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Abstract

We present a vision-based multi-signal gesture recognition system that integrates informa-
tion from body and hand poses. Unlike previous approaches to gesture recognition, which
concentrated mainly on making it a single signal, our system allows a richer gesture vocab-
ulary and more natural human-computer interaction. The system consists of three parts:
3D body pose estimation, hand pose classification, and gesture recognition. 3D body pose
estimation is performed following a generative model-based approach, using a particle filter-
ing estimation framework. Hand pose classification is performed by extracting Histogram
of Oriented Gradients features and using a multi-class Support Vector Machine classifier.
Finally, gesture recognition is performed using a novel statistical inference framework that
we developed for multi-signal pattern recognition, extending previous work on a discrim-
inative hidden-state graphical model (HCRF) to consider multi-signal input data, which
we refer to Multi Information-Channel Hidden Conditional Random Fields (MIC-HCRFs).
One advantage of MIC-HCRF is that it allows us to capture complex dependencies of mul-
tiple information channels more precisely than conventional approaches to the task. Our
system was evaluated on the scenario of an aircraft carrier flight deck environment, where
humans interact with unmanned vehicles using existing body and hand gesture vocabu-
lary. When tested on 10 gestures recorded from 20 participants, the average recognition
accuracy of our system was 88.41%.

Thesis Supervisor: Randall Davis
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

1.1 Preface: “The future is gestural.”

Controller-based interaction (e.g., keyboard, mouse, joystick, etc) has been a primary

way to deal with computer systems. It has allowed us to interact with complex systems

efficiently, especially when one needs fine control of a system (e.g., photo/video editing,

computer programming, music composition, etc.). However, this type of interaction is

often both labor intensive (e.g., getting familiar with input devices and learning all the

provided functionalities of the system) and requires an awkward interaction modality or

an unintuitive definition of a functionality.

Gesture-based interaction, on the other hand, is a paradigm shifting approach to interacting

with computer systems. It allows users to interact with systems by waving their arms,

articulating specific gestures, directly touching a digital object, making facial expressions,

etc., skills that most of us have naturally learned and used since birth. Compared to the

conventional controller-based interaction, it does not require users to learn additional skill

sets to control specially-designed input devices or to memorize the functionalities that are

designed to be used with the input devices, allowing the users to concentrate on the task

itself with less cognitive effort. Gesture-based user interfaces that are carefully designed
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to resemble how humans naturally interact with objects in the real-world, therefore, can

open a new horizon of future computing.

This shift –from the controller-based interaction to the gesture-based interaction– is getting

growing attention in many research and industrial fields. In consumer electronics, for

example, we see recent prototypes such as gesture-controlled televisions and interactive

video game consoles (Figure 1-1). In these prototypes, gesture recognition allows people

to use their own body parts to give commands via a sequence of articulated body poses.

Therefore, in order to control a television or play an interactive video game, users no longer

need to sit in front of a system holding a remote control or a joystick; they can simply

wave their arms or hands, or hold a specific body pose in a predefined manner.

Figure 1-1: Hitachi gesture remote control television (left) and Microsoft Kinect video
game console (right).

1.2 Goal and Motivations

1.2.1 Goal

A successful gesture recognition technology has a great potential in many application areas,

including visual surveillance, virtual reality, home appliances, interactive video games, and

natural human-computer/robot interactions.
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The goal of this thesis work is to design and implement a multi-signal gesture recogni-

tion system that attends to multiple information channels, specifically, a combination of

body and hand poses. Along with this, to avoid obtrusive and unnatural interaction, the

system was built not to require any marker to be attached to the human body, but to per-

form motion tracking solely based on a single stereo camera and various computer vision

techniques.

To make these goals possible, our system performs 3D body pose estimation and hand pose

classification in a unified fashion, and uses results from the both to recognize gestures. In

order to provide a principled statistical inference framework, we developed a novel approach

for pattern recognition that considers input data from multiple information channels, cap-

turing dependencies within the input data more precisely than conventional approaches to

gesture recognition.

1.2.2 Motivations

How do humans gesture when communicating?

The first motivation comes from our intuition about the way humans gesture to communi-

cate: we often make specific body poses as well as hand poses, and there are even occasions

when it is impossible to understand the meaning of a gesture without seeing them both,

indicating their importance. However, many of the current approaches to gesture recog-

nition consider either body pose or hand pose alone, limiting their practicality for many

real-world problems. In this work, we combine body and hand poses, allowing gesture

recognition to deal with a richer gesture vocabulary, extending its practicality.

How do humans interpret multi-signal gestures?

The second motivation comes from the uncertainty about the way humans interpret ges-

tures: when humans perceive gestures involving both body and hand poses, it is not clear
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whether they consider body and hand poses dependently or independently (i.e., attempting

to capturing or ignoring the dependencies between each input modality). Nor is it clear

when information fusion occurs, that is, when we combine information on body and hand

poses to extract meaning (i.e., before or after each input modality is processed, or both).

Previous work on multi-signal gesture recognition falls into one of the following categories,

depending on its information fusion scheme: feature-level fusion performs recognition based

on a single input vector combining all signals from different information channels, assuming

the signals are independent; decision-level fusion performs recognition with each individual

signal first, then makes the final decision based on the recognition results by, for example,

selecting the one with the highest probability or majority vote.

In this work, instead, we take a new approach by not specifying the information fusion

scheme, but rather letting the system decide how to handle dependencies among input

signals or when to fuse them. We believe this has a potential to capture the complex

nature of how human recognizes multi-signal gestures.

1.3 Gesture Recognition Pipeline

Figure 1-2 shows a pipeline diagram of our gesture recognition system1. The system starts

by receiving pairs of time-synchronized images recorded from a stereo camera. For the

first part in the pipeline, image pre-processing, 3D range images (depth maps) are cal-

culated, and images are background subtracted using depth information and a codebook

background model. For the second part, 3D body pose estimation, a particle filtering esti-

mation framework is used to perform body pose estimation, comparing features extracted

from both a parametric model and input images. For the third part, hand pose classifica-

tion, the estimated wrist positions are used to guide hand pose classification. A multi-class

1This diagram purposely hides implementation details as much as possible, while also trying to give a
general overview of the gesture recognition system, so that the readers can refer to it for context as they
read each chapter.
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Figure 1-2: Gesture recognition pipeline.
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Support Vector Machine (SVM) classifier is trained off-line using HOG features extracted

from manually-segmented images of hands. Then hands are searched for small regions

around the estimated wrist positions. In the last part, gesture recognition, we perform

multi-signal gesture recognition using a combination of body and hand pose information.

Multi Information-Channel Hidden Conditional Random Fields (MIC-HCRFs), a new ap-

proach we developed in this work, is trained off-line using a supervised gesture data set,

and is used to perform gesture recognition.

1.4 Contribution

Our main contribution in this thesis work is three-fold:

• We designed and implemented a vision-based multi-signal gesture recognition system

that takes into account both body and hand poses, thus allowing a richer set of

gesture vocabulary and more natural human-computer interaction.

• We developed a novel statistical inference framework for multi-signal pattern recog-

nition that is capable of capturing complex dependencies of multiple information

channels in a principled manner, which we refer to Multi Information-Channel Hid-

den Conditional Random Fields (MIC-HCRFs).

• We applied our multi-signal gesture recognition system to an interesting real-world

problem: an aircraft carrier flight deck environment. We showed that (a) the de-

sign of our system is well suited to the flight deck environment, (b) the recognition

performance of our system is comparable to that of human pilots when tested on

a subset of aircraft handling signals, and (c) although still in the proof-of-concept

phase, our system has a great potential for deploying unmanned vehicles onto the

deck environment.

28



1.5 Thesis Overview

Figure 1-2 shows an overview of this thesis. Chapter 2 introduces the context for this work,

Chapter 3 describes image pre-processing, Chapter 4 describes 3D body pose estimation,

Chapter 5 describes hand pose classification, and Chapter 6 describes gesture recognition

framework. Chapter 7 concludes this thesis, listing contributions and suggesting directions

for future work.
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Chapter 2

LUVI Project

2.1 Background

This thesis work is a part of a multiple lab-wide project, “Integrating Global and Local

Situational Awareness in Distributed Unmanned and Manned Ground Operations”, spon-

sored by the Office of Naval Research (ONR). A team of faculty members and students

at MIT is working toward developing a next-generation aircraft carrier deck environment

where manned and unmanned vehicles exist together. The project has three sub tasks,

(a) developing global supervisory control decision support, (b) planning under uncertainty,

and (c) enabling local unmanned vehicle interaction (LUVI). The concentration of this

work is on the third sub task.

The goal of the LUVI project is to develop a framework that allows aircraft carrier flight

deck personnel (hereafter ABHs–Aviation Boatswain’s Mate Handler) to interact naturally

with unmanned combat aerial vehicles (UCAVs). The difficulty of the problem lies in the

fact that there is no existing routine practice to study, i.e., there is no human-UCAV inter-

action in today’s carrier flight deck environment. The idea of having a natural interaction

is also subtle and could easily be ill-posed. In this case, we specifically mean allowing deck

personnel to interact with UCAVs in the same way they routinely interact with human
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pilots. This in turn raises the question as to how ABHs currently communicate with pi-

lots. Communication on the carrier flight deck is primarily gestural because jet engines are

extraordinarily noisy (reaching up to 140 dB), and this led to defining a well established vo-

cabulary of gestures that ABHs and Navy pilots can communicate each other. We believe

a UCAV that understood the gesture vocabulary would fit in well, minimizing transition

cost. This would also avoid the need for specially trained personnel (e.g., teleoperators) in

a carrier flight deck environment that is already chaotic, again smoothing the integration

of UCAVs into the existing environment.

Of particular interest in the LUVI project is the idea of allowing two-way communication

between humans and UCAVs. It is important for UCAVs to be able to recognize human

gestures. At the same time, it is also necessary for UCAVs to have an appropriate feedback

mechanism, that is, UCAVs also have to be able to gesture back ; just as a pilot would do in

the same situation. Although both aspects are important, the concentration of this thesis

work will be on gesture recognition by the UCAV, leaving the research on UCAV gesturing

back to human as future work.

2.2 NATOPS: Constraints and Challenges

The Naval Air Training and Operating Procedures Standardization (NATOPS) manual

standardizes general flight and operating procedures for the US naval aircraft. There are

a large number of publications that belong to NATOPS; among the many, an aircraft

signals manual (NAVAIR 00-80T-113 [53]) contains information about all aircraft systems

including general aircraft and carrier flight deck handling signals.

Several things make it interesting to use the NATOPS aircraft handling signals as a gesture

vocabulary for the LUVI project.

• First, since the aircraft handling signals are the ones that are currently used on

the flight deck, the performance of the LUVI system can be measured in a realistic
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scenario.

• Second, there are a lot of things going on in the carrier flight deck environment, which

indicates that the aircraft handling signals should be designed to handle a wide range

of situations to communicate. Also, the aircraft handling signals have been refined,

modified, and optimized over the years, suggesting that the signals can be thought

of as a well-defined gesture set.

• Third, the aircraft handling signals defined in the manual suggests interesting prob-

lems for gesture recognition. There are many similar gesture pairs that are having

completely opposite meanings. For example, the “brakes on” and “brakes off” ges-

tures are performed by raising both hands, with either open palms that are closed

(“brakes on”), or closed hands that are opened (“brakes off”) (see the top row in the

Figure 2-1). Here, the role of hand pose is crucial to differentiating these two very

similar gestures with completely opposite meanings.

As a more subtle case: the “insert chocks” and “remove chocks” gestures are per-

formed with both arms down and waving them in/outward (see the bottom row in

the Figure 2-1). The only difference is the position of thumbs (inward and outward).

The velocity of waving arms might be another indicator for differentiating the two

gestures (going faster for the direction of thumbs), but it is not obvious whether even

human eyes can catch the differences.

• Fourth, gestures performed by ABHs need to be perceived in 3D space. Many ges-

tures defined in the manual are performed with self-occluding body poses, which are

in general hard to reconstruct with a 2D image. Moreover, some gestures include

directional information with pointing actions, which are lost in a 2D image.
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Figure 2-1: Some of NATOPS gestures: (a) brake on, (b) brake off, (c) insert chocks, (d)
remove chocks

2.3 Carrier Flight Deck: Constraints and Challenges

In addition to the challenges in recognizing gestures in the NATOPS manual, there are

many constraints and challenges on the carrier flight deck environment that make the

problem of gesture recognition even more interesting.

• First, for safety reasons, no active sensor is allowed on the flight deck. This includes

any type of camera that uses an infrared light source. Therefore, many existing

marker-based or active sensor-based motion tracking methods would not be accept-

able.

• Second, we cannot rely on the system detecting colors for locating body parts in

captured images, although flight deck personnel wear color-coded helmets and jerseys

(e.g., yellow helmet and jersey for aircraft directors, as in Figure 2-1). This is because

lighting conditions change through the day and the colors usually wear out.

• Third, since the camera will be mounted on a moving UCAV, the system should be

viewpoint-invariant, i.e., robust to scale and rotation changes, and able to locate the
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object of interest within a moving environment1.

• Lastly, gestures performed by ABHs differ from person to person and from time

to time: senior ABHs often simplify the standard gestures when they communicate

with well experienced pilots; the fatigue effect simplifies the standard gestures as

well. Therefore, we need a gesture recognition system that is robust to individual

variations.

2.4 LUVI System Design Criteria

This work is aimed at the near future, where UCAVs are operating in close proximity to

manned vehicles and deck personnel. In such a scenario, enabling the UCAVs to see and

understand the aircraft handling-signals performed by ABHs, would mean using the same

communication as between Navy pilots and ABHs, smoothing the integration of unmanned

vehicles into the existing carrier flight deck environment.

The gesture recognition system described in this thesis is designed to work well with the

constraints and challenges described above. The system does not require any marker to be

attached to the tracking objects, and users do not have to wear specially designed clothes

or gloves. The tracking is performed solely based on a single stereo camera, easing the

installation of the system. Body poses are reconstructed using a generative model-based

approach, which is relatively robust to viewpoint changes compared to other approaches.

The approach is also capable of reconstructing body poses in 3D space, since the system

takes advantage of stereo vision. Lastly, the statistical inference framework for gesture

recognition, which is newly proposed in this work, is capable of learning complex dependen-

cies of gestures from multiple input channels (e.g., body pose and hand pose), establishing

the dependencies more systematically.

1Viewpoint-invariant tracking is not implemented in this work but left as a future work.
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Chapter 3

Image Pre-Processing

In this chapter, we describe image pre-processing, the first part in the gesture recognition

pipeline. A stereo camera is used to capture pairs of time-synchronized images (Chap-

ter 3.1), and depth maps are calculated using existing stereo vision techniques (Chap-

ter 3.2). Then background subtraction is performed using a combination of codebook

approach [34] and depth information, segmenting foreground object (human body) from

the background (Chapter 3.3). The output of this step includes three types of images:

color images, depth maps, and foreground-background mask images.

3.1 3D Vision Cameras

Being able to capture and process images in 3D is becoming crucial to many application

areas including visual surveillance, interactive video games, navigation, and robotics. For

that reason, many technologies have been developed to make a 3D vision camera that is

capable of producing depth maps –an image in which each pixel value represents a distance

to an object. We briefly review two types of 3D cameras currently widely used for human

motion tracking: a time-of-flight camera and a stereo vision camera. We compare their

advantages and disadvantages, and explain why we chose a stereo vision camera for this

37



work.

3.1.1 Time-of-flight Camera

Time-of-flight (ToF) cameras are becoming popular in these days for their ability to process

images quickly and accurately1 (Figure 3-1). The camera illuminates objects with high

speed modulated light, often using infrared light to be unobtrusive, and captures the light

reflected back at it. Then it calculates the distance to an object using the speed of light

and the time the light took to travel back to the camera.

There are two main approaches to measuring distance using the ToF cameras: one method

directly measures the time a light pulse traveled using arrays of single-photon avalanche

diodes (SPADs) [61]; the other method uses amplitude modulated light to measure the

phase difference between a reference signal and the reflected signal [39]. While the first

approach suffers from complex readout schemes and low frame rates, the second approach

has already been successfully implemented in industry.

The second approach, based on the phase-shift principle, uses the recent advances in semi-

conductors (i.e., CCD/CMOS imaging sensors) to measure for each pixel the phase of the

returned modulated signal. The distance for each pixel is determined by the phase-shift

principle, i.e., measuring a fraction of the one full cycle of the modulated signal [39].

