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Abstract

We present a method for online rigid object tracking using
an adaptive view-based appearance model. When the ob-
ject’s pose trajectory crosses itself, our tracker has bounded
drift and can track objects undergoing large motion for long
periods of time. Our tracker registers each incoming frame
against the views of the appearance model using a two-
frame registration algorithm. Using a linear Gaussian fil-
ter, we simultaneously estimate the pose of the object and
adjust the view-based model as pose-changes are recovered
from the registration algorithm. The adaptive view-based
model is populated online with views of the object as it un-
dergoes different orientations in pose space, allowing us to
capture non-Lambertian effects. We tested our approach on
a real-time rigid object tracking task using stereo cameras
and observed an RMS error within the accuracy limit of an
attached inertial sensor.

1. Introduction
Accurate drift-free tracking is an important goal of many
computer vision applications. Traditional models for frame-
to-frame tracking accumulate drift even when viewing a
previous pose. In this paper we show how to use view-
based appearance models to allow existing two-frame regis-
tration algorithms to track objects over long distances with
bounded drift. We use a 6 degree-of-freedom (DOF) rigid
body registration algorithm to track against a view-based
model that is acquired and refined concurrently with track-
ing.

The appearance model used in this paper maintains
views (key frames) of the object under various poses. These
views are annotated with the pose of the object, as estimated
by the tracker. Tracking against the appearance model en-
tails registering the current frame against previous frames
and all relevant key frames. The adaptive view-based ap-
pearance model can be updated by adjusting the pose pa-
rameters of the key frames, or by adding or removing key
frames. These online updates are non-committal so that fur-
ther tracking can correct earlier mistakes induced into the
model.

View-based models can capture non-Lambertian re-
flectance in a way that makes them well suited for track-
ing rigid bodies. We show that our appearance model has
bounded drift when the object’s pose trajectory crosses it-
self. We compare our pose tracking results with the orienta-
tion estimate of anInertia Cube2 inertial sensor [11]. On a
Pentium 4 1.7GHz, our tracker implementation runs at 7Hz.

The following section discusses related previous work
for tracking. Subsequent sections describe the data struc-
ture we use to maintain the appearance model and our algo-
rithm for recovering the pose of the current frame and for
populating and adjusting the appearance model. We then
report experiments with our approach and a 3D view reg-
istration algorithm that obtains range and intensity frames
using a commercial stereo system [7]. Finally we show the
generality of our approach by tracking the 6-DOF pose of a
general object using the same stereo system.

2. Previous Work
Many different representations have been used for tracking
objects based on aggregate statistics about the subject, or
they can be generative rendering models for the appearance
of the subject. Trackers which model the appearance of
the subject using aggregate statistics of their appearance in-
clude [2] and [16]. These use the distribution of skin-color
pixels to localize the head; the distribution can be adapted
to fit the subject as tracking goes on. To recover pose, these
techniques rely on characteristics of the aggregate distribu-
tion, which is influenced by many factors, only one of which
is pose. Thus the tracking does not lock on to the target
tightly.

Graphics-based representations model the appearance of
the target more closely, and thus tracking can lock onto the
subject more tightly. Textured geometric 3D models [13, 1]
can represent the target under different poses. Because the
prior 3D shape models for these systems do not adapt to the
user, they tend to have limited tracking range.

Deformable 3D models fix this problem by adapting the
shape of the model to the subject [12, 14, 3, 6]. These ap-
proaches maintain the 3D structure of the subject in a state
vector which is updated recursively as images are observed.
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These updates require that correspondences between fea-
tures in the model and features in the image be known.
Computing these correspondences reliably is difficult, and
the complexity of the update grows quadratically with the
number of 3D features, making the updates expensive [12].

Linear subspace methods have been used in several face
tracking systems. [8] models the change in appearance
due to lighting variations and affine motion with a sub-
space representation. The representation is acquired during
a separate training phase, with the subject fronto-parallel to
the camera, and viewed under various lighting conditions.
Cootes and Taylor track using a linear subspace for shape
and texture [5]. The manifold underlying the appearance of
an object under varying poses is highly non-linear, so these
methods work well with relatively small pose changes only.

