact

of high scoring candidates.

As part of the clustering, EM produces the mean and standard deviation of each

of the four coordinates. The mean of each coordinate is used as the corresponding

coordinate of a rectangle representing the bounds of a new shape prediction. This

rectangle is the weighted average of the candidates in the cluster. Each of these

rectangles represents the location of a new shape prediction.

The second step, is to split up clusters that are too large. Some clusters contain

candidates from multiple shapes, such as the two resistors grouped into the same

cluster on the left side of Figure 4-1. When this occurs, the �nal prediction is located

between the two shapes. A cluster is considered to be too big when the standard

deviation of any of the four coordinates is greater than half the predicted region size.

A large standard deviation in one of the coordinates indicates that the cluster is

accounting for candidates that cover a large area of the image and provides a good

indication that the cluster contains candidates from more than one shape. When a

cluster has been identi�ed as being too large, the clusterer is run again and attempts

to model the candidates in the initial cluster as two separate clusters. As the middle

pair of resistors shown in 4-1 shows, this process does not always split clusters covering

two shapes but in general it improves the quality of the system's predictions.

The set of predictions made for all the shape classes forms the intermediate set of

predictions for the sketch.

4.2.4 Selecting a Final Set of Predictions

After clustering the initial candidates to form the intermediate candidates, there

may still be predictions that overlap one another. This occurs when the classi�er

incorrectly classi�es regions or when the clustering step breaks a single shape into two

55

separate clusters. To make a �nal set of predictions we follow a greedy strategy based

on the total weight of each cluster. The weight of each cluster is determined by EM,

by combining the weights of the individual candidates in the cluster. Highly weighted

clusters are generally tightly-grouped and have many high scoring candidates. As

a result clusters with high weights are generally correct whereas clusters with low

weights are less likely to be correct.

The �nal set of predictions is made by �rst selecting the highest scoring pre-

diction and then removing any remaining predictions that signi�cantly overlap the

region covered by that prediction. We repeat this process until all of the remaining

predictions have scores under a threshold value, or until all of the predictions have

been included. This set of predictions is the �nal output of the system.

56

Chapter 5

Evaluation

Our system consists of two primary parts which we evaluated separately: the isolated-

shape recognizer and the full sketch processor. The task of the isolated-shape rec-

ognizer is to assign one of a set of labels (e.g. resistor, capacitor, battery, etc) to

an input drawing that contains a single shape with no surrounding context. The

task of the full sketch processor is to identify the location, scale, and identity of the

components in a full sketch.

This chapter begins by presenting the results of the isolated classi�er. We �rst

present the results of our evaluation on symbols extracted from a set of analog circuit

drawings, and report a recognition rate of 89.5%. Next we compare our results to an

image based classi�er based on Zernike moments, which only achieved 76.9% on the

circuit dataset. We then present our results on the HHreco data set [21], that contains

PowerPoint style shapes (including boxes, trapezoids, hearts, etc. . . shown in Figure

5-1). On the HHreco dataset our system produced a recognition rate of 94.4%, which

is comparable to the 96.7% reported in [21] using a Zernike moment classi�er. The

symbols in the HHreco dataset generally contain less signal and conceptual variation

than the symbols in the circuit data set and we hypothesize that this is the reason

that the Zernike recognizer performs well on the HHreco data and relatively poorly

on the more varied circuit dataset. This also provides evidence to the robustness of

our classi�er in the face of variations that pose challenges to the Zernike classi�er.

We also present examples of particularly messy shapes the system recognized

57

Figure 5-1: Shapes in the HHreco dataset.

correctly and discuss the common types of errors the system makes in both data sets.

The second part of the chapter presents the results of the full sketch processor on

the complete sketches from the circuits dataset. We again present examples of the

output and discuss the limiting factors of the full sketch processor and how they may

be addressed in future work.

5.1 Circuit Sketch Data Set

Our evaluation is centered around a set of circuit diagrams collected in a free sketching

interface. The sketches were collected from 10 users with experience in basic circuit

design from both coursework and practice. Each user was shown examples of the

types of circuits and symbols we expected them to draw and was asked to perform

a brief warm up task to familiarize them with the tablet PC. The users then drew

ten or eleven di�erent circuits, each of which was required to contain several speci�c

components, for example three resistors, a battery and two diodes. The users were

free to lay out the circuit in any way they wished and were not given any speci�c

instructions about how to draw each shape apart from being shown a printed sheet

with the standard circuit symbols. The users were asked to put the sheet away before

beginning the study. Examples of varying complexity are shown in Figure 5-2.

We hand-labeled all of the shapes in each of the 109 sketches. Shapes were labeled

58

(a) (b)

(c)

Figure 5-2: Example circuit diagrams from our data set

JFET
Bipolar Junction
Transistor (BJT)

Voltage
Source

Unspecified
Current-sourceAC-Source

Ground Battery (II) DiodeCapacitor Battery (I)Resistor

Figure 5-3: Symbols used in the circuit sketches.

59

by selecting the strokes and parts of strokes that make up each shape. They were

cropped so that part of the wire each symbol was attached to was included but no ink

from nearby shapes was included. We did not record the mappings from strokes to

sub-parts of the shape (e.g. which strokes correspond to the plus or minus signs in the

voltage source symbol) because we are only concerned with locating and identifying

shapes. We also did not explicitly label wires under the assumption that any ink not

associated with a speci�c shape is part of a wire.

5.2 Circuit Symbol Evaluation

The circuit symbol dataset contains shapes with a wide range of both signal level

noise and conceptual variation. As such it provides a good test of the robustness of

our representations and classi�er.

5.2.1 Bullseye and Match Vector Evaluation

We evaluated our system on the isolated shapes collected from the circuit diagrams

and we were able to identify 89.5% of the shapes correctly. We ran one trial for each

user. In each trial, the classi�er was trained on data from all but one user and tested

on the data from the user omitted from training. We used bullseyes with a radius of

40 pixels divided into 8 angular, 3 radial, and 4 orientation bins for a total of 96 bins.

The shapes were preprocessed as described in Section 2.3, by scaling them to have a

maximum inter-point distance of 75 pixels. The strokes were resampled such that the

maximum distance between consecutive points on a stroke was 1 pixel. In each trial

we randomly selected 1000 bullseye features from the training group and clustered

them into 100 sets. Using more than 1000 bullseye features in the clustering, had

no signi�cant e�ect on the results. The bullseye feature at the center of each cluster

was used as a codeword in the codebook. This 100 element codebook was used to

encode each shape in the data set into a corresponding 100 dimensional match vector.

The match vectors corresponding to the training group in the trial were used to train

the SVM. Finally, the classi�er was evaluated on the match vectors corresponding to

60

AC Sources

Voltage
Sources

Current
Sources

BJTs

JFETs

Resistors

Diodes

Grounds

Capacitors

Batteries

Figure 5-4: Correctly recognized circuit symbols

61

classi�ed as → ac bat bjt cap cur dio grnd jfet res volt Recall

ac-source 22 0 0 0 9 0 0 0 0 1 0.688

battery 0 41 0 11 0 0 29 0 0 0 0.506

bjt 0 0 36 0 0 4 0 0 2 0 0.857

capacitor 0 7 0 49 0 0 5 0 0 0 0.803

current-source 2 0 0 0 38 0 0 0 0 4 0.864

diode 0 0 0 0 0 76 0 0 6 0 0.927

ground 0 11 0 2 0 0 149 0 3 0 0.903

jfet 0 0 0 1 0 1 0 31 1 0 0.912

resistor 0 0 0 1 0 1 2 0 421 0 0.991

voltage-source 0 0 0 0 1 0 0 0 2 43 0.935

Table 5.1: The confusion matrix for the circuit symbols. Each row shows the number
of shapes of a given type that were assigned to each class. For example, 9 ac-sources
were classi�ed as current-sources. The last column shows the recall (# correctly
identi�ed / total # for that class).

shapes from the test user for the trial.