Although the phase-shift approach allows us to obtain pixel-level accuracy depth maps,

there are two main disadvantages of this approach. First, because of the modulation fre-

quency cycle, there is a range limit on measuring distance without ambiguity, typically

ranging around 16 feet (or 5 meters). This limit can be extended by lowering the modu-

lation frequency, but this degrades the distance measurement accuracy. Second, the pixel

resolution is low, usually about 320x240 pixels or less, so an object needs to be placed

1Some of this popularity comes from the fact that Microsoft has released their new video game product,
Kinect (formerly known as the project Natal,) which is a human body motion tracking device allowing
users to use their body to control their avatars.
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close to the camera to be captured with enough detail. A comprehensive evaluation of a

CCD/CMOS ToF camera can be found in [17].

Figure 3-1: Various kinds of time-of-flight cameras. (a) SwissRanger SR-4000, (b) 3DV
ZCam, (c) PMD Vision CamCube 3.0

3.1.2 Stereo Vision Camera

Stereo cameras, on the other hand, have been extensively used in many motion tracking

approaches. They capture a pair of time-synchronized images from two horizontally aligned

lenses with a fixed baseline. From the pair of images, they find matching pairs of points in

the two images and compute a depth map using the principle of similar triangles (described

in the next section).

For this work, we use a Bumblebee2 stereo vision camera from Point Grey Research Inc.2

(Figure 3-2). There are a variety of reasons for us to choose a stereo vision camera over a

time-of-flight camera. First, stereo vision cameras offer a higher resolution image compared

to ToF cameras3. In general, deck personnel must keep a certain distance from the UCAVs

(at least 50 feet or 15 meters) to ensure their safety; in such a case we would expect that

low resolution images will not have enough detail to perform gesture recognition. Second,

again for safety, everyone on the flight deck must wear a color-coded jersey which has

2The camera used in this work is BB2-03S2C-38; 640x480 resolution, two 3.8mm color lenses with 12cm
baseline, 48 FPS, 65-degree HFOV.

3Bumblebee2 stereo vision cameras offer a maximum resolution of 1280x960 pixels, which is 16 times
larger than the state-of-the-art ToF cameras (320x240 pixels)
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reflectors on it. However, distance data obtained from a ToF camera can be significantly

degraded if a scene contains materials with high reflectivity (e.g., mirror or reflectors) or

light emitting objects (e.g., the Sun) [28]. Therefore, unless we change the current design of

the jerseys, using ToF cameras on the flight deck will be problematic. Lastly, ToF cameras

use infrared light to illuminate objects of interest. However, as described in Chapter 2, any

source of infrared light is undesirable on the carrier flight deck, as it is easily detectable

from reconnaissance.

Figure 3-2: Bumblebee2 stereo vision camera from Point Grey Research Inc.

3.2 Depth Map Calculation

In this section, we briefly review the process of obtaining a depth map from a pair of

time-synchronized images captured using a stereo camera. To build an intuition, let’s take

the simplest example as shown in Figure 3-3. In this setting, we assume that

• captured images are undistorted;

• focal length f and baseline T are known and fixed;

• two image planes are coplanar, have parallel principal rays (the ray from the center of

projection O through the principal point cx), and horizontally aligned (same points

always appear on the same row in both images);
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Figure 3-3: A simplified stereo camera setting to illustrate the basic idea of computing a
depth map. The depth Z to a point P is calculated using the principle of similar triangles,
using a baseline length T , focal length f , and principal points clx and crx.

• the principal points clx and crx are calibrated to have the same coordinate system in

their respective images;

• a matching pair of the point P is found in both images, shown as xl and xr.

With this simplified setting, the depth Z (i.e., the distance to the point P ) can be calculated

using the principle of similar triangles, that is

Z

T
=

Z − f
T − (xl − xr)

, Z =
fT

xl − xr
(3.1)

where xl − xr is called disparity.

In the real situation, however, many of the above assumptions usually do not hold. The

surface of lens is spherical, not parallel to the projected image plane; so we need to correct

lens distortions in the image, called undistortion. Also, the pairs of captured images are

neither coplanar nor horizontally aligned; so we need to mathematically align the image
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planes, called rectification. After the two processes are applied to a pair of images, we

can compute a disparity map by solving the correspondence problem, which finds matching

points between two images. Note that the rectification process horizontally aligns a pair of

images, so it simplifies the correspondence problem to one-dimensional search (since points

on a row in one image are expected to be in the same row in the other image). Lastly,

after the disparity maps are obtained, we can calculate depth maps using the principle of

similar triangles (Eq 3.1).

In this work, we captured pairs of time-synchronized 640 x 480 color images at 20 FPS, and

used the manufacturer provided SDK [31] to obtain depth maps, which does all processes

explained above.

3.3 Background Subtraction

Background subtraction is one of the most crucial preprocessing step in many computer

vision problems. The goal of background subtraction is to learn a background model to

segment out foreground objects given a sequence of images, usually captured from a camera

at a fixed location4. This allows us to concentrate on the objects of interest and ignore the

background, optimizing the use of available computational resources.

Many challenges make the problem of background subtraction complex, including the illu-

mination condition, shadows, gradual or sudden background changes, etc. The definition

of foreground objects is also subtle and largely depends on the context. Imagine a moving

tree in the background; should it be considered as a background object or a foreground

object? What if clouds pass by the Sun and the illumination condition changes? Can we

make background subtraction adaptable to these sudden/gradual changes?

In this work, we perform background subtraction with a combination of the codebook ap-

proach [34] and depth information: input images are first background subtracted following

4Recent approaches also deal with moving backgrounds, such as [18].
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the codebook approach, then refined using depth information, filtering out pixels where

the distance is further from camera than a foreground object.

3.3.1 The Codebook Approach

The codebook approach assumes that a foreground object will have pixel intensity values

that are noticeably different from the history of background pixel intensity values; hence

the method works by learning a background model with a history of background images

sampled for a period of time, then segmenting out the outlier pixels in an input image as

a foreground object. The strength of the method comes from the fact that it models the

history of each pixel’s intensity values as a multimodal distribution, allowing us to capture

dynamic variations of the background.

For each pixel, a multimodal distribution is constructed with a set of disjoint intensity

bounds, where each intensity bound is determined by a new value observed for the pixel.

If the value falls into or is close to one of existing bounds, it is modeled as a perturbation

on that bound, making the bound grow to cover the perturbation of values seen over

time; otherwise, a new intensity bound is created and added to the set. The set of disjoint

intensity bounds are called codebook, and can be envisioned as several boxes located in RGB

space, each box capturing a particular intensity range considered likely to be background

(Figure 3-4).

It has been empirically shown that most of the variation in background is better represented

along the brightness axis, not the color axis [10]. Therefore, we transform input images

into the YUV space for background subtraction, where Y stands for the luma component

(the brightness) and U and V are the chrominance (color) components.
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Figure 3-4: A codebook is made up of several intensity bounds that grows to capture a
history of intensity values in a particular range. The top image show a history of intensity
values over time, and the bottom image shows a set of disjoint intensity bounds.(reproduced
from [10])
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3.3.2 Refinement Using Depth Information

Using the codebook approach alone, a background subtracted image may not segment

out the shadows created by foreground objects properly. This is because the codebook

approach defines a foreground object as a set of pixels where their intensity values are

noticeably different from the history of intensity values for background; so the shadows are

foreground objects in the context of the codebook approach.

To remedy this, after an image is background subtracted using the codebook approach, we

refine the result using depth information. We filter out pixels where the distance is further

than a foreground object, with an assumption that the foreground object is located closest

to the camera.

Figure 3-5 shows the result of image pre-processing step, including depth map calculation

and background subtraction.

Figure 3-5: An overview of the image pre-processing step. The top-left image is a color
image obtained from a stereo camera, and the bottom-left image is a depth map. Two
images on the right shows background subtracted images.
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Chapter 4

3D Body Pose Estimation

The problem of estimating 3D body pose is a long-standing challenge. Many things make

the problem difficult. Among the first is the high-dimensionality of the human body’s

kinematic model. Representing a single rigid body in 3D space requires at least six vari-

ables (global translation and rotation); adding a joint to the model requires at least one

additional variable (linear displacement or rotation about an axis). This leads to more

than 30 variables needed to represent a full human body model. Searching in such a high

dimensional space consumes substantial amounts of processing time, which in turn lim-

its its practicality in real-time applications. The problem is compounded by many other

challenges, such as self-occlusion, loose clothing, lighting conditions, and available sensor

technology.

In this chapter, we describe a generative model-based 3D body pose estimation framework,

the second part in the gesture recognition pipeline. A parametric model of the human upper

body is constructed in 3D space, representing the skeletal model as a kinematic chain, and

modeling the shape of the body with superellipsoids (Chapter 4.1). This model is then

fitted to an input image by comparing several features extracted from an input image and

generated from the parametric model (Chapter 4.2). Finally, a particle filter [33] is used

to estimate 3D upper body pose in a high dimensional space (Chapter 4.3). The estimated
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result has been evaluated both qualitatively (by visually comparing it to the input image)

and quantitatively (by measuring pixel displacement errors using the ground-truth data

obtained from a Vicon motion capture system) (Chapter 4.4). We conclude this chapter

by reviewing other approaches to body pose estimation (Chapter 4.5).

4.1 Generative Model of Human Upper Body

4.1.1 Skeletal Model

We construct the skeletal model of 3D human upper body as a kinematic chain consisting

of 6 body parts (head, trunk, upper and lower arms for both sides), parametrized by 14

variables (8 for angle rotation and 6 for global orientation). Coordinates of each joints

are obtained by solving the forward kinematics problem following the Denavit-Hartenberg

convention [21], which is a compact way of representing n-link kinematic structures. We

improve on this basic model by building a more complex model of the human shoulder:

in order to accurately capture the human arm movement while not including additional

DOFs, the shoulder model is approximated analytically by computing the chest-to-shoulder

angle relative to the elbow position.

Forward Kinematics Problem

The forward kinematics problem is concerned with determining the position and orienta-

tion of the end-effector, given the values of joint variables for the intermediary joints. A

kinematic chain is defined as a set of links, and constructing it is typically done by con-

straining each joint to have a single free variable, either the angle of rotation for a revolute

joint or the linear displacement for a prismatic joint1.

1More complex joints, such as a ball-and-socket joint with 3 DOF, can be thought of as a succession of
1 DOF joints with zero length links.
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Let the i-th joint connect the (i-1)-th link to the i-th link, and let Ai be a 4 x 4 homogeneous

transformation matrix for the i-th joint. Then we can express any arbitrary coordinate

frame ojxjyjzj of the j-th joint with respect to the i-th joint as a cumulative effect of all

matrices in between; this can be expressed as a single homogeneous transformation matrix

T ij :

T ij = Ai+1 · · ·Aj−1Aj (i < j) (4.1)

What remains to solve is to determine Ai for each joint. For a 2-link kinematic chain,

this is not so complicated, since there is only one joint. However, it can get quite complex

if a kinematic chain has more than two joints. The Denavit-Hartenberg convention [21]

simplifies this by making two assumptions in constructing a kinematic chain (illustrated

in Figure 4-1):

(DH1) Axis xi is perpendicular to axis zi−1

(DH2) Axis xi intersects axis zi−1

Under these assumptions, Ai can be expressed as a combination of rotation and translation

matrices:

Ai = Rotz,θiTransz,diTransx,liRotx,δi (4.2)

=


cos θi − sin θi 0 0

sin θi cos θi 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1




1 0 0 li

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 cos δi − sin δi 0

0 sin δi cos δi 0

0 0 0 1



=


cos θi − sin θi cos δi sin θi sin δi li cos θi

sin θi cos θi cos δi − cos θi sin δi li sin θi

0 sin δi cos δi di

0 0 0 1


where the four parameters θi, di, δi, li are measured as follows (illustrated in Figure 4-1).
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DH1

DH2

θi

di

δi

li

oi−1 yi−1

zi−1

xi−1

oi
xi

zi

yi

Figure 4-1: Two coordinate frames oi−1xi−1yi−1zi−1 and oixiyizi, constructed following the
Denavit-Hartenberg convention. Note that the two assumptions in the Denavit-Hartenberg
convention are illustrated (DH1 and DH2). DH1 shows axis xi is perpendicular to axis
zi−1, and DH2 shows axis xi intersects axis zi−1. (reproduced from [65]).
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• The parameter θi is the angle between the xi−1 axis and the xi axis measured in a

plane normal to zi−1, following the right-hand rule (i.e., align the thumb to axis zi−1

and measure the angle counter-clockwise).

• The parameter di is the distance between the origin oi−1 and the intersection of the

xi axis with zi−1 axis, measured along the zi−1 axis.

• The parameter δi is the angle between the zi−1 axis and the zi axis, measured in a

plane normal to xi, also following the right-hand rule.

• Lastly, the parameter li is the distance between the zi−1 axis and the zi axis, measured

along the xi axis.

If we set the zi axis to be the actuating axis for the next joint and construct a kinematic

chain following the Denavit-Hartenberg convention, the parameter θi becomes the angle

of rotation of a revolute joint and the parameter di becomes the linear displacement of a

prismatic joint. Now that each joint is constrained to have a single free variable, we can

obtain Ai simply as a function of either one of the two parameters: θi or di.

Skeletal Model Construction

Having explained the forward kinematics problem, now we describe the way we construct

a skeletal model of human upper body.

We first need to define modules to build a skeletal model of a human upper body. As seen

in Figure 4-2, there are 17 modules: 8 limbs (neck, trunk, L/R collar bones, L/R upper

arms, and L/R lower arms) and 9 joints (head, chest, navel, L/R shoulders, L/R elbows,

and L/R wrists). A shoulder is modeled as a ball-and-socket joint with 3 DOF and an

elbow is modeled as a revolute joint with 1 DOF.

With the above definitions of modules, the skeletal model is constructed by choosing the

chest joint as the base frame and constructing four kinematic chains for the rest of the
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Figure 4-2: A skeletal model of human upper body. There are 8 limbs (neck, trunk, L/R
collar bones, L/R upper arms, L/R lower arms) and 9 joints (head, chest, navel, L/R
shoulders, L/R elbows, L/R wrists).

body – the head, trunk, and each arm – following the Denavit-Hartenberg convention

(Figure 4-3).

The head and the trunk parts are constructed using one prismatic joint, and both arms

are constructed using a series of joints; one prismatic joint connects the collar bone, three

successive revolute joints model a ball-and-socket joint for the shoulder, one prismatic

joint connects the upper arm, one revolute joint models the elbow, and one one prismatic

connects the lower arm.

Although values for the prismatic joints (i.e., the limb lengths) are adjustable, our skeletal

model assumes that these values are fixed once they are initialized. Therefore, once limb

lengths are initialized, the local figure of the kinematic chain can be parametrized with a

total of 8 joint angle variables:

• θ2 : the left shoulder Z-axis rotation;

• θ3 : the left shoulder Y-axis rotation;

• θ4 : the left shoulder X-axis rotation;
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Figure 4-3: A kinematic chain of the human upper body. The coordinate frames are
assigned as follows: o11 - head, o0 - chest, o12 - navel, (o1,o2,o3)/(o6,o7,o8) - left/right
shoulder, o4/o9 - left/right elbow, o5/o10 - left/right wrist.

53



• θ5 : the left elbow rotation;

• θ7 : the right shoulder Z-axis rotation;

• θ8 : the right shoulder Y-axis rotation;

• θ9 : the right shoulder X-axis rotation;

• θ10 : the right elbow rotation.

In addition to these 8 variables, 6 variables are added to control the global orientation of

the kinematic chain (3 for translation and 3 for rotation).

After constructing the four kinematic chains, we initialize values for all the variables defin-

ing the kinematic chains except for the 8 joint angle variables.

• Values for di and δi are directly derived from the way we construct the skeletal model.

• Values for li are set at the initialization step (described in 4.3.3).

• Values for θi are set in the following way:

– θ1 (chest-to-left shoulder Z-axis rotation) and θ6 (chest-to-right shoulder Z-axis

rotation) are set to 0 degree and 180 degree, respectively;

– values for θ11 (chest-to-head Z-axis rotation) and θ12 (chest-to-naval Z-axis ro-

tation) are set to 90 degree;

– the rest are the 8 joint angle variables.

Table 4.1 shows the initial values for the four parameters θi, di, δi, li.

During the tracking, whenever any of the joint angle variables is changed, we re-calculate

the transformation matrices Ai and update the kinematic model.
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Joint θi di δi li
1 0 0 0 o0o1

2 θ2 0 90 0
3 θ3 0 90 0
4 θ4 0 90 o3o4

5 θ5 0 90 o4o5

6 180 0 90 o0o6

7 θ7 0 90 0
8 θ8 0 90 0
9 θ9 0 90 o8o9

10 θ10 0 90 o9o10

11 90 0 90 o0o11

12 90 0 90 o0o12

Table 4.1: Parameters for each joint. Joint angle variables θi are determined during body
pose tracking, while the other values are fixed once initialized (oioj is the length between
joints oi and oj).