This paper augments our previous work [18] which used
an appearance model made up of all frames available in the
input video sequence. In this previous paper, frames are
registered against several base frames off-line, and are as-
signed poses which are most consistent with these registra-
tions. This paper uses a similar appearance model by rep-
resenting the subject with a subset of the frames seen so far
in the input sequence. These key frames are annotated with
their estimated pose, and collectively represent the appear-
ance of the subject as viewed from these estimated poses.
Unlike [18], our algorithm runs online. It operates without
prior training, and does not use an approximate shape model
for the subject.

3. Adaptive View-Based Model

Our adaptive view-based model consists of a collection of
pose-annotated key frames acquired using a stereo camera
during tracking (Figure 1). For each key frame, the view-
based model maintains the following information:

Ms = {Is, Zs, xs}

where Is and Zs are the intensity and depth images as-
sociated with the key frames. The adaptive view-based
model is defined by the set{M1 . . .Mk}, where k is
the number of key frames. We think of the pose of each
key frame as a Gaussian random variable whose distribu-
tion is to be refined during the course of tracking.xs =
[ T x T y T z Ωx Ωy Ωz ] is a 6 dimensional vec-
tor consisting of the translation and the three euler angles,
representing the mean of each random variable. Although
in this paper we use a rigid body motion representation for
the pose of each frame, any representation, such as affine,
or translational, could be used. The view-based model also
maintains the correlation between these random variables in
a matrixΛX , which is the covariance of these poses when
they are stacked up in a column vector.

While tracking, three adjustments can be made to the
adaptive view-based model: the tracker can correct the pose
of each key frame, insert or remove a key frame.

Adding new frames into this appearance model entails
inserting a newMs and upgrading the covariance matrix.
Traditional 3D representations, such as global mesh models,
may require expensive stitching and meshing operations to
introduce new frames.

Adaptive view-based models provide a compact repre-
sentation of objects in terms of the pose of the key frames.
The appearance of the object can be tuned by updating a
few parameters. In Section 4.3, we show that our model
can be updated by solving a linear system of the order of
the number of key frames in the model. On the other hand,
3D mesh models require that many vertices be modified in
order to affect a significant change in the object representa-
tion. When this level of control is not necessary, a 3D mesh
model can be an expensive representation.

View-based appearance models can provide robustness
to variation due to non-Lambertian reflectance. Each point
on the subject is exposed to varying reflectance condi-
tions as the subject moves around (see Figure 1). The set
of key frames which contains these points capture these
non-Lambertian reflectances. Representing similar non-
Lambertian reflectance with a 3D model is more difficult,
requiring that an albedo model be recovered, or the texture
be represented using view-based textures.

The following section discusses how to track rigid ob-
jects using our adaptive view-based appearance model.

4. Tracking and View-based Model
Adjustments

In our framework, tracking and pose adjustments to the
adaptive view-based model are performed simultaneously.
As the tracker acquires each frame, it seeks to estimate the
new frame’s pose as well as that of the key frames, using
all data seen so far. That is, we want to approximate the
posterior density:

p(xt, xM|y1..t), (1)

wherext is the pose of the current frame,y1..t is the set of
all observations from the registration algorithm made so far,
andxM contains the poses of the key frames in the view-
based model,xM = {x1 . . . xk}.

Each incoming frame(It, Zt) is registered against sev-
eral base frames. These base frames consist of key-frames
chosen from the appearance model, and the previous frame
(It−1, Zt−1). The registration is performed only against
key-frames that are likely to yield sensible pose-change
measurements. The next section discusses how these key-
frames are chosen. These pose-change estimates are mod-
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Figure 1: The view-based model represents the subject under
varying poses. It also implicitly captures non-Lambertian re-
flectance as a function of pose. Observe the reflection in the
glasses and the lighting difference when facing up and down.

elled as Gaussians and combined using a Gauss-Markov up-
date (Sections 4.2 and 4.3).