As shown in Figure 5-4, several very di�cult-to-recognize shapes were correctly

identi�ed. The system learned to classify the two types of battery symbols. The

two ground symbols in the middle are drawn very di�erently. In order to depict the

horizontal bars, one symbol has 7 horizontal lines (all extremely messy) and the other

has just two strokes that suggest the appearance of 3 or 4 horizontal bars. A number

of symbols contain overtraced strokes such as the BJT, JFET, diode, and resistor.

Our system is capable of handling these variations and overtracings that are di�cult

to handle with a stroke-based system.

The confusion matrix shown in Figure 5.1 shows the types of errors made by the

system. The shape classes that it misclassi�ed most often were the capacitor, battery

and ground. These are the three shapes that appear the most similar because they

are all composed of di�ering numbers of parallel lines. A selection of some of these

misclassi�ed shapes is shown in Figure 5-5.

5.2.2 Zernike Moment Classi�er

We applied the classi�er described in Hse et. al. [21] to the circuit shape dataset.

Their classi�er is based on a set of global features called Zernike moments, a class

62

Incorrectly labeled shapes
Labeled

as
Symbol for the
label chosen

Battery

Ground

Current-
source

Figure 5-5: This �gure shows a sampling of some of the incorrectly classi�ed shapes,
in column one. The shape it was classi�ed as is shown on the right. Many errors are
made on shapes that are very similar to shapes from other classes. In particular the
grounds, capacitors and batteries appear similar when viewed in isolation.

of orthogonal moments that describe the distribution of points in the input shape.

Higher order moments represent �ner levels of detail in the point distribution. The

magnitudes of these moments, calculated up to a given order, form a feature vector

which can be used to train an SVM. The magnitudes of Zernike moments have been

shown to be invariant to both rotation and re�ection of the input shape, a necessary

property for recognizing shapes in the circuit dataset. Zernike moments have been

used with good results on the HHreco dataset (described in the next section).

We used the same experimental setup as for the bullseye and match vector ap-

proach. We trained on the shapes from all but one user and then tested on the held

out user. We resampled the strokes, as described in Section 2.3, to provide an even

distribution of points along the strokes. We then calculated the magnitude of the

Zernike moments1 and placed them into a feature vector. These vectors are then

passed to an SVM for training and classi�cation. We repeated the experiment several

times with a range of orders for the the Zernike moments from 7 to 16. The best

results were achieved with feature vectors containing moments up to order 14; with

this representation the classi�er correctly classi�ed 76.9% of the circuit symbols.

The relatively poor performance of the Zernike descriptors relative to our system

is most likely due to their inability to represent the range of variation each shape

1Code available at: http://embedded.eecs.berkeley.edu/research/hhreco/

63

http://embedded.eecs.berkeley.edu/research/hhreco/

Figure 5-6: HHreco shapes have almost no variation. The shapes above were drawn
by one of the users.

can have. In their experiments on the HHreco dataset (described below), Hse et.

al. found that moments over order 8 yielded minimal or no improvement. On the

circuit dataset the performance saturated at a much higher order. This suggests

that �ner grained details are required to recognize the shapes in the circuit dataset.

Higher order moments are more speci�c which allows them to distinguish between

some shapes, but at the same time are more susceptible to variations in the shapes.

Our system's ability to achieve good results on the same data highlights its robustness

to these variations.

5.3 Power Point Symbol Evaluation

We performed a similar comparison of these two approaches on the data from [21].

This dataset, called HHreco, consists of Power Point shapes (e.g. pentagons, quadri-

laterals, hearts, etc. . .) as shown in Figure 5-1. On this dataset we correctly identi�ed

94.4% of the shapes as compared to 96.7% reported by Hse. Our high level of per-

formance on this data set demonstrates that our approach is not applicable only to

circuit diagrams and that it can learn to recognize di�erent types of shapes.

The HHreco dataset is a good example of shapes that were collected in isolation

64

without any surrounding context. Users were simply asked to draw 30 di�erent in-

stances of each shape in the corpus. The users were not engaged in any task other

than that of drawing symbols. As a result the data contains very little conceptual

variation between shapes within each shape class and there are very few overtracings

or touch-up strokes. This lack of variation can be seen in 5-6, which shows some

of the examples drawn by one of the users. There is still a reasonable amount of

signal level noise and some variation between users, but these variations are limited.

Sketches drawn in the context of a larger task highlight issues not encountered in arti-

�cial sketching tasks and we encourage the sketch recognition community to produce

more such datasets as we believe they will help the advancement of sketch recognition

research.

We followed the same experimental steps as above. In each trial our system was

trained on the data from all of the users except one, and then tested on that user.

This was repeated for each user and the results were averaged across all of the trials.

Each shape was preprocessed as described in Section 2.3. Shapes were scaled to

have a maximum inter-point distance of 75 pixels and resampled so that the maximum

distance between consecutive points on a stroke was 1 pixel. We used bullseyes with

a radius of 40, divided into 8 angular, 3 radial, and 4 orientation bins for a total of

96 bins. We randomly extracted 1000 bullseyes from the training data and clustered

them into 100 clusters to produce a codebook with 100 codewords. Each trial used

a di�erent codebook that did not contain any data from the test user. We then

calculated a 100 element match vector for each shape and used these match vectors

to train the classi�er. Finally, the classi�er was evaluated on the data from the held

out user.

The cumulative confusion matrix is shown in Table 5.2. The most common con-

fusion was classifying a parallelogram as a trapezoid2. These two shapes are made

up of similar �parts,� (e.g. lines, acute and obtuse angles) but in di�erent con�gura-

tions. One of the limitations of our representation is that it has di�culty identifying

2The classi�cation of parallelograms as trapezoids was mostly the result of one user. That user
accounted for 22 of the 47 parallelograms classi�ed as trapezoids.

65

assigned

as →

arch call cube cyl ellip heart hex moon para pent sqr trap tri

arch 569 0 2 5 0 12 0 16 0 0 0 3 0

callout 0 543 0 0 18 11 0 5 0 0 0 0 0

cube 24 0 538 14 0 0 0 0 0 0 0 0 0

cylinder 2 0 4 551 0 11 0 0 0 2 8 0 0

ellipse 0 4 0 0 599 3 0 1 2 0 0 0 0

heart 10 22 0 0 15 546 1 4 6 0 0 5 0

hexagon 0 0 0 0 0 0 595 0 3 11 0 0 0

moon 7 20 0 0 1 17 0 558 1 0 0 1 3

parallel-

ogram

0 0 0 0 0 0 0 3 531 18 2 47 2

pentagon 0 0 0 0 0 0 19 0 18 562 3 5 0

square 0 0 0 1 0 0 0 0 2 6 593 2 0

trapezoid 0 0 0 0 0 0 0 4 10 3 4 580 1

triangle 0 0 0 0 0 0 0 8 0 0 0 5 589

Table 5.2: The cumulative confusion matrix for the results of running the bullseye
and match vector classi�er on the HHreco dataset. Each row contains the times each
class was assigned to a shape of that type (e.g. 16 arches were incorrectly classi�ed
as moons).

shapes that contain the same low level features in di�erent combinations. The bulls-

eye features take the relative locations of points into account but only in a local

neighborhood. The match vector represents the presence and absence of di�erent

bullseye parts but it does not take their relative positions into account.

5.4 Full Sketches

Localizing shapes in a completed sketch is more challenging than isolated shape clas-

si�cation because shapes often appear at a variety of scales, close to one another,

and there are many parts of the sketch which do not contain shapes at all. This

section �rst describes our evaluation criteria and then evaluates the performance of

the classi�er on the imprecisely cropped candidate regions found in the �rst part of

the algorithm and concludes with an analysis of the results produced by clustering

the classi�ed candidates.

There are no other publicly available datasets that we are aware of for this type

66

of task so our analysis will focus solely on the circuit sketches described above. We

encourage others to perform similar experiments with our dataset and to make their

datasets available for future evaluations.