Human Shoulder Model

The human shoulder has historically been the most challenging part for human body

modeling [24]. It has a complicated anatomical structure, with bones, muscles, skin, and

ligaments intertwined, making modeling of the shoulder movement difficult. One can easily

see this by tracking the pivot point of a shoulder while raising an arm or doing a shrugging

gesture; the pivot point is not fixed, but changes position in 3D space as the arm moves.

Although having a high fidelity shoulder model is the basis for a successful body pose

tracking, many approaches in the generative model-based body pose estimation sacrifice

some accuracy for simplicity, usually modeling the shoulder as a single ball-and-socket joint.

In the biomechanics community, there have been many approaches to more sophisticated

shoulder models (see [26] for a survey). In that community, most approaches have used

a model with 5 to 9 DOF to model the shoulder accurately. Although these models offer

high fidelity, having a higher DOF model is not desirable in body pose estimation, as it

makes the estimation problem undesirably more difficult.

In this work, we approximate the human shoulder movement analytically by computing
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Figure 4-4: Simplified shoulder model. After joint positions are determined using the
forward kinematics, ϕ is calculated with positions of chest (C), shoulder (S), and elbow
(E) joint points, using the law of cosines.

the angle ϕ using the position of elbow joint points (Figure 4-4). First, using the law of

cosines (Eq. 4.3), the angle ϕ between the line CE and the line CS is calculated. Then

the chest-to-shoulder angle θ in the kinematic chain (θ1 for the left and θ6 for the right

shoulder) is updated using Eq. 4.4, where θMAX and θMIN are constants that determine

the maximum and minimum possible values for shoulder angle adjustments, respectively.

Figure 4-5 shows several shoulder angles analytically computed using our shoulder model.

ϕ = arccos
a2 + b2 − c2

2ab
(4.3)

θ
′
=

θ + ϕ
θMAX

if elbow is higher than shoulder

θ − ϕ
θMIN

otherwise

(4.4)

One advantage of our shoulder model is its simplicity: the shoulder is modeled to have 3

DOF, so it still maintains a low DOF, while efficiently approximating the shoulder move-
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Figure 4-5: An overlaid image of the right shoulder’s movement. Note that the height of
the shoulder joint point goes up and down, depending on the right elbow’s position.

ment. This simplified model is not a perfect reconstruction of the real human shoulder of

course, because it only mimics shoulder movement in one-dimension: up and down. Nev-

ertheless, this method works quite well if a human being tracked is facing the camera and

does not rotate the entire body to other directions. In our scenario, ABHs are assumed

to be facing the pilot (or the camera) for the most of the time, so we can expect that this

method will help tracking body pose successfully (more detailed discussion of this can be

found in Chapter 5.1).

4.1.2 3D Shape Model

The volumetric model of each body part can be based on various 3D shape primitives,

including 3D cones, cylinders, ellipsoids, or superellipsoids. Superellipsoids [8] allow a

compact representation of various 3D shapes while at the same time offering more flexibility

than other shape primitives. In this work, therefore, superellipsoids are used to model the

body shape (Figure 4-6).
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A superellipsoid is defined by a function

(∣∣∣∣ xrx
∣∣∣∣2/e2 +

∣∣∣∣ yry
∣∣∣∣2/e2

)e2/e1

+

∣∣∣∣ zrz
∣∣∣∣2/e1 = 1 (4.5)

where e1 and e2 are the shape parameters (e1 for the z-axis and e2 for the x-y plane) and

rx, ry, and rz are the scaling parameters for each axis. A point on the surface is expressed

by the equation

p(α, β) =


rx cose1 (α) cose2 (β)

ry cose1 (α) sine2 (β)

rz sine1 (α)

 (4.6)

and the surface normal is expressed by the equation

n(α, β) =


1
rx

cos2−e1 (α) cos2−e2 (β)

1
ry

cos2−e1 (α) sin2−e2 (β)

1
rz

sin2−e1 (α)

 (4.7)

where α and β represent the longitude −π
2
≤ α ≤ π

2
and the latitude −π ≤ β ≤ π.

As seen in Figure 4-6, we use six superellipsoids to build up a volumetric model of the

upper body. Except for the head, the shape parameters e1 and e2 of all superellipsoids are

configured so that the eccentricity along the z -axis is higher than the eccentricity along

the x-y plane.

4.2 Feature Extraction

Three kinds of features are extracted from the parametric model and an input images:

a visible surface point cloud, a contour point cloud, and a motion history image. These

features are then compared to calculate the likelihood function in the pose estimation

framework.
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Figure 4-6: A skeletal model and shape model of human upper body. Contour points are
shown in the white color, while visible surface points are shown in the gray color.

The two features, a visible surface point cloud and a contour point cloud, allow us to

evaluate how well the shape of the parametric model fits to the actual human body shape

in an input image, by computing the sum of closest distances between points from one to

another.

The third feature, a motion history image [9], is a static image where each pixel value is a

function of the recency of motion in a sequence of images. This often gives us useful infor-

mation about motion, as it indicates where and how the motion occurred in a sequence of

images. Therefore, by comparing two motion history images obtained from the parametric

model and input images, we expect to capture discrepancies in the dynamics of motion,

as compared to the point clouds where we capture point-to-point discrepancy between the

parametric model and input images.

In the following two sections, we explain the feature extraction methods for the parametric

model (4.2.1) and for input images (4.2.2).
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4.2.1 Model Feature Extraction

Surface Point Cloud and Contour Point Cloud

We want to collect point clouds both from the parametric model and the input image, so

that we can make a comparison of an estimated body pose and the actual human body pose

in the image, quantitatively measuring how similar they are. Ideally, the two point clouds

will have a well-balanced density of points, since the comparison will include calculating

the distances between a pair of closest points from one to another.

A naive way to obtain the parametric model’s surface point cloud would be for each su-

perellipsoid to sample points at a uniform longitude and latitude interval. Note that in

this approach the sampling is performed before the parametric model is projected onto

the image plane; this will cause more points to be sampled where the curve is changing

rapidly, because after the surface points are projected onto an image plane we will see more

points gathered on edges of a superellipsoid, i.e., on a sharply curved surface. This can be

problematic when comparing the parametric model’s surface points to the input image’s

surface points, as in the later case more points are sampled from the center of an object

(since the sampling is performed after an object is projected onto an image plane).

Another way to obtain the parametric model’s surface point cloud would be to collect

surface points with a probability inversely proportional to the distance to the less curved

area, i.e., lower probability on the edge points. This will cause more points to be collected

where the curve is changing slowly; the property that we want. Therefore, we use this

approach to collect a surface point cloud from the parametric model.

The sampling procedure is as follows. A set of longitude (α) and latitude (β) values are

randomly selected with the probability described above, and a set of points are sampled

by applying the selected α and β values to Eq. 4.6. Note that out supersllipsoids for the

trunk and arms are configured so that the eccentricity along the z -axis is higher than the

eccentricity along the x-y plane. Thus it is the angle of longitude (α) that primarily affects
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whether the points are sampled near the equator, while the angle of latitude (β) can be set

at a uniform interval. Pseudocode for the sampling procedure is shown in Algorithm 4.1.

Algorithm 4.1 Pseudocode for sampling surface points

Require: |α| (number of longitude lines), |β| (number of latitude lines), and N (number
of multiples the longitude lines to be sampled ) are given
dα ← π

N |α|
dβ ← 2π

|β|
for i=1 to N|α| do
α[i] ← -π/2 + (i-1) * dα //Sample N more data for the longitude angle

end for
for i=1 to |β| do
β[i] ← -π + (i-1) * dβ

end for
accepted points ← 0
while accepted points < |α| |β| do

for i=1 to N|α| do
v ← uniform(0,1)

prob(α[i]) ← π/2−α[i]
π/2

if v ≥ 1− prob(α[i]) then
Remove α[i] from the set α
for j=1 to |β| do

add α[i],β[j] to the sampled point set
accepted points ← accepted points + 1

end for
end if

end for
end while

Once the surface point cloud is sampled, we need to check each point’s visibility to ensure

that the points extracted from the cloud contain only points that are visible in the input

image: this can be checked with the dot product of ~n (the point’s surface normal) and ~v

(the vector from the camera to the point) as the following:

~n· ~v


<0 : invisible

= 0 : on the edge

>0 : visible

(4.8)
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Sampling the contour point cloud requires a bit more care than just using the dot product

rule in Eq. 4.8, since it will be computationally inefficient to directly compute the exact

values of α and β that set the dot product value to zero.

We collect the contour point cloud by scanning longitude and latitude values with a uniform

interval, searching for a pair of longitude (or latitude) values that changes the sign of the

dot product value. Changing the sign would mean that there is a contour point somewhere

in the middle of the pair; for each pair we compute the geometric mean of the two points,

and add that point to the contour point cloud. The resulting visible surface point and

contour point cloud is seen in Figure 4-6.

Motion History Image: Parametric Model

We compute a motion history image for the parametric model in the following way. For

each time step t we render an 8-bit unsigned integer binary image Icur (pixel values span 0

to 255) using the collected visible point cloud; we draw each point from the cloud on Icur

with its value set to 255. This image will be stored in memory until the next time step

t+1. Once we have two time-consecutive images Iprev and Icur rendered using the previous

and the current visible surface points, we compute a motion history image IMHI using the

following rule:

IMHI(Icur, Iprev) = thresh(Iprev − Icur, 0, 127) + thresh(Icur − Iprev, 0, 255) (4.9)

where thresh(I, α, β) is a binary threshold operator that sets each pixel value to β if

I(x, y) > α, and set to zero otherwise; the values 127 and 255 are chosen to indicate the

time information of those pixels (this will become clear in Section 4.3.2). The first term

in Eq. 4.9 captures the pixels that were occupied at the previous time step but not in the

current time step, while the second term captures the pixels that are newly occupied in

the current time step.

To give a more concrete example, imagine an arm moved while the body trunk stayed still.
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A motion history image will capture the history of the arm’s movement by setting previous

pixel position values to 127, the current pixel position values to 255, and the rest to zero.

Note that this method allows us to construct an image that concentrates on the moved

regions (e.g., arms) only, while ignoring the unmoved parts (e.g., trunk). This situation is

depicted in Figure 4-7.

Figure 4-7: Motion history images (bottom) generated from pairs of surface point clouds
(top). In the bottom row gray pixels indicate where the arms moved from, white pixels
indicate where the arms moved to.

4.2.2 Image Feature Extraction

Surface Point Cloud And Contour Point Cloud

Collecting surface points from an input image is simpler than the one we did for the

parametric model. We obtain surface points from a depth map that has been background

subtracted, subsampling with a fixed interval in both the x and y direction (see Figure 4-8

(c)).

To collect points on the contour, we first perform edge detection, where by ’edge’ we mean
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a sharp change in depth. Hence, depth maps are used to collect contour points. The

sampling procedure is as follows: we reduce noise in the depth image by using several

morphological transformations; both closing and opening transformations are applied to

a depth map2; Gaussian smoothing is applied to further remove the noise; Canny edge

detection [14] is performed on the depth data. Finally, contour points are subsampled with

the same method used for sampling surface points (see Figure 4-8 (d)).

Figure 4-8: Input image feature extraction: (a-left top) color image, (b-right top) depth
map, (c-left bottom) surface point cloud, and (d-right bottom) contour point cloud.

Motion History Image: Input Image

To compute a motion history image from input images, a background subtracted color

image at each time t is converted to a gray color image. Two time-consecutive images are

then used to compute a motion history image following the same method that we used for

2Closing (dilate and erode) and opening (erode and dilate) transformations are often used in connected
component analysis: a closing transformation helps to remove unwanted elements caused by noise, while
an opening transformation helps to connect nearby large regions.
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the parametric model (Eq. 4.9).

Figure 4-9: Motion history images (bottom row) extracted from pairs of input images (top
row). At the bottom row, gray pixels indicate where the arms moved from, and white
pixels indicate where the arms moved to.

4.3 Estimation Framework

The goal here is to estimate a vector with the 8 joint angle variables that define a body

pose at each time t in a time sequence. Human upper body movements can be highly

unpredictable, so an estimation framework that assumes that its random variables form

a single Gaussian distribution can fall into a local minima or completely loose track. In

this work, we solve the body pose estimation problem using the particle filter method [33],

which assumes the underlying distribution to be multimodal and non-Gaussian. We briefly

review the particle filter method, then explain how we apply the method to estimate upper

body pose.
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4.3.1 Particle Filter

The particle filter was introduced to the computer vision community by Isard et al. [33],

named as the CONDENSATION (CONditional DENSity propagATION) algorithm. Al-

though originally introduced as an algorithm to detect and track the contour of objects

moving in a cluttered scene, the algorithm has become one of the seminal works for gen-

erative model-based body pose estimation (e.g., [22, 43]).

The most prominent feature of the particle filter is that it models the state density p(xt)

as a multimodal non-Gaussian distribution. One advantage of this approach is its ability

to maintain multiple hypotheses during inference. When the underlying dynamic process

governing the observation is highly unpredictable, this approach often leads to more robust

estimation result as compared to single hypothesis filtering methods (e.g., the Kalman filter

[72]).

We will denote an observation (the input image) at time t as zt, and the state of model (a

vector of 8 joint angle values in this work) at time t as xt. Also, we will denote a history

of observations zt up to time t as Zt, and a history of states xt up to time t as Xt; that is,

Zt = {z1, · · · , zt} and Xt = {x1, · · · , xt}.

The algorithm assumes that the observations Zt are mutually independent given the states

of the model Xt. It also assumes that Xt form a first-order Markov chain. Thus, it follows:

p(xt, Zt−1 |Xt−1) = p(xt |Xt−1) p(Zt−1 |Xt−1)

= p(xt | xt−1)
t−1∏
i=1

p(zi | xi)
(4.10)

where p(xt |Xt−1) = p(xt |xt−1) is derived by the Markov assumption, and p(Zt−1 |Xt−1) =∏t−1
i=1 p(zi | xi) is derived by the independence of observations assumption.

The algorithm also assumes that pt(xt), the state density at time t, can be captured from
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a history of observations up to that point:

pt(xt) ≡ p(xt | Zt). (4.11)

With the above assumptions, inference on posterior state density p(xt | Zt) over discrete

time steps is modeled using the following probability density propagation rule:

p(xt | Zt) = kt p(zt | xt) p(xt | Zt−1) (4.12)

where

p(xt | Zt−1) =

∫
xt−1

p(xt | xt−1) p(xt−1 | Zt−1) (4.13)

and kt is a normalization constant that does not depend on xt.

Note that the conditional state density p(xt | Zt) update in Eq 4.12 is modeled as the

likelihood of an observation given a state p(zt |xt) and the effective prior p(xt |Zt−1), which

can be interpreted as the reactive effect expected from an observation zt. Also note that

the derivation of an effective prior p(xt |Zt−1) in Eq. 4.14 is modeled as a prediction taken

from the previous step’s posterior p(xt−1 |Zt−1), onto which is superimposed one time step

forward following the underlying dynamical process p(xt | xt−1).

The problem now is how to compute the terms in Eq. 4.12 efficiently. When it is complex to

model the likelihood p(zt | xt) and the conditional state density p(xt |Zt) cannot be solved

in a closed form, iterative sampling techniques are often used for approximation. The

CONDENSATION algorithm uses the factored sampling method to approximate p(xt |Zt),

and is iteratively applied to a temporal sequence of images, extending the original method

to the temporal domain.

The conditional state density p(xt | Zt) is approximated as a set of N sample-and-weight
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combinations:
{

(s
(1)
t , π

(1)
t ), · · · , (s(N)

t , π
(N)
t )

}
, where each weight is computed as

π
(n)
t =

p(zt | xt = s
(n)
t )∑N

j=1 p(zt | xt = s
(j)
t )

. (4.14)

This set can be obtained from the prior density p(xt |Zt−1), which can be derived using the

previous time-step’s output
{

(s
(1)
t−1, π

(1)
t−1), · · · , (s(N)

t−1, π
(N)
t−1)

}
that represents p(xt−1 | Zt−1),

to which we apply Eq. 4.11 and Eq. 4.12 using the assumed underlying dynamical process

p(xt | xt−1).

