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Abstract

In this paper, we present a novel technique for estimating
large camera displacement using stereo images. The rela-
tive transformation between two stereo image pairs is es-
timated using a hybrid registration algorithm which com-
bines the robustness of multi-scale feature tracking for large
movements and the accuracy of 3D normal flow constraints.
Our hybrid technique takes advantage of depth information
available from the stereo camera which makes it less sen-
sitive to lighting variations. We tested the accuracy of our
hybrid algorithm on real stereo sequences and showed that
our technique handles displacements up to 150 cm and rota-
tions up to 20 degrees between images. Our algorithm runs
at 6 Hz on a Pentium 4 1.7GHz.

1. INTRODUCTION

Egomotion estimation is an active research topic in com-
puter vision with many applications like robot localization,
merging of aerial imagery, and 3D reconstuction. By using
gradient-based techniques on all valid pixels, sub pixel ac-
curacy can be reached for small displacements [4]. When
stereo images are taken from widely separated viewpoints,
feature-based tracking [1, 2, 3] can estimate relative trans-
formation robustly, but there is no easy way to verify po-
tential matches. New techniques for matching features over
large displacement and minimizing error accurately are there-
fore necessary.

This paper presents our hybrid technique for large dis-
placement egomotion estimation from stereo images. The
pose of the stereo camera is estimated using a hybrid regis-
tration algorithm which combines the robustness of multi-
scale feature tracking for large movements and the accuracy
of 3D normal flow constraint. Our hybrid technique takes
advantage of the depth information from the stereo camera
which makes it less sensitive to lighting variations.

When no depth information is available, multi-scale fea-
ture tracking can estimate 2D affine transformation accu-
rately [1]. When depth is available from stereo cameras,
this technique can be extended to 3D rigid transformation

by matching features using the 2D multi-scale tracker, pro-
jecting those 2D features in 3D, and finally minimizing the
Euclidian distance between them. This approach is similar
to the Iterative Closest Point (ICP) algorithm [5, 6] and the
point-to-point error function.

The 3D normal flow constraint [7] minimizes an error
distance, which is a function of both appearance and depth
information. By using this gradient-based error function,
sub pixel accuracy can be reached for small displacements
[4]. Because of its simplicity and fast speed, this technique
can be applied iteratively on all valid depth pixels to extend
its range of displacements and still keep accurate estimation.

In the following section we describe the general frame-
work of our hybrid registration algorithm. In section 3, we
describe the multi-scale feature tracking technique and how
least-median-square filtering removes outliers. In section 4,
we describe the 3D normal flow constraint minimization. In
section 5, we describe experimental results on still images
with ground truth and dynamic video sequences.

2. HYBRID REGISTRATION

Our hybrid registration algorithm combines the robustness
of a multi-scale feature tracking technique with the accuracy
of the 3D normal flow constraint. As shown in Figure 1,
both registration techniques share the same iterative frame-
work: correspondences search, error minimization, warping
and convergence check.

Our registration algorithm takes two image sets as in-
put: the new image set{It, Zt} grabbed at time t and the
reference image set{Ir, Zr} (see Figure 2). The reference
image set can be either the image set grabbed at time t-1,
the first image set, or any relevant image set between time
0 and time t-1 [8]. In our case, the referential image is a
keyframe with known pose acquired previously.

The new image set{It, Zt} is preprocessed in concert
with known camera calibration information to obtain the 3D
vertex setΨt of i := 1..m vertices~υti = {~pti, Iti} where
~pti is the 3D point coordinates in the camera reference and
Iti is the brightness value of the point~pti as specified by the
intensity imageIt.



Features
Matching

Point-to-
Point Warp Check

Inverse
Calibration

Normal
Flow Warp Check

Multi-scale Feature Tracking

Normal Flow Constraint

Fig. 1. Flow diagram of our hybrid registration.

The goal of the registration algorithm is to find the rigid
pose change{R,~t} between the two image sets, whereR
is a 3x3 rotation matrix and~t is a 3D translation vector. At
each iteration, a transformation~δ represented by 6 param-
eters vector[ ~ω ~t ]t is computed. In this vector,~ω is the
instantaneous rotation (3 parameters) and~t is the transla-
tion (3 parameters). The current pose estimation is updated
as follows:

Rk+1 = RkR(δ) (1)
~t k+1 = ~t k + ~t (δ) (2)

wherek is the iteration number andR(δ) is the 3x3 ma-
trix representing the rotationω(δ). Initially, R0 is set to the
identity matrix and~t 0 is set to0.