5.4.1 Evaluation Criteria

The full sketch processor's results are more di�cult to evaluate than the results of

the isolated classi�er. The isolated classi�er assigns one of a set of labels to an input

whereas the full sketch processor must assign a label, position and size to multiple

shapes in an input sketch. The location and size of predicted shapes will rarely align

exactly to the ground truth labels so we must de�ne when a prediction is considered

correct. We have adopted the metric used in the Pascal Challenge [13] which measures

the amount of overlap between the bounding boxes of the ground truth shape and

the predicted shape. In the following analysis, we measure the overlap, ao of the

axis-aligned bounding boxes of the predicted (Bp) and ground truth shape (Bgt) by

ao =
area (Bp ∩Bgt)

area (Bp ∪Bgt)

The prediction is considered correct if ao > 50% and it has been assigned the

correct label.

5.4.2 Evaluation of the Classi�cation of Candidate Regions

As demonstrated in the previous section, the isolated classi�er is very accurate when

presented with inputs that are closely cropped. In the context of the full sketch

processor, however, the classi�er must be able to identify regions which contain sig-

ni�cant portions of a shape but may not contain the entire shape. Additionally the

regions it classi�es may contain pieces of other shapes that are close to the shape on

the page. Finally, it must be able to identify regions which contain wires.

The evaluation of the classi�er on imprecisely cropped shapes is an important test

because these are the inputs that the isolated classi�er will be classifying to produce

the initial set of predictions. If the initial predictions are not reliable then there will

67

classi�ed

as →
ac bat bjt cap cur dio grnd jfet wire res volt Recall

ac-

source
172 0 0 0 43 0 0 0 5 3 36 0.664

battery 0 221 0 66 0 0 103 0 27 8 0 0.52

bjt 1 0 133 0 0 37 0 3 14 4 3 0.682

capacitor 0 74 1 173 0 0 14 1 18 1 2 0.609

current-

source
41 0 2 0 269 6 0 1 4 13 13 0.771

diode 0 0 17 1 4 506 0 12 31 16 4 0.856

ground 0 68 0 27 0 5 599 0 22 25 0 0.803

jfet 0 0 3 0 0 7 0 174 15 4 0 0.857

wire 8 11 12 13 7 85 30 3 9019 64 0 0.975

resistor 0 0 1 4 0 14 17 0 16 2157 2 0.976

voltage-

source
18 0 4 0 12 2 0 0 3 8 246 0.84

Figure 5-7: Confusion matrix resulting from running the isolated classi�er on regions
that signi�cantly overlap a shape, but may not be exactly cropped to that shape. The
evaluation includes wire shapes which were extracted from the sketches by �nding
regions that did not overlap other shapes. Overall the classi�er correctly identi�ed
92.3% of the shapes.

not be enough candidates in the neighborhood of each ground truth shape in the

sketch. As a result the candidate clusterer will be unable to �nd tight clusters and

will be unable to make a good set of �nal predictions.

The �rst test was to evaluate the isolated classi�er on regions that su�ciently

overlapped ground truth shapes in the image. The de�nition of su�ciently overlapped

was the same as described above, using the ratio of the area of intersection to the

area of the union, of the two regions. Any candidate produced by the candidate

�nder (window scanner) that su�ciently overlapped a ground truth shape was used

in the test. In addition we included wire regions which were found by selecting

candidate regions that did not overlap any part of a shape. Overall the classi�er

correctly identi�ed 92.3% of the regions. The types of errors it made were similar

to the results found when using perfectly cropped shapes with the exception that a

number of candidates were classi�ed as wire instead of their actual shape class. The

full confusion matrix is shown in Figure 5-7.

68

Class of object

Score range
AC-

source battery bjt capacitor
current-
source diode ground jfet resistor

voltage-
source

All
classes

0.1 - 0.199 Avg overlap 0.00 n/a 0.09 0.02 0.39 0.01 0.00 0.03 0.12 0.29 0.11
Counts 6 0 8 4 6 7 11 8 6 11 67

0.2 - 0.299 Avg overlap 0.33 0.05 0.14 0.14 0.22 0.16 0.07 0.25 0.13 0.24 0.17
Counts 44 26 82 26 80 111 111 85 149 115 829

0.3 - 0.399 Avg overlap 0.35 0.20 0.20 0.17 0.22 0.18 0.15 0.23 0.21 0.35 0.22
Counts 102 116 211 75 123 234 220 139 305 229 1754

0.4 - 0.499 Avg overlap 0.41 0.27 0.24 0.25 0.39 0.26 0.22 0.31 0.21 0.42 0.28
Counts 134 275 233 164 153 290 325 123 352 208 2257

0.5 - 0.599 Avg overlap 0.51 0.33 0.35 0.32 0.41 0.26 0.24 0.34 0.28 0.41 0.32
Counts 140 277 200 155 157 284 378 111 396 164 2262

0.6 - 0.699 Avg overlap 0.50 0.37 0.36 0.35 0.55 0.35 0.32 0.55 0.34 0.50 0.38
Counts 99 273 159 112 90 268 397 91 431 168 2088

0.7 - 0.799 Avg overlap 0.57 0.47 0.45 0.43 0.58 0.43 0.41 0.54 0.39 0.57 0.45
Counts 114 199 124 102 123 246 392 72 478 157 2007

0.8 - 0.899 Avg overlap 0.63 0.48 0.52 0.53 0.67 0.49 0.43 0.65 0.45 0.68 0.51
Counts 70 176 130 84 123 272 476 87 648 220 2286

0.9 - 0.999 Avg overlap 0.87 0.52 0.69 0.68 0.79 0.67 0.57 0.72 0.62 0.81 0.64
Counts 55 72 153 59 127 479 650 164 3640 336 5735

1 Avg overlap n/a n/a n/a n/a n/a 1.00 n/a n/a 0.77 1.00 0.77
Counts 0 0 0 0 0 1 0 0 703 1 705

Total Avg overlap 0.50 0.36 0.36 0.35 0.48 0.40 0.36 0.45 0.52 0.53 0.45
Total counts 764 1414 1300 781 982 2192 2960 880 7108 1609 19990
Correlation: 0.32 0.29 0.44 0.41 0.48 0.47 0.39 0.49 0.54 0.43 0.46

Figure 5-8: Correlation between overlap and score for each candidate region. Higher
scores generally indicate a greater overlap of the predicted shape and the actual shape.

The results of the classi�er on the imprecisely cropped regions are generally very

good which means that, in general, there will be correctly labeled candidates overlap-

ping the ground truth shapes in the sketch. However, there is one more piece of the

puzzle, which is how well the classi�er does on regions which overlap small portions of

a shape. Ideally, regions that overlap a small portion of a shape will have the correct

label but will be assigned low scores by the classi�er.

The table in Figure 5-8 shows the correlation between the score that the classi�er

gave to a candidate region and the amount that the candidate region overlapped

the shape it was predicted to be. For example, if a candidate region was predicted

to be a resistor by the classi�er we measured what percent of the candidate region

overlapped a resistor in the image. We measured the overlap between the candidate

and the actual shape as the ratio of the intersecting area to the area of the candidate

region. The overall correlation between scores and percentage of overlap was 0.46.

This indicates that in general higher scoring candidates are more likely to overlap the

69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision−Recall for all shape classes

Recall

P
re

ci
si

on

Figure 5-9: Precision-Recall graph for the full sketch processor.

shape that they indicate. This provides the grounds for weighting the clustering of

the candidates by their weights.

5.4.3 Evaluation of Final Predictions

In the selection of the �nal predictions that are generated by the candidate clusterer

we must select a threshold such that all predictions with scores above the threshold are

considered �nal predictions and those under that score are discarded. To demonstrate

the system's behavior as this threshold is varied we calculated the precision-recall

graph shown in Figure 5-9. The recall is calculated as the number of correct shape

predictions divided by the total number of shapes. The precision is calculated as the

number of correct predictions divided by the total number of predictions made. A

high recall indicates that the system is accurately identifying many shapes and a high

precision indicates that many of the predictions made are correct. In general as the

threshold is decreased more shapes will be predicted correctly, thus increasing the

recall. At the same time this will produce more incorrect detections, thus decreasing

the precision.