Once the N samples are obtained, the estimated result can be calculated as the weighted

mean of samples s
(n)
t :

E[f(xt)] =
N∑
n=1

π
(n)
t f(s

(n)
t ). (4.15)

4.3.2 Likelihood Function

In order to evaluate the weights π
(n)
t in Eq. 4.14, we need to define a likelihood function

p(zt |xt = s
(n)
t ) that best captures the likelihood of an observation zt given the n-th sample

s
(n)
t . This is typically done by fitting an observation zt to the parametric model generated

with each of s
(n)
t . Section 4.2 described our methods for extracting image features and

parametric model features, including the surface point cloud, the contour point cloud, and

the motion history image. In this section, we describe how we compute a fitting error that

compares the image features to the model features.

Let Psurface(·) and Pcontour(·) be a surface point cloud and a contour point cloud. Each

cloud is collected both from an observation zt and from the parametric model generated

+with the n-th sample s(n). Also, let IMHI(zt, zt−1) be a motion history image of the ob-

servation at time t, and IMHI(s
(n)
t ,E[f(xt−1)]) be a motion history image of the parametric

model at time t, where E[f(xt−1)] is an estimation result from the previous time-step t−1.
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The likelihood function is defined as an inverse of an exponentiated fitting error ε(zt, s
(n)
t ):

p(zt | xt = s
(n)
t ) =

1

exp{ε(zt, s(n)
t )}

(4.16)

where ε(zt, s
(n)
t ) is defined as the sum of errors computed from comparing the three ex-

tracted features

ε(zt, s
(n)
t ) = εSSD surface(Psurface(zt),Psurface(s(n)

t )) +

εSSD contour(Pcontour(zt),Pcontour(s(n)
t )) +

εMHI(IMHI(zt, zt−1), IMHI(s
(n)
t ,E[f(xt−1)])).

(4.17)

Sum of Squared Distance Error

The first and second terms in Eq. 4.17 is based on a generalized function of the sum of

squared distance error, defined as:

εSSD(P(z), P(s(n))) =
∑

pz∈P(z)

{d(pz, min(ps(n)))}2, pz ∈ P(z) and ps(n) ∈ P(s(n))

(4.18)

where P(z) is a point cloud from the observation and P(s(n)) is a point cloud from the

parametric model that is generated with the n-th sample s(n). The function d(p1, min(p2))

calculates the Euclidean distance between two points p1 and p2, where the second point p2

is selected to be the closest point to the first point p1 in the Euclidean space. Eq. 4.18 is

used to calculate the sum of squared distance error εSSD(Pz, Ps(n)) for the surface point

cloud and for the contour point cloud.

Motion History Image Error

The third term in Eq. 4.17 is an error function for the motion history image, which is

calculated as follows. We first generate two motion history images: a motion history image
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of observation IMHI(zt, zt−1) using two time-consecutive images zt and zt−1 (Section 4.2.2),

and a motion history image of model IMHI(s
(n)
t ,E[f(xt−1)]) using the n-th sample s

(n)
t and

an estimated result from the previous time-step E[f(xt−1)] (Section 4.2.1). With the two

motion history images, an error function for the motion history image is defined as:

εMHI(IMHI(zt, zt−1), IMHI(s
(n)
t ,E[f(xt−1)])) =

C
[
thresh{ abs(IMHI(zt, zt−1) − IMHI(s

(n)
t ,E[f(xt−1)])), 128, 255 }

] (4.19)

This error function first subtracts IMHI(zt, zt−1) from IMHI(s
(n)
t ,E[f(xt−1)])) and computes

an absolute-valued image of it. Then it applies the binary threshold operator with the

cutoff value set to 128 and result value set to 255 (i.e., set a pixel value to 255 if the

original value of that pixel was greater than or equal to 128; set to 0 otherwise), and

counts non-zero-valued pixels with an operator C.

The intuition behind setting the cutoff value to 128 can be described as follows. Table 4.2

shows all possible cases of the absolute-valued image. Remember that for each motion

history image (the first two columns), the pixel value 0 means there has been no change

since t−1, 127 means there was an object at t−1 but has moved at t, and 255 means there

was no object at t− 1 but has appeared at t in that pixel. By subtracting these values, we

get four possible results (the third column in Table 4.2):

• the pixel value 0 means the conditions in two motion history images are the same;

• the pixel value 127 means one of the motion history images indicates there was an

object at t− 1 while the other indicates there has been no object since t− 1;

• the pixel value 128 means one of the motion history images indicates there was an

object at t− 1 while the other indicates there is an object at t;

• the pixel value 255 means one of the motion history images indicates there has been

no object at t− 1 while the other indicates there is an object at t.

We want to penalize the conditions in which two motion history images do not match at
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IMHI(zt, zt−1) IMHI(s
(n)
t ,E[f(xt−1)]) abs(IMHI(zt, zt−1) − IMHI(s

(n)
t ,E[f(xt−1)]))

0 0 0
0 127 127
0 255 255

127 0 127
127 127 0
127 255 128
255 0 255
255 127 128
255 255 0

Table 4.2: Possible conditions for computing εMHI(IMHI(zt, zt−1), IMHI(s
(n)
t ,E[f(xt−1)])).

Note that, for the first two columns, the value 0 means there has been no object in the
pixel, the value 127 means there was an object in the pixel but it has moved, and the value
255 means there is an object. Therefore, by thresholding the absolute subtracted values
with the cutoff value 128, we can ignore the mistakes happened at t − 1 and concentrate
on the mistakes that happened at time t.

the current time t, independent of the situation at t − 1. Therefore, by setting the cutoff

value to 128, we can ignore the errors in the previous time-step and concentrate on the

errors that are related to only the current time-step (see Table 4.2).

4.3.3 Initialization

Iterative methods needs a good initialization of the prior density p(x0 | z0) for successful

estimation. For this reason, we need initial values of the model parameters to be as

accurate as possible (i.e., joint locations, limb lengths, and joint angles). The initial values

are usually obtained assuming a person in the image is making a predefined body pose;

then the problem becomes locating joints and finding limb lengths that best describe the

observation.

In this work, as seen in Fig. 4-10, we assume that a person in the scene is making a T-shape

pose. The initial parameter values are obtained by first locating head and wrist joints in

the image (by scanning a background subtracted image from top-to-bottom, left-to-right,
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Figure 4-10: Participants were asked to make a T-shape pose for initialization.

and right-to-left) then locating the rest of the joints based on these three joints; limb

lengths can be obtained from the joint locations; joint angles are already known because

we assume a specific body pose.

Note that, obtaining the location of chest joint as a geometric mean of left and right wrist

joints can result in inaccurate initial parameter values, because a person can make an

imperfect T-shape pose (thus resulting in a situation where the y-coordinates of the chest

joint and both hands do not lie on the same row in the image).

We locate the chest joint by performing a grid search varying the (x, y) coordinate of chest

joint and the Z-axis rotation angles of shoulder joints (which determines the up-and-down

movement of an arm). This often gives more accurate initialization parameter values (see

Figure 4-11). After the chest joint is located, limb lengths are calculated using the relative

ratios of limbs published in an anthropometric data [68].

4.3.4 Estimation Under Constraints

There exists certain body poses that are anatomically implausible, so this should be re-

flected in the body pose estimation as well. That is, we should put some constraints on
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Figure 4-11: Initialization results collected from 20 subjects. Although each subject has
made a T-pose for the initialization, the shoulder angles were not always 90 degree to the
backbone, preventing us to assume that the chest point is always at the middle of two
wrist points.
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Left Shoulder
Pitch 180 ≤ θLSPitch ≤ 360
Yaw 200 ≤ θLSY aw ≤ 330
Roll 30 ≤ θLSRoll ≤ 250

Left Elbow Flexion 210 ≤ θLEFlexion ≤ 360

Right Shoulder
Pitch 180 ≤ θRSPitch ≤ 360
Yaw 210 ≤ θRSY aw ≤ 340
Roll 30 ≤ θRSRoll ≤ 250

Right Elbow Flexion 210 ≤ θREFlexion ≤ 360

Table 4.3: Joint angle range constraints.

the ranges of joint angles. There are two reasons for this: (a) estimated body poses should

make only anatomically plausible body poses, and (b) in order to optimize the use of com-

putational resources, the estimation framework should not be searching in the implausible

parameter vector space. We set possible joint angle ranges based on an anthropometric

data chart published by NASA [52], empirically modifying the ranges to add some flexibility

(see Table 4.3).

4.4 Experiment

In any system we need to consider the trade-off between accuracy and computational speed.

For example, if estimation results are used for controlling a 3D avatar, as in computer

animation film making, highly accurate body poses are needed that match the input at

the pixel displacement level. However, if estimation results are used for other higher-level

tasks, such as the gesture recognition in this work, it is sufficient to show how well the

estimated body poses resembles the input, visually comparing estimation results to the

input.

For completeness, we performed both a qualitative and a quantitative analysis: our quali-

tative analysis visually checked whether estimated body poses resembled the actual human

body poses (Section 4.4.1); our quantitative analysis measured pixel displacement errors

between the estimated body pose and the ground-truth body pose data collected from the

74



Vicon motion capture system (Section 4.4.2).

We selected 10 gestures out of 24 that are good representative examples of aircraft handling

signals (more discussion on this appears in Section 6.4.1). When collecting the dataset,

each of 20 participants repeated each gesture 20 times, hence there were a total of 400

trials for each gesture. All gestures were recorded at 20 FPS; each gesture lasted about

3 seconds. Using 500 particles, the body pose estimation took about 0.7 seconds for each

frame, on an Intel Xeon Dual Core 2.66GHz machine with 3.25GB of RAM.

4.4.1 Qualitative Analysis

Methods

A qualitative analysis was performed using a data visualization tool we created that dis-

plays various information on the process of body pose estimation (see Figure 4-12). Using

the tool, a human evaluator visually checked the results frame-by-frame to see if the esti-

mated body poses resembled the actual body poses shown in the recorded images, counting

the number of erroneous estimation results.

Note that visually checking each of the 10 gestures means that we would have to look at

approximately 240,000 image frames (roughly 24,000 for each gesture). In order to make

this analysis tractable, we randomly selected for each gesture one trial sample out of 20,

and checked only that trial’s sequence of images. Also, we checked only even-numbered

frames in each trial: this was a reasonable approximation since two consecutive frames

tend to show similar results.

To set this in context, we need to clarify the evaluation criteria, that is, how close does an

estimated body pose has to be to the actual body pose? Without a clear definition of such

a criteria, the result might fall into the subjective bias3. Our answer is that an estimated

3Subjective bias is decision making or evaluation based on personal, poorly measurable, and unverifiable
data or feelings that are improperly weighted against objective, unbiased data [23]
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Figure 4-12: A data visualization tool. (1,3): original input image and depth map, (2,4)
input image and depth map after background subtraction, (5,9,13): 3D surface point cloud
of input image from three different viewpoints (front, top, lateral), (6,10,14): 3D surface
point cloud of estimation result from three different viewpoints (front, top, lateral), (7,8):
3D contour point cloud of input image and estimation result, (11,12): motion history image
of observation and estimation result, (15): hand pose estimation result (Chapter 5), (16):
synthesized view of body and hand pose estimation
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Gesture Index Gesture Description Error Rate

#2 Affirmative 7.82%
#3 Negative 6.83%
#4 Spread wings 12.83%
#5 Fold wings 6.80%
#10 Remove chocks 3.08%
#11 Insert chocks 1.50%
#18 Engage nosegear steering 7.73%
#19 Hot brakes 5.83%
#20 Brakes on 13.96%
#21 Brakes off 10.77%

Table 4.4: A qualitative analysis result.

body pose will be regarded as an error if it looks obviously different from the actual body

pose (i.e., an arm pointed to a position that is 45 degree off from the original one) or is an

unreasonable body pose (i.e., an arm twisted abnormally). However, disagreements due to

small noise (i.e., an arm slightly shaking frame to frame) or near-misses (i.e., the estimated

arm position does not align perfectly to its original position) will not be counted as an

error.

Result

Table 4.4 shows error rates for body poses in each gesture sequence. The average accuracy

rate of the body pose estimation was 92.285%. Note that there is no benchmark result for

comparison, so it is hard to judge how good or bad the result is. However, considering the

fact that 6 of 10 gestures included 3D body poses (gesture #4, #5, #10, #11, #18, #19),

we believe that the reliablily of the pose estimator is at a reasonable level to be used for

gesture recognition, which will in turn be shown in Chapter 6.
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Discussion

In general, more errors occurred on the gestures that included self-occluded body poses.

Gesture #4 (spread wings), for example, contained body poses where both arms were

located in front of the body at a close distance: it started with making a shrugging gesture,

with both arms kept close to the body and moving to the chest (as seen in Figure 4-13).

Most errors on this gesture occurred during tracking the shrugging part of the gesture.

This seems to be caused by the way the system estimates self-occluded body poses. Note

that two of the features we extracted (a surface point cloud and a contour point cloud)

were highly related to the depth information. Therefore, we can expect that the estimation

accuracy may be degraded if the depth of an arm does not differ noticeably from the rest

of the body (as in the case of shrugging gesture).

Figure 4-13: Gesture #4 (spread wings) contains a shrugging gesture, which causes a major
portion of estimation errors for this gesture. The pose estimator tracks the shrugging
gesture correctly for a few frames at the beginning, but fails when arms get too close to
the body. Note that it quickly finds the correct pose when there is no more self-occlusion.

Also, error rates of gesture #20 (brakes on) and #21 (brakes off) were, although still low,

relatively higher than the others. Note that, as depicted in Figure 4-14, these two gestures

included raising both arms outwards (making the T-pose) and bending both elbows so

that both hands point upward. A majority of errors on these two gestures were that the

estimated bending direction of elbows were opposite to the actual one. This type of errors

can be explained by the Monte Carlo stochastic process of the particle filter, and the

recovery process with a dynamical process of the model and range limits on joint angles.
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Figure 4-14: Estimation fails when the bending direction of an elbow (red arrows) is incor-
rect. (Rectangles around hands are hand pose estimation result, which will be discussed
in the next chapter).

To build an intuition of what is causing this error: imagine an actor standing at attention,

wearing a big jacket with his hands hidden inside it. Your task is to guess in which direction

the actor’s elbow can bend. The actor slowly raises an arm, keeping the elbow straight;

at this point, you have no idea where the elbow can bend, so you just have to guess the

bending direction. After the actor starts bending his elbow in a certain direction, you

start to have a better idea, either confirming that your guess was right or overriding the

erroneous knowledge.

Note that this is very similar to how our body pose estimation is performed, except that

for body pose estimation the recovery process is constrained with a dynamical process of

the model and range limits on the joint angles.

• A dynamical process of the model determines how fast each of the 8 joint angle

values can change4. In our recorded videos, joint angles tended to change in a small

value in each frame, because the videos were captured at 20 FPS. Therefore, the

dynamical process was configured so that their permitted changes are small at each

frame. However, to change an elbow’s bending direction to the opposite, one of the

4Remember that, each time a particle filter framework goes through the diffusion step, we apply a
dynamical process (essentially a vector of Gaussian random values) to each particle, changing the values
of the 8 joint angle variables. Therefore, a configuration of the dynamical process (the mean and variance
of the Gaussian distribution) affects the speed of the joint angle change: the bigger the mean is, the faster
the permitted changes are.
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three shoulder angles should turn 180 degrees; this may not be possible given the

dynamical process of the model.

• The range limits on the joint angles prevent a joint from bending in an abnormal

direction, i.e., an elbow bending outwards. What this means is that, although the

skeletal model can bend an elbow to the negative direction, the range limit prevents

this from being an acceptable solution.

The errors in Figure 4-14 happened when most of the particles had elbow joints set to

bend downwards, that is, when there were not enough particles that caused the elbows

to bend upward. To recover from this, erroneous particles should be able to change their

joint angle values rapidly and appropriately. However, due to the reasons described above,

although in general they make estimation reliable, the dynamical process and the range

limits prevented the errors to be recovered appropriately.

4.4.2 Quantitative Analysis

Method

A quantitative analysis was performed by measuring pixel displacement errors between

joints of estimated body poses and joints of the ground-truth data, collected using the

Vicon motion capture system5 [70].

The Vicon system records, using multiple cameras, the movement of several reflectors

attached to predefined positions on the body, with each camera emitting infrared light and

capturing the light reflected back from the reflectors. Using the recorded movements of

each reflector, the system solves the inverse kinematics problem to reconstruct a skeletal

model, and outputs trajectories of 8 joint points (chest, navel, left/right shoulder, left/right

elbow, left/right wrist).