The convergence check stage computes the convergence
factor ε by averaging the distanceD between warped 3D
points~pti

′ and referential 3D points~qri. If the difference
between the convergence factorε of two consecutive itera-
tions is smaller then a threshold valueτ , then convergence
is reached. The 3D view registration is completed when
convergence is reached or, in the case of non-convergence,
when a maximum numberNI of iterations is performed.

3. MULTI-SCALE FEATURE TRACKING

Given the referential imageIr, we search for a set of good
features to trackΩr using Shi and Tomasi technique [9].
The following step is the matching step where we search
for correspondence between the current image and the ref-
erential image. To handle large displacements, we use a
pyramidal version of Lucas and Kanade optical flow tech-
nique [10]. This algorithm gives us the corresponding set of
featuresΩt in the current image.

Using the depth imagesZt andZr, we can project the
2D features from feature setsΩt andΩr in the 3D world.

Zt

Zr
Ir

I t

Fig. 2. Example of current and referential image set. In the depth
images (right), lighter pixels denote close objects, darker pixels
represent further objects and black pixels mean invalid depth.

This step gives us two sets of 3D verticesΨt andΨr. To es-
timate the rigid transformation between both sets, we min-
imize the point-to-point distance [5] between a vertex~qri

and the corresponding vertex~pti:

DPoint(~qri, ~pti) = (~qri − (R~pti − ~t)) (3)

By approximating the rotationR with an instantaneous
rotation ω and rearranging the equation 3 adequately, we
obtain a linear system which defines the error function that
we would like to minimize.

To reduce mismatches in the correspondence setΩt, we
minimize the point-to-point error function using the least-
median-square technique of Rousseeuw and Leroy [11]. This
technique randomly picks some small subset of the corre-
spondence set, computes an estimate of the pose between
frames, and applies this estimate on all remaining points to
compute the residual error. The best subset is one that mini-
mizes the median of the residual error. This subset is used to
filter the outliers. All the points outside a standard deviation
from the median of the best set are filtered out and will not
be used during the final least-mean-square minimization.

4. 3D NORMAL FLOW CONSTRAINT

The normal flow constraint is a gradient-based approach
which can estimate sub pixel movements accurately. The
normal flow constraint is applied on all valid depth pixels.
The vertex set of all valid pixels,~pti, is warped according
to the relative pose estimated during the multi-scale feature
tracking step. Then, as a matching stage, we use an inverse
calibration method to find corresponding points that belong
on the same projective ray. This provides the correspon-
dence needed to compute the temporal gradient term of the
normal flow constraint.



4.1. Inverse Calibration

The inverse calibration approach searches for corresponding
points of~pti by projecting vertices from the 3D coordinate
system ofΨt to the referential depth imageZr coordinate
system: [

~uri

1

]
= C

[
~pti

1

]
(4)

whereC is a 3x4 projection matrix that relate 3D coordinate
system of~pti to the 2D image coordinate~uri = [ uri vri ].
This matrix is based on the stereo camera intrinsic parame-
ters.

The 3D coordinates of the referential image set,~qri =
[ xri yri zri ], are interpolated from the depth image
Zr as follows:

zri = Zr(~uri) , xri = f uri

zri
, yri = f vri

zri
(5)

4.2. Normal Flow Constraint

Given 3D input data, the normal flow is the component of
the optical flow in the direction of the image gradient. As
shown in [7], the normal flow can be expressed as:

− ∂Iri

∂t
= ∇Iri

[
∂~uri

∂~qri

]
~V (6)

where∇Iri =
[

∂Iri

∂uri

∂Iri

∂vri

]
is the image gradient,

~V =
[

∂xri

∂t
∂yri

∂t
∂zri

∂t

]
is the velocity of the object

and ∂Iri

∂t is the time gradient.∂Iri

∂uri
and ∂Iri

∂vri
are computed

directly from the referential imageIr. The time gradient is
approximated by:

∂Iri

∂t
= Iti − Iri (7)

For a perspective projection whereuri = f xri

zri
andvri =

f yri

zri
, we can find the Jacobian matrix:

∂~uri

∂~qri
=

[
f

zri
0 −f xri

z2
ri

0 f
zri

−f yri

z2
ri

]
(8)

Since the object is rigid, the velocityV can be expressed
as:

~V =
[

I −q̂ri

]
~δ (9)

whereI is a 3x3 identity matrix and̂qri is the skew matrix of
the vector~qri. By rearranging the equation, we get a linear
system:

εNFC = ‖ANFC
~δ −~bNFC‖2 (10)

where each line is defined as follow

~Ai = ∇Iri

[
∂~uri

∂~qri

] [
I −q̂ri

]
(11)

bi = −∂Iri

∂t
(12)

5. EXPERIMENTS

We tested our hybrid tracker with sequences obtained from
a stereo camera. We used the Small Vision System [12] to
calibrate our stereo camera and to compute the disparity im-
age. Without special optimizations, our hybrid registration
algorithm can update poses for 320x240 size images at 6Hz
on a Pentium 4 1.7GHz.

To show the accuracy of our hybrid technique, we com-
pared three different registration techniques on a dynamic
sequence as well as still images. The first technique is the
multi-scale feature tracking and point-to-point error func-
tion minimization using normal mean-least-square approach.
The second technique is a robust version of technique where
the point-to-point error function is minimized using the least-
median-square approach (described in section 3). The third
technique is our hybrid registration algorithm which com-
bines feature tracking, least-median-square and normal flow
constraint.

5.1. Dynamic Sequence

For the first experiment, we compared all three techniques
on a dynamic sequence where the camera moves mostly
straight in the Z direction for 100 cms. The total sequence
is 437 frames. We registered each frame to the first frame.
The goal of this experiment is to test the robustness of our
algorithm when the camera is moving. The final trajectory
should be straight along the Z axis. For each registration
technique, Figure 3 shows 3 of the 6 degrees of freedom
of the trajectory: translation in X, translation in Y and ro-
tation around Y. We can observe in the X translation and
Y translation graphs that the hybrid technique gives better
and stable results. In the rotation around Y graph, we can
see that at approximately frame 250, the estimate shows ro-
tation along the positive direction. This happened because
the camera didn’t exactly follow a straight trajectory and be-
tween frames 250 and 350 the camera was a slightly rotated
toward the left.

5.2. Still Images

For the second experiment, we applied our hybrid algorithm
on two still images (see Figure 2) taken from the same stereo
camera at different location and orientation. The current
image set{It, Zt} was taken 90±2 cm along the X axis and
100±2 cm along the Y axis away from the referential image
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Fig. 3. Results from the dynamic sequence experiment. The hor-
izontal axis represents the frame index.

tx (mm) ty tz (mm) rx (deg.) ry rz (deg.)

Ground true 900 0 -1000 0 -20 0

Hybrid Average 866.7745 78.59576 -1051.091 0.724181 -19.84105 -1.651592

Stdev 2.886471 5.56223 3.737211 0.072629 0.033723 0.060452

Point-Median Average 693.3921 -40.38952 -1077.137 -1.030073 -17.65302 -2.386799

Stdev 21.60955 14.99239 9.259779 0.163451 0.223098 0.064547

Point Average 695.5047 188.2619 -1185.041 1.154943 -18.02618 -2.90187

Stdev 63.83661 209.3965 39.37321 2.358558 0.765041 0.775112

 (mm)  (deg.)

Table 1. Results from the still images experiment.

set. The camera was also rotated around the Y axis 20±1
degrees. The wall was approximately 5 meters away from
the referential camera. We repeated the same experiment 10
times.

The registration results from each techniques are pre-
sented in table 1. The average and standard deviation are
over all 10 runs. The feature-based tracking alone doesn’t
give good results since outliers are present and not all the
available information is used. The robust version of the fea-
ture tracking removes outliers and improves the pose esti-
mate. This improvement can be seen in the Y translation
estimate and the rotations around X and Z axis. The hybrid
registration technique gives the best results.

6. CONCLUSION

We presented an efficient technique to register 3D views
with large displacements and rotations. Our registration
framework merges the robustness of the multi-scale feature
tracking with the accuracy of the normal flow constraint.
We tested our technique on different egomotion problems
and show an accuracy of 2 cms for displacements as large
as 150 cms and rotations up to 20 degrees.
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