To generate the statistics we performed leave-one-out cross validation where all

of the data from one user is excluded from the dataset and the system is trained on

70

that data. The trained classi�er is then applied to the data from the hold out user.

For each sketch in the test set, the candidate �nder selects candidate regions from

the sketch with the sliding window. These candidates are classi�ed by the isolated

classi�er and assigned a class label and a score. The candidate clusterer uses these

predictions and their scores to form weighted clusters, each of which represents a �nal

prediction and whose weight is used as the score for that prediction. Each prediction is

compared to the ground truth shapes from the sketch to determine if it is a correct or

an incorrect detection. If there is more than one correct prediction for the same shape

in the sketch, only the �rst prediction is considered correct. Subsequent predictions

for that shape are considered incorrect.

We then combined all of the predictions from all of the sketches from all of the

users into a list. This list was sorted by the score each prediction received by the

clustering step. For a given threshold on the score we can count how many predictions

above that score are correct and how many are incorrect. Using these counts and the

total number of shapes, across all of the sketches, we can calculate the precision and

recall. The results are shown in Figure 5-9. The maximum recall was .739 at a

precision of .257.

71

Chapter 6

Related Work

The history of pen and sketch based computing goes back to 1963 with Ivan Suther-

land's SKETCHPAD [36], which used a light pen to draw on the monitor to create

circuit diagrams. It is remarkable to see how little and how much has changed since

then. His vision of interaction and the use of the computer in the design process

is still very much in line with our goals today. New technology and an increase of

several orders of magnitude in computing power have increased the capabilities of

such interfaces and allow us to more fully implement his original vision of allowing

designers to sketch their circuits. Many other pen and sketch based systems have

been developed over the years. For a brief historical summary of some comerecial

applications see Dan Briklin's web page [8].

Throughout this history, most of the focus has been on building interactive inter-

faces to assist the user in entering information into the computer. We, on the other

hand, have taken the approach that the user does not always want an interactive

interface, sometimes she just wants to sketch. To understand the needs for and the

inspirations to our vision-based approached we look at the recognition techniques

used by interactive and stroke based systems.

72

6.1 Sketch Recognition

In this section we describe three di�erent types of sketch recognition based on: strokes,

global shape properties, and appearance. Stroke-based methods recognize shapes by

determining what role each stroke plays in the structure of a sketched symbol. A

second approach looks at general properties of shapes and their underlying strokes.

Using global shape properties relaxes the assumption that each stroke plays a speci�c

role, but it does not represent the appearance of the shape. In contrast, appearance-

based methods disregard the individual strokes and focus on the appearance that

those strokes represent.

Our choice of an appearance-based method was made to avoid many of the prob-

lems faced by approaches based on individual strokes or global shape properties. In

this section we lay out the three di�erent recognition approaches, describe their ad-

vantages and challenges, and how they lead us to an appearance based system.

6.1.1 Recognition Based on Strokes

Stroke-based recognition is based around the premise that each stroke has a speci�c

role in representing a sketch. Stroke-based methods consider each stroke, often as it is

drawn by the user, to determine what role it plays. The stroke-by-stroke approach is

well suited to interactive interfaces, because it is expected that the system will display

its interpretation of the sketch after each stroke or each group of strokes is drawn.

Obviously, the system must form an interpretation of each stroke in order to ful�ll

this expectation. The majority of the research in sketch recognition has focused on

stroke-based methods because of the corresponding emphasis on interactive interfaces.

6.1.1.1 Gesture Recognition

Early work in sketch recognition focused on recognizing single and multi-stroke ges-

tures. Gestures are pen strokes that are immediately recognized and result in an

action being performed (e.g. copying or deleting a shape) or a shape being created on

the screen. Gesture based recognition is based primarily on the way that a shape is

73

drawn rather than how it looks. For example, a left to right line may be the gesture

for going to the next page of a document and a right to left line may be the gesture

for going to the previous page.

Early work by Rubine [32] used simple features of single strokes to recognize

gestures. The features included properties such as the distance between start and

end location of the gesture, the angle that the �rst part of the gesture is drawn at

and properties of the bounding box of the stroke. These properties were then used

to train a linear classi�er to recognize the gestures. Long demonstrated in [23, 24]

how a set of gestures could be analyzed to determine their similarities. His system

used this information to identify gestures that the system was likely to confuse. This

aided interface designers in designing sets of gestures that were distinct and easy for

the system to recognize.

Gesture recognition systems impose severe constraints on how the user can draw.

The user must know the correct order and direction the strokes should be drawn

in. Additionally, the gestures themselves do not necessarily look like the symbols

that they represent. For example, the gesture for placing a rectangle on the screen

may be de�ned as a stroke depicting the rectangle's left and bottom edges. This

provides the system su�cient information to place a rectangle on the screen at the

speci�ed location and size even though it does not actually depict a rectangle. For

these reasons, gesture-based recognition is not applicable to freely drawn sketches.

6.1.1.2 Hierarchical Shape Descriptions

Another type of stroke-based recognition is based on hierarchical descriptions of

shapes [2, 4, 18, 17, 26]. The lowest level of the hierarchy is made up of geometric

primitives, such as lines, arcs, and ellipses. Intermediate level shapes are composed of

primitive geometric parts and the constraints between them. For example, a triangle

is described as three lines that each connect at their endpoints from one to the next.

Higher level shapes can be formed using combinations of lower level shapes and the

constraints between them, for example, a house shape can be described as a rectangle

with a triangle on top of it.

74

Sketches are recognized using these representations by �rst breaking up the input

strokes into geometric primitives such as lines, arcs, and ellipses using techniques

such as the ones described in [34, 35]. Recognition can then be treated as a sub-

graph matching problem between prede�ned shape descriptions and the geometric

primitives from the strokes. Sub-graph matching is exponential, in the worst case,

and thus expensive to compute due to the large number of possible groupings of

primitives into individual shapes and the constraints between them. The complexity

is often reduced by restricting the search to fragments that are both spatially and

temporally grouped, or by using other attentional focusing mechanisms, as suggested

in [26]. These added assumptions and constraints are often violated in freely drawn

sketches. In particular two common assumption are that each stroke can be part of

only one shape and that all the parts of one shape are drawn before drawing the next.

This matching process is complicated further by over-or under-fragmentation of

the strokes into geometric primitives. If the stroke is broken into too many pieces than

there will be extra components that will not map to any part of the shape description.

If the strokes are not divided enough, then there will be components of the shape

descriptions that cannot be �lled in. The many possible ways of fragmenting the

sketch exacerbates the already high cost of matching the primitives to the descriptions

and complicates the recognition of overtraced shapes, which contain strokes that do

not map directly to components regardless of the fragmentation.

Several systems have modeled the matching and fragmentation problems proba-

bilistically to allow information from shape descriptions that are partially satis�ed

to propagate down to reinterpret low level fragmentation hypothesis. Alvarado's

SketchREAD system [4] uses dynamically generated Bayesian network fragments to

represent shape hypotheses in which the high level structure of the shape can in�u-

ence and cause the reinterpretation of the geometric primitives. For example, if one

of the strokes in the head of an arrow is initially labeled as an arc instead of a line,

the context from the shape description of the arrow decreases the belief that the last

stroke is an arc and increases the belief that it is a line. As a result the arc segment

is reinterpreted as a line and the arrow is fully recognized.

75

Although not based on a formal structural model of shapes, another probabilistic

approach by Szummer and Qi in [37] uses conditional random �elds (CRFs) to prop-

agate information about the labeling of one stroke fragment to its neighbors. This

allows their system to assign labels to stroke fragments that cannot easily be iden-

ti�ed in isolation and to regroup over-segmented fragments. This helps mitigate the

di�culty of determining the exact granularity at which to perform fragmentation by

using the context of surrounding fragments and a global interpretation of the sketch.