5We used the Vicon motion capture system from the MIT CSAIL holodeck room (16 cameras, 120 Hz
frequency, 1 mm precision).
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To get the ground-truth data, one participant was selected and recorded using both a

stereo camera and the Vicon system simultaneously. From the Vicon captured images,

trajectories of 8 joint points (chest, navel, left/right shoulder, left/right elbow, left/right

wrist) were obtained using a manufacture provided toolkit [70]. The obtained trajectories

were superimposed onto images captured from the stereo camera, scaled and translated

properly so that they align with the coordinate system that the estimated body pose is

in. Finally, 2D pixel displacement errors were calculated for each joint on a 320x240 pixel

frame.

Result and Discussion

Figures 4-15, 4-16, 4-17, 4-18, 4-19 show graphs of joint displacement errors measured in

pixels, paired with similar gestures. In each graph, joint displacement errors are shown

with each line (blue: left elbow, green: right elbow, yellow: left wrist, purple: right wrist),

indicating how much fluctuation of displacement errors happened for the joint. The X-axis

indicates frame index numbers, which shows the 20 repetitions of the same gesture over a

period of time. Also, Table 4.5 shows mean and standard deviation pixel values of joint

displacement errors. Note that, both in the figures and the table, we show elbow and wrist

joint errors only, since the position of a body trunk is fixed once initialized and the position

of the shoulder is analytically determined.

There are two major findings from the result of this analysis. First, as discussed in Sec-

tion 4.4.1, gestures involving 2D body poses only (#2, #3, #20, and #21) showed more

reliable estimation result than others (#4, #5, #10, #11, #18, and #19). Second, al-

though some graphs showed higher error rates than others, we can see that estimation

was performed consistently in the sense that errors mostly occurred at the same phase in

a gesture. To see this, following our discussion in Section 4.4.1, let’s take the graph of

gesture #4 (spread wings) for example (shown in Figure 4-16). The high error peaks of

WristL (yellow line) and Wrist R (purple line) occurred when a person was making the

shrugging part of the gesture. Although the errors were high on average, the fluctuation
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of estimation error repeated 20 times as the time goes by (following the 20 repetitions of

the same gesture), which explains that the estimation performed consistently without too

much variation.

Figure 4-15: Pixel distance errors of body pose in gesture #2 (affirmative) and #3 (nega-
tive).

Figure 4-16: Pixel distance errors of body pose in gesture #4 (spread wings) and #5 (fold
wings).
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Figure 4-17: Pixel distance errors of body pose in gesture #10 (remove chocks) and #11
(insert chocks).

Figure 4-18: Pixel distance errors of body pose in gesture #18 (engage nosegear steering)
and #19 (hot brakes).
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Figure 4-19: Pixel distance errors of body pose in gesture #20 (brakes on) and #21 (brakes
off).

4.5 Related Work

The problem of body or hand pose estimation has been an active research area (see the

review articles [25][49][50][58]), and many approaches were proposed, which can be roughly

categorized into a model-free approach and a model-based approach.

4.5.1 Model-Free Approaches

The model-free approach establishes a direct correlation between an observed image and

a pose. Two broad classes of work in this approach are a learning-based method and a

example-based method. The learning-based method builds a statistical model that learns

a mapping function from image space to pose space [5][29][67], where the example-based

method performs a similarity search in a collected pose database [12][51][62].

Problems in the model-free approach include the large numbers of possible poses, and

the viewpoint sensitivity, i.e., the same pose can look different when viewed from differ-

ent viewpoints. Therefore, the model-free approach requires a large training dataset that

contains various poses from many camera viewpoints, which makes it pragmatically impos-
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Gesture Gesture
Joint Mean (px) Std. Dev (px)

Index Description

#2 Affirmative

ElbowL 3.15 .72
ElbowR 6.02 1.10
WristL 14.89 3.09
WristR 16.73 4.89

#3 Negative

ElbowL 2.71 .71
ElbowR 5.30 1.45
WristL 14.32 2.80
WristR 20.36 5.41

#4 Spread wings

ElbowL 4.61 2.35
ElbowR 7.58 1.86
WristL 25.61 13.67
WristR 22.51 11.62

#5 Fold wings

ElbowL 4.89 1.91
ElbowR 3.75 1.35
WristL 30.33 12.47
WristR 25.59 12.26

#10 Remove chocks

ElbowL 6.60 2.07
ElbowR 10.28 3.02
WristL 19.15 6.19
WristR 20.02 6.33

#11 Insert chocks

ElbowL 3.19 1.17
ElbowR 4.65 1.38
WristL 15.89 7.76
WristR 17.28 8.86

#18 Engage nosegear steering

ElbowL 11.64 2.71
ElbowR 13.60 2.61
WristL 18.99 7.16
WristR 24.84 9.51

#19 Hot brakes

ElbowL 4.78 2.13
ElbowR 4.81 1.69
WristL 24.56 8.79
WristR 20.30 10.89

#20 Brakes on

ElbowL 2.56 1.34
ElbowR 7.91 5.08
WristL 17.88 9.39
WristR 17.41 9.01

#21 Brakes off

ElbowL 4.61 1.61
ElbowR 7.58 3.51
WristL 16.96 8.71
WristR 19.19 6.98

Table 4.5: Joint displacement errors.
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sible to collect and label all the possible pose images. In addition, this approach generally

estimates 2D poses only.

4.5.2 Model-Based Approaches

The model-based approach, on the other hand, used for body pose estimation in this work,

constructs a parametric model of the human body from the observed image, by evaluating

the parametric model’s likelihood given the observed image [20][22][40][64]. This approach

is not affected by a camera viewpoint, does not require a training dataset, and is generally

more robust in pose estimation. Plus, 3D acquisition of body pose is possible. Although

this approach requires a good initialization of model parameters for satisfactory estimation,

several methods for automatic initialization methods have been proposed [20][37].
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Chapter 5

Hand Pose Classification

In this chapter we describe hand pose classification, the third part in the gesture recognition

pipeline. The task here is to find and classify canonical hand poses made contemporane-

ously with gestures. To this end, we first defined a vocabulary of canonical hand poses

used in NATOPS aircraft handling signals (Section. 5.2). The training data set was col-

lected by manually segmenting images of hands, and extracting the Histograms of Oriented

Gradients (HOG) features [19] (Section 5.3). Then a multi-class Support Vector Machine

(SVM) classifier [69] was trained using the data set (Section 5.4). Note that exhaustive

search for hands in the image is not necessary because the computed body pose supplies

information on possible wrist positions; a small search region was defined around each of

the estimated wrist positions, and hand tracking was performed only on those regions,

dramatically reducing the amount of computation needed (Section 5.4.3).

When tested on segmented images that included positive and negative examples of all

hand poses, the multi-class SVM hand pose classifier accomplished near-perfect recognition

accuracy (99.94%) (Section 5.5). The chapter concludes with a review of some other

approaches to this task (Section. 5.6).
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5.1 Goal and Assumptions

The goal here is to classify canonical hand poses by distinguishing their appearances, i.e.,

how they look, not by building a model of them, i.e., reconstruct the anatomical structure,

as was done for the body pose estimation in Chapter 4.

The appearance of hand poses depends heavily on the viewpoint. In our task, however,

a person is assumed to be facing the camera, so the viewing angle is also assumed to be

relatively static. Note that this resembles the realistic scenario: on the carrier flight deck,

personnel are required to make an eye contact with pilots when they communicate, and if

the vehicle moved so far that it is hard for a pilot to see the person directly, another person

gets the control of the vehicle and continues to gesture to the pilot, again making direct eye

contact when communicating. Therefore, it seems reasonable to assume that the viewing

angle of hand images collected during gesture recognition will not vary significantly, in

which case the appearance-based approach can work reliably1.

Another assumption is that hand poses in aircraft handling signals tend to be coarse and

can be summarized with a handful of canonical poses. Note that this is inevitable on

the carrier flight deck because of the standing distance between pilots and personnel: on

the carrier flight deck, personnel usually keep back 50 feet (15 meters) from the aircrafts

for safety. This makes it hard for pilots to recognize hand poses accurately if there are

many similar ones, which implies there cannot be many similar hand poses and we can

define a handful of canonical hand poses for NATOPS gesture recognition. There are,

in fact, only seven canonical hand poses in NATOPS standard aircraft handling signals

that have specific meanings and play a key role defining the meaning of a gesture (thumb

up/down/left/right, palm open/close, and pointing); this is not true for body poses, which

1Taking an appearance-based approach for hand pose classification may sound contradictory to some
readers: in body pose estimation we took a model-based approach although the same assumption still
holds. The main reason that we took model-based approach for body pose estimation was to be able
to reconstruct body pose in 3D space, and 3D information is needed to classify the NATOPS gestures
reliably [53]. An appearance-based approach for body pose estimation has been mainly used for 2D body
pose estimation, such as in [12]. However, when it comes to 3D body pose estimation, model-based
approaches are more used, as discussed in Section 4.5.
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can be seen accurately from further away, and hence use a larger vocabulary.

5.2 Hand Pose Vocabulary

As discussed in the previous section, there are seven distinct hand poses used in the

24 gestures studied in this work. Of these, we selected four (thumb up/down, palm

opened/closed) (Figure 5-1), that we believe represent canonical hand poses that cap-

ture important visual cues during gesticulation. These hand poses play important roles in

defining meanings of the gestures: “Affirmative” (thumb up), “Negative” (thumb down),

“Brakes on/off” (palm opened/closed) (Figure 5-1).

Figure 5-1: Canonical hand poses used in NATOPS standard aircraft handling signals.
The four hand poses used in this work are shown in red boxes.

The three other hand poses (thumb left/right and pointing) were excluded from this work

for a variety of reasons. For the thumb left/right hand poses, in most cases they were

in front of the body, so the sampled images were cluttered with other textures, such as

jerseys. Therefore, we would need additional background removal routines to acquire hand

images, i.e., perform skin color detection as was done in [13]. For the pointing hand pose,

the orientation of the pointing hand can vary in 360 degrees, and we would need to train

a hand pose classifier with much more data representing such a huge rotational variation.

However, we speculate that extending the framework to classify these two hand poses can

be done, and we leave this for future work.
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5.3 Dataset

5.3.1 Data Collection

A hand pose dataset was collected from the recorded video data of the first 10 participants

(out of 20). Positive examples were sampled by manually cropping 32 x 32 pixel images

and labeling them, and negative examples were sampled by choosing two random locations

and cropping the same sized images. Note that the positive examples were sampled before

sampling the negative examples to ensure that the negative examples do not contain any

hand images. Also, when selecting locations for the negative examples, the foreground-

background mask images were used to ensure that no background images are included in

the samples, which will not be searched during the tracking in any case.

After collecting the sample images, affine transformations were applied to the positive

examples to scale and rotate the original samples into poses with a wide range of additional

orientations and sizes. This was done to make the classifier more robust to scaling and

rotational variations, and to increase and balance the number of positive sample sets across

hand pose classes. After applying the transformations, the size of positive dataset for each

hand pose class was well-balanced (about 12,000 samples per class) (Figure 5-2).

5.3.2 Feature Extraction: Histogram of Oriented Gradients

Now we turn our attention to the specific mechanism to compute image features. The

Histograms of Orient Gradients (HOG) method was introduced to the computer vision

community as an image feature descriptor for pedestrian detection, and since then it has

been one of the most popular methods to extract image features, as it usually outperforms

other approaches [19].

The HOG features are image descriptors based on dense and overlapping encoding of

image regions. The central assumption of the method is that the appearance of an object
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Figure 5-2: Hand pose dataset. Positive examples (first four rows) were sampled and
labeled manually by cropping 32 x 32 images, and applying affine transformations to scale
and rotate them. Negative examples (bottom row) were sampled randomly after positive
examples were sampled in each image.
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is rather well characterized by locally collected distributions of intensity gradients or edge

orientations, even without having the knowledge about the corresponding gradient or edge

positions that are globally collected over the image.

To compute the HOG features, an image window is divided into a grid of small regions,

hereinafter ”cells”, and each cell’s gradient orientations are quantized into a number of bins

to create a histogram. To make the features more invariant to illumination and shadowing

effects, the same image window is again divided into a grid of larger regions, hereinafter

”blocks”, and for each block the computed histograms are accumulated so that each cell

within the block can be normalized with it. The histograms over the normalized blocks

are referred to the HOG features.

In this work, we assume that each of the selected hand poses has a unique pattern of

intensity gradients or edge orientations that distinguishes it from the others. This can be

expected from the appearance of each hand pose. For example, an open palm has distinctive

local appearances that look different from other hand poses, e.g., edges along the fingers.

Since our vocabulary of hand poses has unique patterns of gradient orientations, we decided

to use the HOG feature as an image descriptor.

5.4 Classification Framework

5.4.1 Multi-class Support Vector Machine Classifier

To classify the HOG features, we trained a multi-class Support Vector Machine (SVM)

classifier [69] using an existing library (LIBSVM [16]). SVM is a discriminative framework

for performing classification and regression tasks that can handle multiple categorical and

continuous variables, by constructing hyperplanes that separate regions of different class
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labels in a multi-dimensional space. It solves the following optimization function:

min
1

2
wTw + C

N∑
i=1

ξi (5.1)

subject to the constraints:

yi
(
wT · φ(xi) + b

)
≥ 1− ξi and ξi ≥ 0 for i = 1, · · · , N (5.2)

where w is a parameter vector, C is a penalty trade-off variable, N is the number of

training examples, ξi are slack variables, φ() is a kernel function for transforming input

data to the feature space, and b is an offset value. Because the image features extracted

using HOG descriptors are high-dimensional, the parameter vector space might not be

linearly separable. Therefore, to make the classification more robust, we use the Radial

Basis Function (RBF) kernel function, defined as

K(x,x′) = exp
(
−γ

2
‖x− x′‖

)
, γ > 0. (5.3)

The multi-class SVM was trained following one-against-one method [35] for fast training,

while obtaining comparable accuracy to one-against-all method [30]. The one-against-one

method constructs a multi-class classifier based on a combination of k(k − 1)/2 binary

classifiers, where each classifier is trained on data from two classes.

Each time a sliding window moves to a new position within a search region, the HOG

features are computed to form an input feature vector. Then the trained SVM classifier

examines the input feature vector and returns the result as a vector of k + 1 probability

estimates for k hand classes and one negative class (i.e., no hand pose). If the highest

probability estimate is from one of the k hand poses, we store the window’s position as a

classified hand pose position.
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5.4.2 SVM Parameter Selection Using Grid Search

The multi-class SVM classifier requires us to perform parameter selection of two variables,

C and γ, which often affect the performance of a trained engine significantly. In this work,

we use a grid search approach to perform parameter selection following [16]. It performs

training and testing repeatedly, changing values of C and γ at uniform intervals. We varied

both C and γ from -5 to 5, increasing the values in each step by 1 (all in the log scale).

Figure 5-3 illustrates the result of the grid search. The optimal parameter values of C and

γ are searched over the grids of (C,γ) values in log scale, x-axis showing log(C) and y-axis

showing log(γ). In the figure, lines with the same colors indicate the parameter settings

that lead to the same accuracy performance. The optimal parameter values were C=4.0

and γ=0.03125, which gave the overall accuracy 99.86%.

5.4.3 Search Region

Given an input image, one way to find the hands is to perform a exhaustive search: slide a

small search window over the whole image area; compute features every time the window

moves to a new position; then report back the positions where the hands were classified.

However, this approach wastes a substantial amount of time computing features from

meaningless regions, i.e., the background or front body regions. Obviously, an efficient

approach would be to compute features only in the regions most likely to contain the

hands.

In this work, we use the information of estimated wrist positions (computed in body pose

estimation) to narrow down search regions. Around each of the estimated wrist positions,

we create a small search region, slightly larger than the size of the actual hand image.

Then the HOG features are computed from the search region, from top-left to bottom-

right, by sliding a window with a fixed size interval. This process allows us to reduce the

computation time dramatically. The specific size settings used in this work are 56 x 56
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Figure 5-3: A graph showing the result of grid search over the two parameters C and γ.
The optimal values of parameters (C, γ) are searched over the grids of (C,γ) values; x-axis
shows log(C) and y-axis shows log(γ). Lines with the same colors indicate the parameter
settings that lead to the same accuracy performance. The grid search result shows the
optimal parameter values were C=4.0 and γ=0.03125, which gave the overall accuracy
99.86% (the X mark on the graph).
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Figure 5-4: Hand tracking is performed only in two small search regions around estimated
wrist positions. Given a 56x56 pixel search region (gray rectangle around each wrist posi-
tion) and 32 x 32 pixel sliding window moving at 2 pixel interval, we compute the HOG
features repeatedly.

pixels for the search region, 32 x 32 pixels for hand image window, and 2 pixels for an

interval of the sliding window (depicted in Figure 5-4).