They have applied their algorithm to the binary labeling problem of distinguishing

boxes from connectors in organizational charts with good results, even in several

highly ambiguous cases.

6.1.2 Recognition Based on Global Properties of Shapes

A number of approaches have stepped back from the properties of individual strokes to

classify shapes based on a set of properties calculated on the whole shape. Properties

that attempt to summarize the information in the entire shape are called global

features.

In [6] a carefully crafted set of �lters based on global features, such as the ratio

of their bounding box area to convex hull area and the ratio of the perimeter to the

area, were used to progressively eliminate possible interpretations for a stroke until a

suitable interpretation was found. For example, rectangles can be distinguished from

triangles by looking at the ratio between the area of the convex hull and the area of

the rectangular bounding box. The ratio for rectangles will be near 1.0 and the ratio

for triangles will be near 0.5.

A similar set of features was used by Fonseca et. al. in [14]. In that system,

a carefully selected set of features was used by a number of rules and fuzzy logic

to perform classi�cation. Their system could also be trained to learn to distinguish

between shape classes using a Naïve Bayes model based on the features.

A more general approach using Zernike moments was demonstrated by Hse et. al.

in [21]. Instead of using a hand tuned collection of properties they make use of the

magnitudes of Zernike moments. Zernike moments are a class of orthogonal moments

76

which describe the distribution of points in the input shape. Higher order moments

represent �ner levels of detail in the point distribution. The magnitudes of these

moments, calculated up to a given order, form a feature vector which can be used to

train an SVM. The magnitudes of Zernike moments have been shown to be invariant

to both rotation and re�ection of the input shape. A comparison of Zernike moments

to our match vector representation is presented in detail in Section 5.2.2.

These types of systems are based on global properties of shapes. Shape classes are

identi�ed by determining which properties each class tends to have. The properties do

not typically depend on the number or order of the strokes and are thus based on the

appearance of the shape and not how it was drawn. However, they do not represent

the individual details of the shape. For example, it would be impossible to distinguish

between the symbol for a current source (circle containing an arrow) and an ac-source

(circle containing a �tilde�) using just the ratio of convex hull area to bounding box

area. This approach cannot distinguishing between shapes that di�er by small details,

and cannot deal with shapes that allow substantial conceptual variation. Handling

these requires an approach that can represent the shapes at multiple levels of detail.

6.1.3 Recognition Based on Appearance

The third type of recognition is focused on the appearance of the shapes as opposed

to individual strokes or global properties.

The approach taken by Kara in [22] operates by matching input shapes to a

database of prototype shapes by �rst normalizing the pose and scale of the shapes

and then combining four image similarity measures: two Hausdor� based distances,

the Tanimoto coe�cient and the Yule coe�cient. Each of these measures looks at

how closely aligned the pixels are between the two images. Basing the recognition on

prototype shapes allows them to begin recognizing with just a single training example.

However, it requires the selection of a database of prototype examples that must be

representative of all the variations and transformations each shape class is allowed.

For computational reasons, their approach also requires down-sampling the image to

48x48 pixel representations which, as they point out, can eliminate some �ne details

77

needed to distinguish between some shape classes. While their results on isolated

shapes seem promising, the approach has yet to be tested in the context of a full

sketch processing system. Additionally, it was tested on shapes drawn in isolation

without the context of any design task. As a result it is unclear how this approach will

perform on natural sketches that tend to have a wider range of noise and variation.

6.1.4 Discussion

Of these three approaches, only the approach in [4] using stroke-based recognition

with hierarchical shape descriptions has been applied to full, freely drawn sketches

with more than two shape classes. This is partially due to the emphasis on interactive

systems and also as a result of the di�culties in processing such sketches.

Systems using methods based on gestures and global stroke-properties are depen-

dent on assumptions about how strokes can be grouped. They generally assume that

the user will draw all of one shape before drawing the next (e.g. in [6, 11, 14, 15]).

This allows them to group strokes temporally and then recognize them based on ei-

ther their stroke or appearance properties. As discussed in [5], this assumption does

not hold in natural sketches.

Stroke-based systems using hierarchical shape descriptions have been applied to

natural sketches in [4]. The chief di�culty for such systems has been the computa-

tional complexity of the matching problem between shape descriptions and the geo-

metric primitives produced in the fragmentation process. Natural sketches are di�cult

to reliably fragment into geometric primitives, because of the increase in noise and

other phenomena such as interspersed drawing of parts from multiple shapes, multiple

shapes drawn with single strokes, and overtraced strokes. Because these systems are

dependent on the fragmentation process, they are either faced with performing recog-

nition with unreliable fragmentation results or must consider many possible ways to

fragment the sketch. Avoiding the fragmentation issue was one of our key motivating

factors in taking an appearance-based approach to recognition.

The appearance based methods described above have not been applied, to our

knowledge, to complete, freely drawn sketches. They have only been applied to

78

isolated shapes or synthetic images generated from isolated shapes. Although their

focus on the visual nature of the sketches appears promising for handling freely drawn

sketches they have not yet been evaluated on them.

6.2 Computer Vision

Much of our inspiration for taking a visual approach has come from recent advances

in object classi�cation in the computer vision literature. Although the focus is on

identifying real world objects in photographs, many of the ideas and techniques have

proved useful to our task of sketch recognition. In particular we have found the idea

of local feature representations and part-based models useful in sketch recognition.

6.2.1 Local Feature Representations

We have focused on the concept of representing a shape as a collection of local features

that each represent the appearance of a small neighborhood of the shape.

Local features are a broad class of representations that represent small regions of

an image, see [28] for a survey and thorough analysis of a number of di�erent types of

local features. Local features have been a key tool in the computer vision literature

for detecting and classifying objects in images. By representing objects as a collection

of local features it is possible to identify objects in images by �nding some parts of the

object, even if the entire object is not visible (e.g. it is occluded by another object)

or if part of the object can have di�erent appearances (e.g. the backs of cars tend to

look similar even if they have di�erent bumper stickers on them).

Many of the local feature representations used in object recognition have been

designed around image gradients and various �lters on intensity images. The shape

context features presented in [7], however, were designed to represent edges instead

of gray level images and are therefore well suited to sketches. One approach to

recognition using these features is to create a database of template shapes and then

�nd point correspondences between the input features and the best matching template

in the database (e.g. [25, 28]). A single match between an input feature and a

79

template feature does not generally provide su�cient evidence of a match but a

collection of such point matches with consistent relative orientations and positions

can be considered good evidence of a match. However, we found that the conceptual

variation in the way shapes are drawn proved this approach ine�ective because the

individual feature matches were not reliable enough.

Shape contexts have been used on pen inputs for recognizing hand drawn digits.

However, they have not been used with online sketches which have access to the

stroke trajectory information. We have found the trajectory information to be an

important addition to the shape context features for rotational invariance and as

an additional orientation dimension in the histogram. The use of the orientation

information in the histogram was inspired by SIFT descriptors [25]. In SIFT the

orientation of image gradients is calculated from images and used to form histograms

of orientations in patches of the images. By combining the radial histogram structure

used in shape contexts, the orientation information used in SIFT, and the stroke

trajectory information, our bullseye representation is well suited to representing the

appearance of parts in online sketches.

6.2.2 Recognition Based on Visual Parts

One approach to recognition based on visual parts is described in [38]. In their

approach they start with a large number of features sampled from their dataset and

use a boosting approach to �nd features that reliably discriminate between objects

from di�erent classes. Their approach used a common set of features to discriminate

between objects instead of using an object-speci�c set of features to separate each

object from all of the others. By using a common feature set, they were able to

generalize to a larger number of objects and train with less data. This representation

based on a common set of parts was an inspiration for our approach of using the �xed

codebook to represent shapes.

Another approach that closely resembles ours is the work of Willamowski et. al.

[41], which uses a bag of keypoints to recognize objects. Like our model, they cluster

image features to form a �xed vocabulary of parts, called keypoints. These keypoints

80

are then used to represent input images by determining the frequency with which each

of the keypoints appears in the input image. The vector of frequency values are then

used to train a multiclass classi�er to distinguish between the di�erent object classes.

The key di�erence between this approach and ours is that we focus the representation

on the quality of the matches between the codebook and the input image, rather than

the frequency with which each of the keypoints appear.

An approach called the pyramid match kernel, described in [16], avoids de�ning

a �xed vocabulary of parts by directly comparing two objects based on how well

their parts can be matched to one another. The approach avoids the computational

expense of calculating the optimal pairings between two unordered sets of parts by

using pyramids over the input features. Each level of the pyramid represents how

many parts in one image are similar to parts in another image. The bottom levels of

the pyramid count the number of high quality matches, e.g. parts that are very close

in feature space, whereas the higher levels of the pyramid represent correspondences

between parts that are less similar. The pyramids can be constructed and compared

very e�ciently by counting the number of parts from each image that come into

correspondence at each level of the pyramid.

The comparison of two pyramids yields a distance measure between images. The

distance is based on the number of matches between the two objects at each level of

the pyramid. These distances are used as the kernel in a support vector machine that

learns to classify input shapes based on the distances between their pyramids. Using

code available from their website1 we were unable to produce satisfactory results on

our data sets, with recognition rates of only 60%. One possible reason for the poor

performance was that distance between parts was computed using Euclidean distance

instead of using our custom distance measure.

We also believe that our classi�cation based on match vectors is e�ective because

we are preserving the distance between each codebook part and the best matching

input part. This allows the SVM to learn how similar a part must be to the codebook

part in order to be a good indicator that the input belongs to a particular class.

1Libpmk is available from: http://people.csail.mit.edu/jjl/libpmk

81

http://people.csail.mit.edu/jjl/libpmk

For some shapes, a close match between a particular input feature and one of the

codebook features may suggest the input's identity, for other features, there may not

be a single close match but reasonable matches to several codebook features may still

provide good evidence. The SVM learns to what degree each codebook feature or

groups of codebook features are expected to match to discriminate between shape

classes. In contrast the pyramid match distance summarizes the quality and quantity

of all the matches into a single distance value.

6.3 Future Directions

There are several areas that could be explored in future work. In general, we believe

that the bullseye and match vector method of classifying shapes is su�cient for the

task of classifying individual shapes, and future e�orts should be focused on the issue

of localizing shapes in full sketches. This section describes several possible directions

for improving the localization portion of our system. We then discusses several of the

larger issues surrounding the use of our system within a design environment.

6.3.1 Shape Localization

Research in the �eld of visual object detection has found that local feature based

recognition can bene�t from a three-stage approach. The �rst step is to identify

interest points in the image, the second is to match features calculated at those

interest points to features from a model, and the �nal step is to re�ne and �t the

matched points in the image to the model. This work has focused primarily on the

second, matching stage. Future work should explore the other two steps in greater

detail to evaluate the possibility of matching sets of template shapes to regions in the

image instead of the window scanning approach.

6.3.1.1 Invariant Interest Points

In our initial explorations, we tried to localize shapes in an input sketch based on

point correspondences between a set of template shapes and a bullseyes calculated

82

across the input sketch. We found that the point correspondences were not reliable

enough to use this technique to localize shapes. One possible reason for this is that the

bullseye parts were calculated at �xed distances along the stroke paths. The problem

with uniform sampling is that bullseyes calculated at two nearby points may have

very di�erent histograms. For example, the orientations of two bullseyes calculated

on either side of a right-angle corner di�er by 90 degrees. As a result, they have very

di�erent histograms even though they represent nearly the same region of the sketch.

An alternative to uniform sampling is to determine interest points in the sketch

such that bullseyes calculated at those points are similar to the bullseyes calculated at

neighboring points. One possible method for selecting interest points is to �nd points

on the shape with stable orientations. A point with a stable orientation is a point that

has a similar orientation to the adjacent points along the stroke. In general, nearby

points with similar orientations have similar bullseye parts. By calculating bullseyes

at interest points with stable orientations the bullseye parts calculated on multiple

shapes will be more consistent. One drawback of this approach is that the corners

often contain details that are essential to discriminating between shape classes (e.g.

a pentagon from a hexagon).

A second alternative to �xed sampling is to calculate bullseyes at the stroke end-

points and corners. This would cause parts to be calculated at (approximately) the

same locations in each shape. This would mitigate the inconsistency resulting from

sampling at slightly di�erent locations on each shape. To handle the problem of ori-

entation instability near corners, bullseyes could be calculated relative to a canonical

orientation calculated for the surrounding region of the sketch instead of relative to

the local stroke trajectory. A canonical orientation could be de�ned by �nding the

most frequent orientation (or multiple orientations) of the points in a shape. This ap-

proach would allow parts to be reliably calculated at corners. Experiments will need

to be devised to determine if the rotational invariance based on global shape prop-

erties is more e�ective than rotational invariance for the individual bullseyes. This

approach is similar to the one used to determine the orientation of SIFT features in

[25].

83

One desirable property of local features is scale invariance. For isolated shapes,

scale invariance is easily handled by scaling the input shape to a canonical size.

However, when calculating bullseyes across an entire sketch it would be bene�cial

if the radius of the bullseyes could be determined based on properties of the region

for which they are being calculated. This in turn could be used to determine the

appropriate size of the shapes detected in the image. The method used in determining

the scale for SIFT features looks for interest points in scale space. Scale space allows

a region to be simultaneously examined at a variety of scales that have each been

smoothed (or blurred) by a factor proportional to the scale. In SIFT, interest points

are selected by �nding points that are brighter or darker than all of the surrounding

pixels at the same scale and at the same location on the next larger and smaller scales.

These points tend to be distinctive and can be reliably located in di�erent views of

the same object.

Scale space has also been used in stroke fragmentation as described by Sezgin

in [33] by looking at the curvature of the stroke trajectory as it is smoothed with

successively larger factors. Initially, there are many maxima in curvature as a result of

high frequency noise due to digitization and hand tremor. As the stroke orientation at

each point is smoothed with successively larger smoothing factors, many local maxima

are smoothed out. As Sezgin points out, the number of local maxima decreases rapidly

at �rst (as maxima resulting from high frequency noise are smoothed out) and then

more slowly as the smoothing factor increases. The curve representing the number

of curvature maxima versus the smoothing factor can be used to �nd a smoothing

factor that eliminates most of the signal noise, but still captures the intended corners

of the sketch. This is done by �nding the knee of the curve, where the number of

maxima begins to decrease more slowly. The maxima associated with the knee in this

curve suggests which maxima correspond to actual corners in the stroke as opposed

to noise.

Additionally, the scaling factor at the knee may provide an indication of the scale

of the shape. To the extent this is found to be true, the scale space analysis of the

stroke trajectories could provide interest points as well as potential scales at which to

84

calculate bullseyes. Exploring the relationship between the smoothing factor, interest

point selection, and the scale presents a possible avenue for future exploration.

If such a relationship between stroke smoothing and shape scale is found, this

would allow scale-invariant bullseyes to be calculated over the input sketch. The

bullseyes could then be matched to template shapes and the system would be able to

localize shapes in the sketch even with shapes appearing at multiple scales.

6.3.1.2 Model Fitting

Another way in which the shape localization could be improved is to add a �nal stage

to the localization algorithm that �ts the predicted shape to a model. This step

could be added to the current, scanning approach, or to the template based method

described above. The basic idea would be to match the predicted shape to a template

of the predicted shape class. By �tting the predicted shape to a template, many of

the system's errors resulting from imprecisely localizing shapes could be eliminated.

Many of the incorrect predictions made by the current system contain signi�cant

portions of actual shapes but they are not precisely aligned to the actual shape. By

adjusting the predicted region to better match a template, many of these errors could

be corrected.