Note that body pose estimation results are not always accurate, in which case a search

region might not contain a hand. We compensate for this error by using the position of

the previously classified hand pose: if a hand pose is found at time t, for the next time

t + 1 we set the center position of a search region as the geometric mean of the classified

position at time t and the estimated wrist position at time t+ 12.

5.4.4 Clustering

We would like to obtain a single classification result per hand, but performing hand tracking

using a sliding window over a search region means there can be multiple classification results

per hand. Therefore, we cluster all classified results within the same search region (hence

a single classification result per hand), taking an average of the positions and probability

estimates of the classification results to obtain a single classification result.

Figure 5-5 depicts this clustering process. The small circles inside a rectangle shows each

2Also note that we can refine the body pose estimation result using the classified hand pose position.
We leave this as a future work.
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individual classification results, where the rectangle is obtained by clustering. The figure

also explains two types of classification results, which will be explained next.

Frame Hand Opened Palm (blue) Closed Palm (red) Nothing

t
Left 95% 0% 5%

Right 87% 0% 13%

t+1
Left 66% 21% 13%

Right 8% 78% 14%

t+2
Left 0% 96% 4%

Right 1% 78% 21%

Figure 5-5: Three time-consecutive images (top) and probability estimates (bottom) show-
ing hand pose classification results. The small circles inside the rectangle are detected hand
locations, and the rectangle is a clustered result where its location and probability esti-
mates are obtained by averaging neighboring classification results. The colors indicate
classified hand pose classes: blue for the ”opened palm” and red for the ”closed palm.”
A hand pose with the highest probability estimate is chosen as a categorical result value
(shown in bold text in the table.)

5.4.5 Output Feature Type

Now we have two types of output feature types: a vector of probability estimates, and a

categorical value obtained by selecting the highest probability. There are advantages and

disadvantages for each of the two output feature types.
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An advantage of using a categorical value is that it helps the gesture recognition framework

to have a lower dimensional input feature vector, as we only need a two-dimensional vector

describing both hands. However, a disadvantage of it is that it might loose fine details

of hand poses, which can be problematic when a probability estimate for hand poses are

close to each other. To see this, look at the middle image in Figure 5-5. Both hands are

in the transition from the opened palm to the closed palm, so it is not clear as to which

hand poses they represent. A categorical value picks the one with the highest probability

estimate, so the left hand pose is classified as an opened palm (66%) while the right hand

pose is classified as a closed palm (78%).

Loosing fine details of probability estimates turns out to be problematic for gesture recog-

nition; gesture recognition using probability estimates resulted in significantly higher ac-

curacy rates than using the categorical results (we will show this in Section 6.4.3), and

this is the advantage of using a vector of probability estimates. However, using a vector

of probability estimates has its disadvantage as well: we need a eight-dimensional feature

vector to describe two hand poses with the probability estimates, which in turn increases

the complexity of gesture recognition.

We compare the performance of both hand pose feature types in Section 6.4.3, where we

conduct various experiments on gesture recognition framework using combinations of body

and hand poses.

5.5 Experiment

To calibrate and evaluate the accuracy of the hand pose classifier, we performed two

experiments: the first one quantitatively measured the classification accuracy on manually-

segmented images, and the second one qualitatively measured the classification accuracy

on a subset of non-segmented images.
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5.5.1 Quantitative Analysis

The first test was performed using a dataset containing manually-segmented images that

included both positive and negative samples. We conducted a 10-fold cross validation (10-

CV) analysis: the dataset was divided into 10 individual subsets, each subset containing

images from a single participant only; evaluation was repeated 10 times, each time using

one of the 10 subsets as a test dataset and the rest as a training dataset.

The 10-CV analysis resulted in 99.94% classification accuracy rate. As reported in [19],

where they reported that the performance on pedestrian detection was near-perfect, we

can see that the HOG features performs reliably on this object detection task as well.

5.5.2 Qualitative Analysis

What matters more is how well the hand pose classifier performs on our video recorded im-

ages, rather than on manually-segmented images. To exhibit this, the second test was per-

formed similar to the qualitative analysis we did for body pose estimation (Section 4.4.2).

We randomly sampled a subset of image frames from four gestures that contained the

canonical hand poses: #2 (affirmative), #3 (negative), #20 (brakes on), and #21 (brakes

off). After classification was performed, the results were overlayed on the original images,

for us to be able to visually compare the classification results to the actual hand poses in

the images. Then we counted the number of misses (no classified result although there

was a hand pose in an image) and misclassifications (classified result did not match the

hand pose in an image), and combined them to obtain the number of erroneous results.

For the simplicity of the evaluation, we used categorical values as the classification results

(chosen as the one with the highest probability estimate).

Table 5.5.2 shows error counts and accuracy rates for the four gesture video sequences.

Gesture #2 and #3 showed reasonable performances, with slightly less classification accu-

racy rates compared to the quantitative analysis result (99.94%) being resulted from some
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Index Description Missed Misclassified Total Accuracy

#2 Affirmative 11 6 379 95.51%
#3 Negative 12 5 368 95.91%
#20 Brakes on 84 0 804 89.55%
#21 Brakes off 155 0 787 80.30%

Table 5.1: Hand pose classification accuracy rates.

rotational variances (thumb up with 45 degree rotation). Gesture #20 and #21 showed

much less successful performances compared to the other two gestures as well as to the

qualitative analysis result. A majority of these errors were due to imperfect body pose

estimation results, i.e., search regions that did not include hand images.

5.6 Related Work

Similar to body pose estimation, there are two main approaches to hand pose estimation:

a model-based approach (construct a skeletal model and estimate joint angles) and an

appearance-based approach (learn a direct mapping from images to labels, usually com-

puting image descriptors). In a broad term, the two approaches are equally applicable

to hand pose estimation. Since we have already mentioned the two approaches in Sec-

tion 4.5, here we review some of the related work. For a comprehensive review of hand

pose estimation, see a survey paper [25].

In [13], Buehler et al. performed hand pose estimation following an appearance-based

approach. They first segmented the ’shape’ of the hands using a graph cut method, with a

potential given by the probability of each pixel being explained by skin or background color

models. From the segmented shape of the hands, they extracted HOG descriptors, and

applied a vector quantization method to represent a hand’s HOG descriptor by its nearest

’exemplar’ hand shape, where the exemplar set is determined by performing K-means

clustering of the corresponding HOG descriptors. Hand poses are classified on-line by

finding the nearest exemplar (measured by Euclidean distance between HOG descriptors).
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In [36], Kolsch et al. performed view-dependent hand pose classification on eight canonical

hand poses using a cascade of classifiers that was introduced by Viola and Jones [71]. For

each hand pose, a cascade of binary classifiers were trained on a data set consisting of

Haar-like features extracted from manually-segmented images. Evaluation was done for

each hand pose, achieving 92.23% recognition rate on the closed hand pose as the highest

one. However, their work did not include implementing a multi-class hand pose classifier.
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Chapter 6

Gesture Recognition

This chapter describes multi-signal gesture recognition, the final step in the gesture recog-

nition pipeline. The goal here is to predict a gesture label given a temporal sequence of

multi-signal input data that consists of body and hand poses (described in Chapter 4 and

Chapter 5, respectively). In order to capture the dependencies within the data from multi-

ple channel inputs more precisely, we propose a new approach to learning a discriminative

hidden-state graphical model: Multi Information-Channel Hidden Conditional Random

Field (MIC-HCRF) is an extension to the previous work on HCRF [59], which generalizes

the framework to accept multiple input vectors.

We first review previous work on discriminative graphical models (Section 6.1 and Sec-

tion 6.2), and describe the MIC-HCRF in detail (Section 6.3). Next, a comprehensive set

of experiments are performed: (a) we test our hypothesis that combining body pose and

hand pose helps gesture recognition, (b) we compare the performance of various compo-

sitions of body pose and hand pose output formats, and (c) we compare the recognition

accuracy of MIC-HCRF to HCRF (Section 6.4). Finally, we review some of the other

approaches to multi-signal gesture recognition (Section 6.5).
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6.1 Generative vs. Discriminative Models

Generative and discriminative models are two important approaches to building a statistical

inference framework in machine learning research. Given a set of input variables x =

{x1, · · · ,xN} and corresponding class labels y = {y1, · · · ,yN}, the goal is to learn a

classifier p(y | x) that predicts a class label y given a new observation x.

Generative approaches construct the underlying probability distributions to be able to

generate synthetic data points, while discriminative approaches focus on learning how to

best discriminate the given feature vector space. To this end, generative models aim to

learn a classifier by constructing class conditional probability distributions p(x | y) and

a prior probability distribution p(y) from the training data. Discriminative models, by

contrast, aim to learn a classifier by constructing posterior probability distributions p(y |x)

directly from the training data.

The main problem in the generative approach lies in the fact that it requires modeling

p(x | y). In most cases, input features are highly dependent on each other, and accu-

rately modeling such dependencies in p(x | y) is computationally intractable. To make the

problem tractable, the generative approach simplifies the problem by making conditional

independence assumptions, or the Naive Bayes assumption. That is, it assumes individual

attributes describing an observation are independent of each other once the class label is

known:

(∀i, j) p(xi | xj,y) = p(xi | y). (6.1)

Therefore, with the Bayes assumption, we can simplify describing p(x | y) as follows:

p(x1, · · · ,xN | y) =
N∏
i=1

p(xi | y) (6.2)

Where the conditional independence assumption holds, the generative approach can work

surprisingly well (e.g., HMMs [60]). However, if the assumption does not hold, the asymp-

totic accuracy of the classifier is often worse than the accuracy of a discriminatively trained
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classifier [47].

The discriminative approach assumes that p(y|x) can be represented in a certain parametric

format, and aim to find the optimal parameter values that best describes the training data,

not requiring modeling of p(x | y). This in turn allows us not to make the conditional

independence assumption. Therefore, this approach can be more robust if the Naive Bayes

assumption does not hold for the data. Along with this, it accounts for the whole input data

sequence at once during training, allowing us to capture complex long-range dependencies

within the input data.

6.2 Discriminative Graphical Models

6.2.1 Conditional Random Field

The Conditional Random Field (CRF) [38] is a framework for building probabilistic models

to segment and label sequential data in a discriminative fashion. The CRF assumes an

undirected graphical model, which is designed to capture dependencies of attributes in

observations. It constructs a conditional model p(y|x) by assuming that, when conditioned

on x, the random variables y obey the Markov property with respect to the underlying

graph, forming a first order Markov chain. When the underlying graphical model has a

tree structure (which forms a chain structure), its cliques are its edges and vertices. Then

the conditional model p(y | x; θ) with a parameter vector θ can be constructed as follows:

p(y | x; θ) =
1

Z(x; θ)
eΨ(y,x;θ) (6.3)

where

Ψ(y,x; θ) =
∑
v∈V

θV · f(v,y|v,x) +
∑

(i,j)∈E

θE · f((i, j),y|(i,j),x). (6.4)
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Here, x is an input data sequence, y is a class label sequence, y|S is the set of components

of y associated with the vertices in subgraph S, and Z(x; θ) is a normalization constant

that does not depend on the observation. The parameter vector θ = [θV θE] is estimated

using iterative scaling algorithms.

6.2.2 Hidden Conditional Random Field

The Hidden Conditional Random Field (HCRF) [59] is an extension to the previous work

on CRFs to incorporate hidden variables in the graphical model. The idea of introducing

hidden variables has been empirically shown to improve classification performance in gen-

erative graphical models (e.g., HMM [60]). It assumes that the variables observable to the

user form an undefined stochastic process, which is linked to hidden variables that govern

the distribution of the observable variables.

The HCRF constructs the conditional model p(y | x; θ) as the marginals over hidden

variables, h:

p(y | x; θ) =
∑
h

p(y,h | x; θ) =
1

Z(y | x; θ)

∑
h

eΨ(y,h,x;θ) (6.5)

where

Ψ(y,h,x; θ) =
∑
v∈V

θV · f(v,h|v, y,x) +
∑

(i,j)∈E

θE · f((i, j),h|(i,j), y,x). (6.6)

Here, h is a hidden state sequence, x is an input data sequence, and y is a class label.

Similar to the CRF formulation, h|S is the set of components of h associated with the

vertices in subgraph S, and Z(y | x; θ) is a normalization constant that does not depend

on the hidden variables. Parameter estimation for θ = [θV θE] is performed using the belief

propagation algorithm [57], with one restriction being made on the graphical model to

form a tree structure.
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6.3 Multi Information-Channel Hidden Conditional

Random Field

6.3.1 Motivation

Previous work on discriminative hidden-state graphical models have concentrated on learn-

ing a direct mapping function from single-channel input feature vectors to class labels,

regardless of whether the input signals are obtained from a single information-channel or

multiple information-channels. However, consider a case where input signals are obtained

from multiple information channels, with each channel having different characteristics (as

in many multimodal interaction application scenarios, e.g., speech-and-gesture recognition

system [63]). In such a case, considering our intuition about the way humans process

multiple signals, it might be too restrictive to force input features to form a single-channel

vector.

Also, performing a parameter estimation is essentially a way of finding out the best dis-

criminator with the lowest error in a hyper-dimensional space; so, it must be followed with

an assumption that the input feature space is separable with reasonable errors. However,

by putting all features into one vector, we are implicitly forcing features with different

characteristics to be in the same hyper-plane space. Therefore, it is not clear as to how or

why it can be separable when a space contains the combined multi-channel signals.

Multi Information-Channel Hidden Conditional Random Fields (MIC-HCRFs) are de-

signed to accept an arbitrary number of feature vectors, with each vector representing

an individual input channel with its own characteristics. Therefore, compared to the pre-

vious work on HCRF for gesture recognition (e.g., [73]), we get more flexibility in modeling

the graphical model. For example, the number of hidden states can be set individually for

each channel, in which case we can make more sense of the dynamics of hidden states; the

relationship between hidden states and observations can be customized in more detail, i.e.,

by specifying dependencies among multiple input channels or hidden states. In higher level,
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we believe that this flexibility in modeling the graphical model will allow us to construct

a more robust estimation framework for multi-signal pattern recognition tasks.

6.3.2 Formulation

The goal here is to learn a posterior distribution p(y | x̂; θ) given a labeled training dataset

(x̂i, yi). Here, x̂i = (x
(1)
i , · · · ,x(K)

i ) is the i-th set of observation sequences collected from

K-channels, with each x
(k)
i = (x

(k)
i,1 , · · · ,x

(k)
i,Ti

) is a sequence of observations from the k-th

channel, and yi is the i-th class label. For each set of observation sequences x̂i, there is

assumed to exist a corresponding set of hidden state sequences ĥi = (h
(1)
i , · · · ,h(K)

i ). Note

that, each of the i-th set of sequences x̂i can have different sequence length Ti, but each

observation channel x
(k)
i within the set of sequences must have the same sequence length.

Also note that, the number of hidden states |H(k)| can differ from channel to channel.

The posterior distribution p(y | x̂; θ) is defined as follows:

p(y | x̂; θ) =
∑
ĥ

p(y, ĥ | x̂; θ), (6.7)

p(y, ĥ | x̂; θ) =
eΨ(y,ĥ,x̂; θ)∑
y′,ĥ e

Ψ(y′,ĥ,x̂; θ))
, (6.8)

where Ψ(y, ĥ, x̂; θ) is a potential function that specifies dependencies in the model. In this

work, following previous work on HCRF [59], the underlying graph G = (V,E) is assumed

to have a chain structure (see Figure 6-1 (b)) with vertices V and edges E. Following the

definitions of x̂ and ĥ, we will use v̂ ∈ V to refer to a set of all vertices that are linked to

each channels with a single observation.

Next, the potential function is defined as

Ψ(y, ĥ, x̂; θ) =
∑
v∈V

K∑
k=1

φ(x(k)
v ) · θ(h(k)

v ) +
∑
v∈V

K∑
k=1

θ(y,h(k)
v ) +

∑
(v̂1,v̂2)∈E

θ(y, ĥv̂1 , ĥv̂2) (6.9)
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Figure 6-1: Discriminative hidden-state graphical models. (a) HCRF, (b) MIC-HCRF.

where φ(x
(k)
t ) is a feature extraction function for the k-th channel input data. The main

difference in the potential function of this work compared to HCRF is the use of x̂ and

ĥ. Note that we would like to capture dependencies between input features and hidden

variables per channel. This is modeled in the first two terms in Eq. 6.9 by computing

values for each individual channel k and marginalizing them over all channels.