6.3.2 Developing a Design Tool

Turning our current recognition system into a useful design tool requires a number of

additions. First, our recognizer has been designed in a domain-independent manner;

no part of our recognition algorithm uses any information about the semantics of

the domain. Domain independence allows the recognizer to be easily retargeted to

new domains (as we did for the HHreco data set). However, there are many domain

constraints that could be used to post process the recognition results. For example,

grounds can only be attached to one wire but batteries must be attached to two wires.

Domain speci�c information such as this could be used on top of our system to improve

the recognition results in a particular domain (as was done in [15]). The parsing of

85

circuit sketches could also be improved by �rst �nding wires and then recognizing the

remaining components. Further experimentation is required to determine how easily

wires can be identi�ed using either our recognizer or a custom wire-�nding procedure.

Given the wide range of variations and the noise in free sketches, it is unlikely

that our system (or any system) will ever have perfect recognition. Consequently,

any sketch based design tool employing recognition must have an interface to easily

correct the recognizer's errors. A correction interface, such as the one described

by Notowidigdo in [29], will be necessary to make the corrections and to build a

formal model of the sketch. The correction interface will need to be tuned to the

speci�c types of errors made by our system. For example, our system often confuses

batteries and ground symbols. The correction interface should know this fact so that

the interface can suggest the most likely alternative interpretations. The correction

interface should also have access to the ranked list of shape predictions, so that it can

suggest the most likely alternatives based on the rankings.

86

Chapter 7

Contributions

In this thesis we have presented a system to accurately classify symbols in freely

drawn sketches. The shapes in the dataset of analog circuit sketches contained a wide

range of signal level noise and conceptual variation in addition to overtracings and

touch up strokes. In contrast to the majority of the sketch recognition community, our

approach to recognition is based on the appearance of the shapes and not properties of

individual strokes and their relationships to one another. By taking a visual approach

we are able to recognize shapes that are extremely di�cult to recognize in a stroke

based system.

Our recognition system encodes shapes in terms of a codebook of visual parts,

called bullseyes. Bullseyes, adapted from [7], represent the appearance of a small

region of the shape in high detail and the surrounding context of that region in less

detail. During the training stage, our system builds a codebook of parts by clustering

a sampling of all the bullseyes computed on the training set. This codebook is used to

encode a shape into a match vector that represents the visual parts that it contains.

The match vectors are then used to train and classify shapes. The bullseyes smooth

out the signal noise in the drawn shapes and match vector representation provides

the system with the information needed to learn the conceptual variation within each

shape class and to discriminate between classes. Using these representations and

techniques we are able to correctly classify 89.5% of the shapes in our dataset.

This shape classi�er is then used to scan a complete input sketch for shapes and

87

is able to detect 74% of the shapes in the sketches (with a precision of 26%).

88

Bibliography

[1] Christine Alvarado. Sketch recognition user interfaces: Guidelines for design and

development. In Making Pen-Based Interaction Intelligent and Natural, pages

8�14, Menlo Park, California, October 21-24 2004. AAAI Fall Symposium.

[2] Christine Alvarado and Randall Davis. Preserving the freedom of sketching to

create a natural computer-based sketch tool. In Human Computer Interaction

International Proceedings, 2001.

[3] Christine Alvarado and Randall Davis. Resolving ambiguities to create a natural

sketch based interface. In Proceedings. of IJCAI-2001, pages 1365�1374, August

2001.

[4] Christine Alvarado and Randall Davis. Sketchread: A multi-domain sketch recog-

nition engine. In Proceedings of UIST '04, 2004. doi: 10.1145/1029632.1029637.

[5] Christine Alvarado and Michael Lazzereschi. Properties of real-world digital

logic diagrams. In Submitted to: Proceedings of the 1st International Work-

shop on Pen-based Learning Technologies, 2007. URL http://www.cs.hmc.edu/

~alvarado/papers/properties-plt07.pdf.

[6] Ajay Apte, Van Vo, and Takayuki Dan Kimura. Recognizing multistroke geo-

metric shapes: An experimental evaluation. In UIST, pages 121�128, 1993. doi:

10.1145/168642.168654.

[7] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object

89

http://www.cs.hmc.edu/~alvarado/papers/properties-plt07.pdf
http://www.cs.hmc.edu/~alvarado/papers/properties-plt07.pdf

recognition using shape contexts. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24(4):509�522, April 2002. doi: 10.1109/34.993558.

[8] Dan Briklin. About tablet computing old and new. http://www.bricklin.

com/tabletcomputing.htm, November 2002. URL http://www.bricklin.com/

tabletcomputing.htm.

[9] Chris Calhoun, Thomas F. Stahovich, Tolga Kurtoglu, and Levent Burak Kara.

Recognizing multi-stroke symbols. In Sketch Understanding, Papers from the

2002 AAAI Spring Symposium, volume SS-02-08, pages 15�23, Stanford, Cali-

fornia, March 25-27 2002. AAAI Press.

[10] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector

machines, 2001. URL http://www.csie.ntu.edu.tw/~cjlin/libsvm. Software

available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[11] Philip R. Cohen, M. Johnston, D. McGee, S. Oviatt, J. Pittman, I. Smith,

L. Chen, and J. Clow. Quickset: Multimodal interaction for distributed appli-

cations. In Proceedings of the Fifth International Multimedia Conference (Mul-

timedia '97), pages 31�40. ACM Press, 1997. doi: 10.1145/266180.266328.

[12] Chris Dance, Jutta Willamowski, Lixin Fan, Cedric Bray, and Gabriela Csurka.

Visual categorization with bags of keypoints. In ECCV International Work-

shop on Statistical Learning in Computer Vision, 2004. URL http://www.xrce.

xerox.com/Publications/Attachments/2004-010/2004_010.pdf.

[13] M. Everingham, A. Zisserman, C. K. I. Williams, and L. Van Gool. The PASCAL

Visual Object Classes Challenge 2006 (VOC2006) Results. http://www.pascal-

network.org/challenges/VOC/voc2006/results.pdf.

[14] Manuel J. Fonseca, César Pimentel, and Joaquim Jorge. Cali: An online scribble

recognizer for calligraphic interfaces. In Sketch Understanding, Papers from the

2002 AAAI Spring Symposium, volume SS-02-08, pages 51�58, Stanford, Cali-

fornia, March 25-27 2002. AAAI Press.

90

http://www.bricklin.com/tabletcomputing.htm
http://www.bricklin.com/tabletcomputing.htm
http://www.bricklin.com/tabletcomputing.htm
http://www.bricklin.com/tabletcomputing.htm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.xrce.xerox.com/Publications/Attachments/2004-010/2004_010.pdf
http://www.xrce.xerox.com/Publications/Attachments/2004-010/2004_010.pdf

[15] Leslie Gennari, Levent Burak Kara, Thomas F. Stahovich, and Kenji Shimada.

Combining geometry and domain knowledge to interpret hand-drawn diagrams.

Computers & Graphics, 29(4):547�562, 2005. doi: 10.1016/j.cag.2005.05.007.

[16] Kristen Grauman and Trevor Darrell. The pyramid match kernel: Discrimina-

tive classi�cation with sets of image features. In ICCV '05: Proceedings of the

Tenth IEEE International Conference on Computer Vision, pages 1458�1465,

Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2334-X-02.

doi: 10.1109/ICCV.2005.239.

[17] Mark D. Gross. The electronic cocktail napkin�a computational environment for

working with design diagrams. Design Studies, 17(1):53�69, January 1996. doi:

10.1016/0142-694X(95)00006-D.

[18] Tracy Hammond and Randall Davis. LADDER: A language to describe drawing,

display, and editing in sketch recognition. In Proceedings of the 2003 Internal-

tional Joint Conference on Arti�cial Intelligence (IJCAI), Acapulco, Mexico,

2003.

[19] Jason Hong, James Landay, A. Chris Long, and Jennifer Manko�. Sketch recog-

nizers from the end-user's, the designer's, and the programmer's perspective. In

Sketch Understanding, Papers from the 2002 AAAI Spring Symposium, volume

SS-02-08, pages 73�77, Stanford, California, March 25-27 2002. AAAI Press.

[20] Heloise Hwawen Hse and A. Richard Newton. Recognition and beauti�cation of

multi-stroke symbols in digital ink. In Making Pen-Based Interaction Intelligent

and Natural, pages 78�84, Menlo Park, California, October 21-24 2004. AAAI

Fall Symposium.

[21] Heloise Hwawen Hse and A. Richard Newton. Sketched symbol recognition using

zernike moments. In ICPR (1), pages 367�370, 2004. doi: 10.1109/ICPR.2004.

1334128. URL http://csdl.computer.org/comp/proceedings/icpr/2004/

2128/01/212810367abs.htm.

91

http://csdl.computer.org/comp/proceedings/icpr/2004/2128/01/212810367abs.htm
http://csdl.computer.org/comp/proceedings/icpr/2004/2128/01/212810367abs.htm

[22] Levent Burak Kara and Thomas F. Stahovich. An image-based, trainable symbol

recognizer for hand-drawn sketches. Computers & Graphics, 29(4):501�517, 2005.

doi: 10.1016/j.cag.2005.05.004.

[23] A. Chris Long, Jr., James A. Landay, Lawrence A. Rowe, and Joseph Michiels.

Visual similarities of pen gestures. In Proceedings of the CHI 2000 conference on

Human factors in computing systems, 2000. doi: 10.1145/332040.332458.

[24] A. Chris Long, Jr., James A. Landay, and Lawrence A. Rowe. `Those Look

Similar!' issues in automating gesture design advice. In The Proceedings of

2001 Perceptive User Interfaces Workshop (PUI'01), 2001. doi: 10.1145/971478.

971510.

[25] David G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-

national Journal of Computer Vision, 60(2):91�110, 2004. ISSN 0920-5691. doi:

10.1023/B:VISI.0000029664.99615.94.

[26] James V. Mahoney and Markus P. J. Fromherz. Three main concerns in sketch

recognition and an approach to addressing them. In Sketch Understanding, Pa-

pers from the 2002 AAAI Spring Symposium, volume SS-02-08, pages 105�112,

Stanford, California, March 25-27 2002. AAAI Press.

[27] J. McFadzean, N. G. Cross, and J. H. Johnson. An analysis of architectural

visual reasoning in conceptual sketching via computational sketch analysis (csa).

In Proceedings of IEEE International Conference on Information Visualization,

pages 258�265, 1999. doi: 10.1109/IV.1999.781568.

[28] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local

descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(10):1615�1630, 2005. ISSN 0162-8828. doi: 10.1109/TPAMI.2005.188.

[29] Matt Notowidigdo and Robert C. Miller. O�-line sketch interpretation. In Mak-

ing Pen-Based Interaction Intelligent and Natural, pages 120�126, Menlo Park,

California, October 21-24 2004. AAAI Fall Symposium.

92

[30] Michael Oltmans. Girl scout bene�t archives.

http://projects.csail.mit.edu/gsb/archives/index.html, 2007.

[31] Michael Oltmans, Christine Alvarado, and Randall Davis. Etcha sketches:

Lessons learned from collecting sketch data. In Making Pen-Based Interaction

Intelligent and Natural, pages 134�140, Menlo Park, California, October 21-24

2004. AAAI Fall Symposium.

[32] Dean Rubine. Specifying gestures by example. In Computer Graphics, volume 25,

pages 329�337, 1991. doi: 10.1145/127719.122753.

[33] Tev�k Metin Sezgin and Randall Davis. Scale-space based feature point detection

for digital ink. In Making Pen-Based Interaction Intelligent and Natural, pages

145�151, Menlo Park, California, October 21-24 2004. AAAI Fall Symposium.

[34] Tev�k Metin Sezgin, Thomas Stahovich, and Randall Davis. Sketch based in-

terfaces: Early processing for sketch understanding. In The Proceedings of 2001

Perceptive User Interfaces Workshop (PUI'01), Orlando, FL, November 2001.

[35] Thomas F. Stahovich. Segmentation of pen strokes using pen speed. In Mak-

ing Pen-Based Interaction Intelligent and Natural, pages 152�159, Menlo Park,

California, October 21-24 2004. AAAI Fall Symposium.

[36] Ivan E. Sutherland. Sketchpad: A man-machine graphical communication sys-

tem. pages 329�346, 1963.

[37] Martin Szummer and Yuan Qi. Contextual recognition of hand-drawn diagrams

with conditional random �elds. In IWFHR '04: Proceedings of the Ninth Inter-

national Workshop on Frontiers in Handwriting Recognition (IWFHR'04), pages

32�37, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-

2187-8. doi: 10.1109/IWFHR.2004.31.

[38] Antonio Torralba, Kevin P. Murphy, and William T. Freeman. Sharing features:

E�cient boosting procedures for multiclass object detection. cvpr, 02:762�769,

93

2004. ISSN 1063-6919. doi: http://doi.ieeecomputersociety.org/10.1109/CVPR.

2004.232.

[39] David G. Ullman, Stephen Wood, and David Craig. The importance of drawing

in the mechanical design process. Computers and Graphics, 14(2):263�274, 1990.

ISSN 0097-8493. doi: 10.1016/0097-8493(90)90037-X.

[40] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc., New

York, NY, September 1998.

[41] Jutta Willamowski, Damian Arregui, Gabriella Csurka, Christopher R. Dance,

and Lixin Fan. Categorizing nine visual classes using local appearance descrip-

tors. In Workshop on Learning for Adaptable Visual Systems (LAVS04), Cam-

bridge, U.K., 2004.

[42] Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. Probability estimates for multi-

class classi�cation by pairwise coupling. J. Mach. Learn. Res., 5:975�1005, 2004.

ISSN 1533-7928.

94

	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.2.1 Signal and Conceptual Variation in Sketches
	1.2.2 Overtracing
	1.2.3 Segmentation

	1.3 Approach Overview
	1.3.1 Summary of Isolated Shape Classification
	1.3.2 Summary of Shape Localization
	1.3.3 Terminology

	1.4 Results Overview
	1.5 Contributions
	1.6 Outline

	2 Representation of Visual Parts
	2.1 Bullseye Features
	2.2 Strokes Have Direction
	2.2.1 Making Features Rotationally Invariant
	2.2.2 Binning Point Orientations
	2.2.3 Calculating Stroke Direction

	2.3 Stroke Preprocessing
	2.4 Calculating Distances Between Bullseyes

	3 Representation of Shapes
	3.1 The Codebook
	3.2 Match Vectors
	3.3 Discussion

	4 Recognition
	4.1 Support Vector Machine Training and Classification
	4.2 Shape Localization
	4.2.1 Selecting Initial Candidate Regions
	4.2.2 Classifying Initial Candidate Regions
	4.2.3 Forming Predictions by Clustering Initial Candidate Regions
	4.2.4 Selecting a Final Set of Predictions

	5 Evaluation
	5.1 Circuit Sketch Data Set
	5.2 Circuit Symbol Evaluation
	5.2.1 Bullseye and Match Vector Evaluation
	5.2.2 Zernike Moment Classifier

	5.3 Power Point Symbol Evaluation
	5.4 Full Sketches
	5.4.1 Evaluation Criteria
	5.4.2 Evaluation of the Classification of Candidate Regions
	5.4.3 Evaluation of Final Predictions

	6 Related Work
	6.1 Sketch Recognition
	6.1.1 Recognition Based on Strokes
	6.1.1.1 Gesture Recognition
	6.1.1.2 Hierarchical Shape Descriptions

	6.1.2 Recognition Based on Global Properties of Shapes
	6.1.3 Recognition Based on Appearance
	6.1.4 Discussion

	6.2 Computer Vision
	6.2.1 Local Feature Representations
	6.2.2 Recognition Based on Visual Parts

	6.3 Future Directions
	6.3.1 Shape Localization
	6.3.1.1 Invariant Interest Points
	6.3.1.2 Model Fitting

	6.3.2 Developing a Design Tool

	7 Contributions
	Bibliography