In the third term, however, instead of marginalizing values over all channels, all hidden

variables for each vertex v̂ ∈ V are combined to create another combinatorial hidden state

variable, and values are computed with the combinatorial hidden state variables over the

connected edges. To see how the combinatorial hidden state variables are constructed,

consider a case where the observation contains two channels with x(1) and x(2), and two

corresponding hidden state variables h(1) ∈ H(1) and h(2) ∈ H(2). Then the combinato-

rial hidden state variables can be constructed by assigning unique values to each of the

combinations in h ∈ (H(1) ×H(2)).

Following the previous work on CRF [38], parameters are trained using the following ob-
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jective function:

L(θ) =
n∑
i=1

logP (yi | x̂i, θ)−
1

2σ
||θ||2 (6.10)

where the second term is introduced for regularization. Then the optimal parameter values

are obtained using the maximum log-likelihood estimator:

θ∗ = arg max
θ
L(θ) (6.11)

Finally, a class label for a new observation x̂ is classified as:

y∗ = arg max
y∈Y

p(y | x̂; θ∗) (6.12)

To find the maximum log-likelihood estimator for Eq. 6.9 from the training dataset, we use

the L-BFGS algorithm that works well for high-dimensional vectors. Note that the graph

in Figure 6-1 does not contain any loops. Furthermore, computing gradients in Eq. 6.9 is

a simple extension to the previous work [59]. Therefore, we can use the same method of

computing the gradient of L(θ) using belief propagation as introduced in [59].

An important thing to notice in computing the gradients is that the added complexity of

the potential function compared to the previous version of HCRF [59] is only O(n2). The

complexity of the first two terms increases in O(n) as the number of channels and the

number of hidden channels increases, because we are just marginalizing over all channels.

The complexity of the last term increases in O(n2) which is square to the number of

hidden states, because we are computing transitions between two combinatorial hidden

state variables.

6.3.3 MIC-HCRF For Gesture Recognition

Now we explain the specific formulation of MIC-HCRF for gesture recognition used in this

work. The input is a sequence of video images where each image contains two signals:
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the body pose signal and the hand pose signal. The input vector can be expressed as

x̂i = (x
(1)
i , x

(2)
i ) where the first channel is for the body pose signal and the second channel

is for the hand pose signal.

Features for each channel φ(xkt ) are extracted in the ways described in the previous chapters

(Chapter 4 for body pose and Chapter 5 for hand pose). Body pose features φ(x
(1)
t ) can

be any one of the features (or a combination of multiple features) extracted from the body

pose estimation framework, including joint angles, angular speeds of joint angles, relative

coordinates of joint movements, and velocities of joint movements. Similarly, hand pose

features φ(x
(2)
t ) can be either one of the two features (or both features) that were extracted

from the hand pose classification framework, including the categorical classification results

(which hand pose it was) and a vector of continuous values (probability estimates for being

each of the hand poses in the vocabulary).

The three terms in Eq. 6.9 can be interpreted as follows. The first term, the inner products

of input features φ(xkt ) and hidden state variables θ(hkt ), specifies dependencies between

input features (body or hand signal) and the corresponding hidden states for each chan-

nel. The second term specifies dependencies between each channel’s hidden state and a

class label. Finally, the third term specifies dependencies between a class label and all

combinations of hidden states for two consecutive time frame.

Note that, the first two terms are defined per channel, so they aim to capture intra-

dependencies (i.e., dependencies within each channel). The third term, on the other hand,

is defined over all combinations of channels, so it aims to capture inter -dependencies (i.e.,

dependencies among multiple channels).

In HCRF, selecting the number of hidden states |H(k)| can be subjective, especially when

the input feature vector has multiple channels. However, this is a less subjective process

in MIC-HCRF: we can set the number of hidden states more intuitively (e.g., count the

number of canonical body poses or hand poses in a gesture) because we divide the input

channels into individual channels with similar characteristics,
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6.4 Experiments

6.4.1 Dataset

We tested our gesture recognition framework with a subset of standard aircraft handling

signals defined in NATOPS [53]. Five pairs of similar gestures were selected that we believe

well represent the intricacy of the entire gesture set (Figure 6-2). The pairs of gestures

included:

• #2 (affirmative) and #3 (negative),

• #4 (spread wings) and #5 (fold wings),

• #10 (remove chocks) and #11 (insert chocks),

• #18 (engage nosegear steering) and #19 (hot brakes), and

• #20 (brakes on) and #21 (brakes off).

The reason for selecting pairs of similar gestures was to evaluate whether or not our ges-

ture recognition framework well captures complex and subtle dependencies in each pair of

gestures. For example,

• the gesture pair #10 and #11 both start with spreading arms about 45 degree front,

then waving them inward and outward two times. In the collected dataset, the

starting points and ending points of the arm movements varied from participants to

participants, which made gesture recognition task even more challenging;

• the gesture pair #18 and #19 have the same left hand movements and similar right

hand movements: in #18 the right hand points to the nose, while in #19 the right

hand slightly moves up and down around the nose;

• the two pairs of gestures, #2 & #3 and #20 & #21, are also similar: the only way

to distinguish from each other is to have the knowledge about hand poses.
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Figure 6-2: A set of 10 gestures used in this work. #2: Affirmative, #3: Negative, #4:
Spread wings, #5: Fold wings, #10: Remove chocks, #11: Insert chocks, #18: Engage
nosegear steering, #19: Hot brakes, #20: brakes on, #21: brakes off.
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Using the body pose estimation and the hand pose classification, we extract various feature

types: four body pose feature types and two hand pose feature types. The four body pose

feature types include:

• joint angles (T),

• joint coordinates (P),

• derivatives of joint angles (dT), and

• derivative of joint coordinates (dP).

The two hand pose feature types include:

• a vector of probability estimates (S),

• a categorical value indicating which hand pose it is, obtained by selecting a hand

pose class with the highest probability estimate (H)

Throughout this section, we will use combinations of these notations to refer to a dataset

type, e.g, dTS for the combination of derivatives of body pose joint angles and hand pose

probability estimate vector.

6.4.2 Does Combining Body Pose And Hand Pose Really Help?

Method

The first question was whether combining body and hand poses helps to improve gesture

recognition for standard aircraft handling signals. To determine this, we compared recog-

nition accuracy rates of two conditions: the first condition contained information on body

pose only; the second condition contained information on body and hand poses combined.
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Since there were two hand pose feature types (S and H), for the second condition we mea-

sured the recognition accuracy rate for each of them and took an average of both. Also,

to make the experiment more accurate, the two conditions (with and without information

on hand poses) were compared using each of the four body pose feature types (T, P, dT,

and dP). In addition to differing input feature types, we also varied the number of hidden

states, as it also affects the performance; for each test case we used 3 and 4 hidden states.

In all test cases, the regularization factor was set to 1,000 (to prevent overfitting), cho-

sen as the best performing value based on our preliminary experiments. All in all, there

were in total 24 individual test cases (4 body pose feature conditions, 3 hand pose feature

conditions, and 2 number of hidden states conditions).

We performed a 4-fold cross validation (4-CV) analysis for each of the 24 test cases, mea-

suring precision and recall of each of the 10 gestures. The overall recognition accuracy rate

for the 10 gesture set was obtained using the F1 score, a weighted average of the precision

and recall (F1 = 2 ∗ precision · recall
precision + recall

). Since a 4-CV analysis performs four repetitive

tests, we also get variances of recognition accurate rates; we performed independent sam-

ples T-tests to see if the differences between two conditions (with and without hand pose)

were statistically significant.

Result and Discussion

We first compared the two conditions (with and without hand pose) for each body pose

features. Figure 6-3 shows a comparison of the two conditions’ overall recognition accuracy

rates averaged over the 10 gestures, and Table 6.1 shows the mean and standard deviation

of each test condition, as well as the results from independent samples T-tests. In all our

test cases, using body and hand poses resulted in higher overall recognition accuracy rates,

where for two body pose features (dT and dP) the differences were statistically significant

(p=.001).

Next, we compared the two conditions (with and without hand pose) for each gesture
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Figure 6-3: Recognition accuracy rates comparing two conditions, a) body pose only (Body-
Only) and b) body and hand pose combined (BodyHand), under the four different body
pose features.

Body Feature Type Condition Mean Std. Dev Independent Samples T-test

T
BodyOnly 20.09 3.57

t(22)=1.00, p=.326
BodyHand 27.02 3.83

P
BodyOnly 23.26 11.07

t(22)=1.21, p=.24
BodyHand 32.73 20.57

dT
BodyOnly 62.47 7.21

t(22)=4.06, p=.001
BodyHand 76.23 8.10

dP
BodyOnly 70.94 6.73

t(22)=3.82, p=.001
BodyHand 80.65 5.30

Table 6.1: Statistics for the recognition accuracies comparing two conditions, body pose
only (BodyOnly) and body and hand pose combined (BodyHand), under the four different
body pose features.
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class, because hand poses seemed important for four gestures (#2, #3, #20, and #21)

only. Figure 6-4 shows comparisons of the recognition accuracy rates for each gesture

class1. The result shows that, for the two gesture pairs, #2 & #3 and #20 & #21, using

information on body and hand poses together significantly improved the gesture recognition

accuracy (on average 27.5%), while for other 6 gestures there were slight differences, but

not significant ones.

Figure 6-4: Recognition accuracy rates for each gesture class (for body pose features, only
dT and dP were used).

1Note that, for this graph, we excluded two body pose features, T and P, since they performed much
worse than the other two features.
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6.4.3 What Is The Best Feature To Use For Gesture Recogni-

tion?

Method

In this experiment, we show which combination of body and hand pose features allowed

the highest gesture recognition accuracy rate. The previous experiment showed that two

body features, T and P, resulted in inferior recognition performance compared to the other

two features, dT and dP. Therefore, we omitted the two body pose features (T and P), and

tested on the other two features (dT and dP) plus a combination of the two (dTdP). For

more comprehensive analysis, we varied the number of hidden states from 3 to 5, which

resulted in 18 individual test cases (3 body pose feature conditions, 2 hand pose feature

conditions, and 3 number of hidden states conditions). Following the previous experiment,

the regularization factor was fixed at 1,000 (to prevent overfitting). We performed 10-CV

on each individual test cases, and the recognition accuracy rate was calculated in the same

way as the previous experiment.

Result and Discussion

We first compared 6 different feature combinations (3 body feature types and 2 hand feature

types), while averaging all of the 10 gesture classes and 3 numbers of hidden states (3, 4,

and 5). Figure 6-3 shows the recognition accuracy rates for each feature combinations, and

Table 6.2 shows the mean and standard deviations of the recognition accuracy rates.

The best performing hand pose feature type was S. In all of our test cases, S performed

significantly better than H (t(178)=2.24, p=.018). Also, the best performing body pose

feature type was dP; although there was no significance in the accuracy differences, dP

always performed better than dT or dTdP.

Figure 6-6 shows more detailed comparison of the recognition accuracy rates, where we
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Figure 6-5: Gesture recognition accuracy graph of 6 feature combinations, averaging over all
of the 10 gesture classes and 3 numbers of hidden states (3, 4, and 5). Regarding hand pose
feature types, S performed significantly better than H in all of our test cases (t(178)=2.24,
p=.018). Regarding body pose feature types, although there was no significance in the
accuracy differences, dP performed the best.

Body Feature Type Hand Feature Type Mean Std. Dev

dT
H 78.02 10.97
S 82.27 10.42

dP
H 80.72 9.85
S 86.02 8.32

dTdP
H 80.08 8.21
S 80.86 9.51

Table 6.2: Mean and standard deviations of recognition accuracy rates for each feature
combinations.
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divided the results per each gesture class. Note that we excluded the categorical hand pose

result (H), since it performed significantly worse than the other one (S). In this graph, we

can assure that the body pose feature dP performed better than the other features for

all gesture classes, except for #4 (spread wings). In all of the following experiments,

therefore, we will use dPS –a combination of derivatives of joint coordinates (dP) and

vectors of probability estimates (S)– as an input feature vector.

Figure 6-6: Recognition accuracy rates for each gesture class (for hand pose features, only
S was used).

We also determined how the number of hidden states affected the recognition accuracy

rates. In this experiment, we only compared the recognition accuracy rates of the dPS

feature combination, varying the number of hidden states from three to six. As can be

seen from Figure 6-7 and Table 6.3, the recognition accuracy rate increased sharply be-

tween the number of hidden states 3 and 4, but was stabilized as we added more hidden

states. Tukey’s post-hoc comparisons of the four conditions indicated that the accuracy

rate difference between the number of hidden states 3 (M=82.64, 95% CI[79.43 85.84]) and

the rest were marginally significant (p=.091 for the number of hidden states 4 (M=87.22,

95% CI[84.45 89.99]), p=.068 for 5 (M=87.44, 95% CI[84.91 89.98]), and p=.050 for 6

(M=87.67, 95% CI[85.28 90.08])).
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Figure 6-7: Recognition accuracy rates of the dPS feature combination –a combination
of derivatives of joint coordinates (dP) and vectors of probability estimates (S)– for each
number of hidden states (3, 4, 5, and 6).

Feature Type Number of Hidden States Mean Std. Dev

dPS

3 82.64 16.17
4 87.22 13.97
5 87.44 12.75
6 87.67 12.10

Table 6.3: Mean and standard deviations of recognition accuracy rates of the dPS fea-
ture combination (a combination of derivatives of joint coordinates (dP) and vectors of
probability estimates (S)) for each number of hidden states (3, 4, 5, and 6).
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Lastly, we show patterns of the dPS feature combination extracted from 20 participants,

as this will be useful in understanding the result of the next experiment. Figures 6-8, 6-9,

6-10, 6-11, and 6-12 compare the patterns of body and hand pose signals for each pair of

gestures using the dPS feature combination, averaging over all trials from 20 participants23.

As expected, two gesture pairs, #2 & #3 and #20 & #21, showed very similar body pose

signal patterns while showing two clearly different hand pose signal patterns. In gestures

#2 and #3, there was one line in each hand pose graph indicating either “thumb up”

or “thumb down”; in gestures #20 and #21, there were multiple lines in each hand pose

graph indicating transitions of hand poses from “palm opened” to “palm closed”, or vice

versa.

A pair of gestures #18 and #19 showed similar beginning of body pose signal patterns,

although later on the gesture #19 seemed to capture the subtle up-and-down movement

of the right arm (the right wrist joint oscillated a bit more than in #18). As expected, the

hand pose signals showed no significant results (probability estimates remained mostly at

zero).

The remaining two gesture pairs, #4 & #5 and #10 & #11, showed reversed patterns

of body pose signals, especially in the left and right wrist joint signals. These reversed

patterns well represent the actual arm movements of the corresponding gestures, e.g., the

velocity of a waving arm is faster for the direction of the thumb. In addition, although not

significant, hand pose signals showed some patterns as well: the gestures #4, #5, and #10

showed a slight possibility of the right hand pose being “thumb up”; and #11 showed a

slight possibility of the left hand pose being “thumb down”. These patterns indicate that

using the probability estimates as the hand pose feature has a potential to capture subtle

details of hand poses that might help recognizing gestures, as we discussed in Section 5.4.5.

2When seeing the graphs of body pose signals, we recommend readers look specifically at the patterns
of the left and right wrist joints, envisioning the corresponding gestures as shown in 6-2.

3Three gesture pairs (#4 & #5, #10 & #11, and #18 & #19) did not include canonical hand poses,
which resulted in low probability estimate values. To enhance the readability, we rescaled the Y-axis of
the hand pose graphs in Figures 6-9, 6-10, and 6-11.
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Figure 6-8: Comparisons of the patterns of body feature signals (derivatives of joint coordi-
nates) and hand feature signals (probability estimates) for a gesture pair #2 (affirmative)
and #3 (negative), averaged over all trials from 20 participants.
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Figure 6-9: Comparisons of the patterns of body feature signals (derivatives of joint co-
ordinates) and hand feature signals (probability estimates) for a gesture pair #4 (spread
wings) and #5 (fold wings), averaging over all trials from 20 participants.
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Figure 6-10: Comparisons of the patterns of body feature signals (derivatives of joint
coordinates) and hand feature signals (probability estimates) for a gesture pair #10 (remove
chocks) and #11 (insert chocks), averaging over all trials from 20 participants.

125



Figure 6-11: Comparisons of the patterns of body feature signals (derivatives of joint
coordinates) and hand feature signals (probability estimates) for a gesture pair #18 (engage
nosegear steering) and #19 (hot brakes), averaging over all trials from 20 participants.
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Figure 6-12: Comparisons of the patterns of body feature signals (derivatives of joint
coordinates) and hand feature signals (probability estimates) for a gesture pair #20 (brakes
on) and #21 (brakes off), averaging over all trials from 20 participants.
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6.4.4 How does MIC-HCRF Perform Over HCRF?

Method

In our last experiment, we compared the recognition performance of MIC-HCRF to HCRF

using the dPS feature combination (derivatives of joint coordinates (dP) and vectors of

probability estimates (S)). Based on the previous experiments, HCRF was configured with

5 hidden states (|H|=5); based on our preliminary experiments, MIC-HCRF was configured

with 3 hidden states for the body pose channel and 2 hidden states for the hand pose

channel (|H1|=3, |H2|=2). In both conditions, the regularization factor was set to 1,000

(to prevent overfitting) following the previous experiments. We performed 10-CV analyses

for HCRF and MIC-HCRF, and the recognition accuracy rate was calculated in the same

way as the previous experiments.

Result and Discussion

Figure 6-13 and Table 6.4 show the result of this experiment. Overall, MIC-HCRF per-

formed slightly better (88.41%) than HCRF (87.08%). One important thing to note is that

this performance is comparable to human pilots: subject matter experts indicated that the

system performance was on par with the most US Navy pilots.

MIC-HCRF performed better on six gestures (#4, #5, #10, #11, #18, and #19), where

the difference was 3.76% higher on average. For gestures #2 and #3, the performance of

MIC-HCRF was on par (on average 0.26% lower than HCRF); for gestures #20 and #21,

the performance of MIC-HCRF was less successful (on average 5.4% lower than HCRF).

We believe that the better performance of MIC-HCRF for six gestures (#4, #5, #10, #11,

#18, and #19) came from its ability to separate multiple channels and capture the intra-

dependencies, the dependencies within each separate channel. Figures 6-9, 6-10, and 6-11

show the patterns of body and hand pose signals for the six gestures. In these gestures, the

hand pose signals were not significant (values of the probability estimates were low); it was
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Figure 6-13: Recognition accuracy rates of HCRF (|H|=5) and MIC-HCRF (|H1|=3,
|H2|=2) when the dPS feature combination was used.

Gesture HCRF (|H|=5) MIC-HCRF (|H1|=3, |H2|=2) Difference

#2 99.27 (1.05) 98.97 (1.28) -0.30
#3 97.74 (3.08) 97.52 (2.44) -0.22
#4 80.22 (11.31) 87.02 (6.54) +6.80
#5 89.69 (6.79) 91.18 (6.92) +1.49
#10 74.47 (18.71) 83.44 (10.59) +8.97
#11 82.28 (12.84) 82.46 (9.38) +0.18
#18 85.18 (9.19) 87.68 (6.67) +2.50
#19 86.63 (7.25) 89.26 (7.61) +2.63
#20 90.27 (6.77) 85.11 (5.06) -5.16
#21 87.07 (12.30) 81.43 (8.99) -5.64

Average 87.08 (12.19) 88.41 (8.95) +1.33

Table 6.4: Recognition accuracy rates of HCRF (|H|=5) and MIC-HCRF (|H1|=3, |H2|=2)
when the dPS feature combination was used.
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only the body pose information that could differentiate the gestures. In this case, we would

expect that a mixture of body and hand signals might confuse a model learning patterns

of these gestures, because the hand poses do not provide helpful information while making

the dimensionality of the signal higher. Note that, the two signals are mixed in HCRF,

but separated in MIC-HCRF. Therefore, we can see that the ability to separate multiple

channels helped MIC-HCRF capture the subtle intra-dependencies within the body pose

channel successfully.

Four other gestures (#2, #3, #20, and #21) are the ones that involve a mixture of body

and hand poses; that is, hand pose played an important role defining the meanings of

these gestures. In this case, we would expect that the model should capture the inter-

dependencies (i.e., dependencies among multiple channels) in order to learn the patterns

of these gestures. Therefore, the fact that MIC-HCRF performed less successfully for

the two gestures (#20 and #21) might imply that MIC-HCRF is not good at capturing

inter-dependencies (i.e., dependencies among multiple channels).

However, we claim that there might be another reason for this: the current configuration

of MIC-HCRF was inappropriate. By comparing patterns of body and hand pose signals

in Figures 6-8 and 6-12, we can see that for two pairs of gestures, #2 & #3 and #20

& #21, body pose information cannot help in differentiating between the gestures in the

pair, and we need hand pose information in order to differentiate them. In the figures,

there was only one line of hand pose signal in gesture #2 (ThumbUp-Right) and in gesture

#3 (ThumbDown-Right): MIC-HCRF performed on par for these two gestures, which

proves that the model learned the inter-dependencies between body and hand pose channels

successfully.

On the other hand, there were multiple lines of hand pose signals in gestures #20 and

#21, and MIC-HCRF performed less successfully for these two gestures. This might be

simply because the configuration of MIC-HCRF in this experiment was sub-optimal, i.e.,

the number of hidden states or the optimization termination scheme. It is also possible that

there were not enough examples in the training dataset to learn the optimal parameter
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values describing the relationship between a gesture class label and hidden states. To

understand this, remember that MIC-HCRF captures the dependencies between a class

label and hidden states of two time-consecutive steps by creating combinatorial hidden

state variables h ∈ (H(1)×H(2)) (see Eq. 6.9 in Section 6.3.2). This increases the required

number of parameters to be optimized to the order of O(n2), which in turn increases the

required number of training samples for a successful recognition.

Note that, MIC-HCRF is still in its preliminary stage: we still have to explore differ-

ent configurations of MIC-HCRF (i.e., the number of hidden states for each channel) or

different construction of the underlying graphical model (i.e., different ways of capturing

dependencies among channels). However, one of the advantages of MIC-HCRF is its ability

to specify dependencies in the graphical model more precisely, which allows us to explore

many more options. We anticipate this as an interesting direction for future work.

6.5 Related Work

Gesture recognition is a broad term that is increasingly used in natural human-computer

interaction research. The meanings of gestures can range from dynamic human body

motion [4][73] through pointing device gestures [11][42] to sign languages [66]. For more

comprehensive review of gestures and gesture recognition, see survey papers [6][27][48].

In this work, we are primarily concerned with multi-signal gestures involving dynamic

body movements and static hand pose configuration. Of particular interest is designing

and implementing a statistical inference framework for multi-signal gesture recognition.

We review some of the recent research efforts aimed at exploring multi-signal gesture

recognition.

In [7], Althoff et al. used trajectories of head and hand movement to recognize gestures for

in-car control systems, where the trajectories were tracked using a near infrared camera.
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They implemented two different versions of gesture recognizers, a rule-based and a HMM-

based, and evaluated the two different approaches, showing similar recognition accuracy

rates (90%) with 5 gestures (left, right, forward, backward, and wipe). However, their

evaluation included recognition results obtained from each individual recognizer only, not

testing how a combination of the features would perform for multi-signal gestures.

In [41], Li et al. designed and implemented a multi-signal gesture recognition system in a

human-robot interaction scenario, using a combination of head orientation, body pose, and

hand pose information. Three cameras were mounted on a mobile robot: a stereo camera

tracked the orientation of the head, and a web camera and a time-of-flight camera tracked

the body and hand. Head orientation was determined by tracking eye-gaze; body pose was

estimated using a particle filter; and hand pose was classified using a multi-resolution image

querying method. Their system was evaluated on the pointing gesture task, showing that

their approach performed more reliably than other methods (i.e., a vector from head to

hand). However, their scenario included static gestures only (i.e., tracking where a human

is pointing at), a task too simple to explore the complex nature of multi-signal gestures.

In [15], Castellano et al. presented a multi-signal approach for human emotion recogni-

tion, using various features including facial expression, body movement, and speech. Two

information fusion methods were compared: feature-level fusion method performed recog-

nition based on one single feature vector combining all three features; decision-level fusion

method performed recognition with each individual features, then the final decision was

made based on the three recognition results (i.e., majority voting or best probability).

They showed that the feature-level fusion (78.3%) performed better than the decision-level

fusion (74.6%). However, their experiment did not include a condition for a statistical

framework that considers multi-signal inputs, as was introduced in this work.
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Chapter 7

Conclusion

In this thesis work, we designed and implemented a multi-signal gesture recognition system

that uses a combination of information obtained from 3D body pose estimation and hand

pose classification.

A stereo camera was used to capture pairs of time-synchronized images, calculating depth

maps using existing stereo vision techniques. The images were also background subtracted

using a combination of the codebook approach and depth information.

For 3D body pose estimation, we constructed a parametric model of the human upper body

to generate 3D body poses. This model was then fitted to an input image by comparing

several features extracted from the parametric model and the input image. Finally, pose

estimation was performed using a particle filter.

For hand pose classification, we first defined a vocabulary of canonical hand poses that

included opened palm, closed palm, thumb up, and thumb down. A multi-class SVM

classifier was trained on a data set containing HOG features extracted from manually seg-

mented images of hands. Hand pose classification was performed by searching for hands in

the image around the wrist positions obtained from body pose estimation, then classifying

them using the trained SVM classifier.
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Finally, for gesture recognition, we developed the technique of MIC-HCRF to process multi-

signal input data, as an extension from the previous work on HCRF, so that dependencies

between body and hand poses can be modeled in a more principled manner.

The system was evaluated on a real-world scenario: we tested the performance of our

gesture recognition system with a subset of the NATOPS aircraft handling signals [53], a

challenging gesture vocabulary that involves both body and hand pose articulations. We

showed that combining body and hand poses significantly improved the gesture recognition

accuracy. We also showed what types of body and hand pose features performed the best:

for the body pose, the derivatives of joint coordinates was the best feature; for the hand

pose, a vector of probability estimates was the best feature. Lastly, we showed that MIC-

HCRF captured complex dependencies within multiple channels successfully, achieving the

overall recognition accuracy rate 88.41%, which is comparable to that of human pilots.

7.1 Summary of Contribution

There are three main contributions of this work:

• We designed and implemented a gesture recognition system that attends to both

body and hand poses, and analyzed it, showing that using the combined information

significantly improved the performance of gesture recognition.

• We extended the previous work on HCRF to deal with multi-signal input vectors,

allowing the framework to decide how to handle complex dependencies among differ-

ent input modalities, as opposed to assuming the input modalities are independent

and forcing them to form a single feature vector.

• We applied the gesture recognition system to an interesting real-world problem, an

aircraft carrier flight deck environment, and tested the performance of the system on

a subset of aircraft handling gestures that are currently used in the domain.
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7.2 Future Work

There are many unexplored topics in this work that might be interesting future work.

7.2.1 Refining Body Pose Estimation And Hand Pose Classifica-

tion Using Results From One Another

One interesting topic would be using hand pose classification to improve body pose esti-

mation, and vice versa.

Body pose estimation can benefit from hand pose classification. A hand pose classifier

usually gives relatively more accurate wrist positions than a body pose estimator. Thus the

result from body pose estimation can be refined after hand pose classification is performed

by solving, for example, the inverse kinematics problem and optimizing parameter values.

Hand pose classification can also benefit from body pose estimation. In this work we

showed one possible way of doing this: searching for hands in the image around estimated

wrist positions only. Another possibility would be to using the direction of a lower arm

(i.e, a vector from the elbow to the wrist) to constrain the possible orientation range of

the hand, allowing the classifier to narrow down the search space. This could also help us

to have a rotation-invariant hand pose classifier.

7.2.2 Real-Time Gesture Recognition System

Our system does not work in real-time, one of the main limitations of this work. A major

portion of the processing time comes from body pose estimation, evaluating the likelihood

function for each particle, and hand pose classification, computing HOG features from the

image.

Some body poses that are easy to estimate (e.g., simple 2D body pose without self-
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occlusion) require a small number of particles, while other cases might require more parti-

cles. Therefore, the processing time of body pose estimation could be optimized by main-

taining the number of particles adaptively, that is, changing the particle set size based on

some measure of a confidence score (e.g, the average of fitting errors from all particles).

It is also possible to reduce the processing time of hand pose classification. Computing

HOG features from the image involves sliding a window and computing features repeatedly

over the overlapping area, which is quite inefficient. Viola et al. introduced the integral

image [71], an intermediate representation of the image with precomputed values that

allows us to compute images features efficiently. We could extend the integral image to

work for computing HOG features as well, thereby improving the speed performance of

hand pose classification.

Another way to reduce the processing time would be to use the recent optimization tech-

niques such as CUDA (Compute Unified Device Architecture) [54], a computing engine in

graphics processing units (GPUs) specialized for parallel computation of concurent threads,

Intel Math Kernel Library [32], a library of optimized math routines, or OpenMP [55], a

shared memory multiprocessing programming archtictures.

7.2.3 Using Context Information

Our gesture recognition system assumes no background knowledge or context information;

it performs the recognition solely based on the observation. However, humans make exten-

sive use of these to perform many types of inference tasks, allowing them to make decisions

rapidly or to come up with an answer that is impossible to infer solely based on the ob-

servation (e.g., see [45]). This intuition has led to a large body of research that concerns

modeling and integrating human knowledge into the system (for high-level overview of the

concept, see [44] and [46]).

Using this context information might improve the performance of our system in many ways.
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For gesture recognition in the context of the flight deck environment, there is a certain

sequence of customary gestures, and we can reason about what gestures would make sense

based on the context. For example, it is less likely that an ABH will command ”brakes off”

to a pilot while taxing an aircraft, because the brake should have been already off while

moving. Therefore, we believe that a gesture recognition system that is able to consider the

context information (i.e., reason about routine procedures on the flight deck) can improve

its performance.

Similarly, in each gesture there are a certain set of body and hand poses we can expect,

so once we know which gesture is being performed or what gestures we can expect next,

we can narrow down the search space, which can improve the performance of a body pose

estimator and a hand pose classifier.

One interesting question would be, how could we incorporate the context information into

the current framework? To do so, we need an approach to describing the knowledge in a

concise and consistent manner. Also, there needs to be an easy way to add or modify the

knowledge manually, or even a way to reason about new things automatically based on the

existing knowledge. It is important that the whole process should not be ad-hoc, i.e., it

should be generalizable to many types of context information.

Designing and implementing a statistical estimation and inference framework that incor-

porates the context information is also an interesting future direction of this work. Most

of the current approaches concentrate on learning from observations. Although we started

to see some early approaches (e.g., [56]), this has yet to be fully explored.

7.2.4 Providing Feedback To Human

As we mentioned briefly in Chapter 2, allowing two-way communication between humans

and systems is of particular interest in this work. In order to provide natural gesture-based

interaction, it is important for a system to be able to recognize human gestures. At the
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same time, it is also necessary for the system to have an appropriate feedback mechanism,

that is, the system have to be able to gesture back, just as a human would do in the same

situation.

In the aircraft carrier flight deck environment, deck personnel and pilots are required to

have eye contact when communicating; pilots are in fact not permitted to take any action

without having eye contact with one of the deck personnel confirming the action. This

prevents misinterpretation of a command and aids in correcting mistakes immediately,

keeping the environment safe. This makes feedback in communication indispensable to

this safety- and mission-critical domain.

There are still many questions to be answered. What does it means for a system to

gesture? How can we define a natural feedback mechanism, or how natural a system’s

feedback should be? We leave all this questions to be answered for the future work.
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Appendix A

NATOPS Gesture Dataset

The Naval Air Training and Operating Procedures Standardization (NATOPS) manual

standardizes general flight and operating procedures for the US naval aircraft. There are

a large number of publications that belong to NATOPS; among the many, an aircraft

signals manual (NAVAIR 00-80T-113 [53]) contains information about all aircraft systems

including general aircraft and carrier flight deck handling signals.

For this work, we selected 24 general aircraft handling signals that we believe well represent

the intricacy of the entire gesture set. A Bumblebee2 stereo camera from Point Grey

Research Inc. was used to collect a dataset, producing 320 x 240 pixel resolution images at

20 FPS1. Twenty participants performed the 24 gestures, repeating each gesture 20 times.

In this appendix we provide information on the 24 aircraft handling signals as described

in [53].

1The camera used in this work is BB2-03S2C-38; up to 640x480 resolution, two 3.8mm color lenses with
12cm baseline, 48 FPS, 65-degree HFOV.
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Figure A-1: General Aircraft Handling Signals (Sheet 1 of 6).
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Figure A-2: General Aircraft Handling Signals (Sheet 2 of 6).
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Figure A-3: General Aircraft Handling Signals (Sheet 3 of 6).
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Figure A-4: General Aircraft Handling Signals (Sheet 4 of 6).
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Figure A-5: General Aircraft Handling Signals (Sheet 5 of 6).
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Figure A-6: General Aircraft Handling Signals (Sheet 6 of 6).
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