4.1. Selecting Base Frames
Occlusions, lighting effects, and other unmodeled effects
limit the range of many registration algorithms. For exam-
ple, when tracking heads, our 6 DOF registration algorithm
returns a reliable pose estimate if the head has undergone a
rotation of at most 10 degrees along any axis. Thus to obtain
reasonable tracking against the appearance model, the algo-
rithm must select key-frames whose true poses are within
tracking range of the pose of the current frame.

To find key-frames whose pose is similar to the current
frame, we look for key-frames whose appearance is simi-
lar to that of the current frame. This assumes that the pri-
mary factor governing appearance is pose. We compute the

change in appearance between those two images, and ten-
tatively accept a key-frame as a base frame if the change
in their appearances is within a threshold. To compute the
appearance distance, the intensity images of the frames are
aligned with respect to translation. The L2 distance between
the resulting images is used as the final appearance distance.

This scheme works well if there is a one-to-one mapping
between appearance and pose. But in some situations, dif-
ferent poses may yield the same appearance. This happens
with objects with repetitive textures, such as floor tiles [19]
or a calibration cube all of whose sides look identical. To
disambiguate these situations, key-frames that sufficiently
resemble the current frame are chosen as base frames only
if their pose is likely to be within tracking range of the cur-
rent frame.

We assess the probability that the pose of a key frame is
within tracking range range by first estimating the pose for
the current frame. This estimate is obtained by registering
the current frame against the previous frame and applying
the linear Gaussian filter equations described later in Sec-
tion 4.3.

Suppose this estimated pose of the current frame follows
a Gaussian with meanxt, with covarianceΛt, and the pose
of a key-frame under consideration has meanxs, and co-
varianceΛs. Then the probability that the rotations of these
poses are all withinθ0 degrees of each other is the integral
of joint distribution of the poses in the region where this
constraint holds. For rotation about the X axis, this proba-
bility is∫

(ΩX
s ,ΩX

t )s.t.|ΩX
s −ΩX

t |<θ0

p(ΩX
s ,ΩX

t ) dΩX
s dΩX

t ,

whereΩX is the rotations component of a pose vectorx
about the X axis. To evaluate this integral, define the Gaus-
sian random variable∆X = ΩX

s − ΩX
t . By linearity of

expectation we can compute the meanE[∆X ] from xs and
xt and its variancevar[∆X ] from ΛM. The above proba-
bility can be expressed using a one dimensional integral:

Pr [|ΩX
s − ΩX

t | < θ0] = Pr[|∆X | < θ0] (2)

= G(−θ0|E[∆X ], var[∆X ])−G(θ0|E[∆X ], var[∆X ]),

where G is the cumulative distribution function for the
Gaussian. This probability is evaluated for rotations about
the Y and Z axes as well. If this probability is sufficiently
large for all three rotational components, the frames which
are similar in appearance are declared to be within tracking
range of each other, and the key-frame can be safely used as
a base frame.

4.2. Pairwise Registration Algorithm
Once suitable base frames have been chosen from the view
model, a registration algorithm computes their pose differ-
ence with respect to the current frame. In this section, we
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model the observation as the true pose difference between
two frames, corrupted by Gaussian noise. This Gaussian
approximation is used in the following section to combine
pose-change estimates to update the distribution of (1).

The registration algorithm operates on the current frame
(It, Zt), which has unknown posext and a base frame
(Is, Zs) acquired at times, with posexs. It returns an ob-
served pose-change estimateyt

s. We presume that this pose-
change is probabilistically drawn from a Gaussian distribu-
tionN (yt

s|xt−xs,Λy|xx). Thus pose-changes are assumed
to be additive and corrupted by Gaussian noise.

We further assume that the current frame was generated
by warping a base frame and adding white Gaussian noise.
Under these circumstances, if the registration algorithm re-
ports the mode of

ε(yt
s) =

∑
x∈R

‖It(x + u(x; yt
s))− Is(x)‖2,

whereu(x; yt
s) is the image-based flow, then the result of

[18] can be used to fit a Gaussian noise model to the re-
ported pose-change estimate. Using Laplace’s approxima-
tion, it can be shown that the likelihood model for the pose-
changext − xs can be written asN (yt

s|xt − xs,Λy|xx),
where

Λy|xx =
1

ε(yt
s)

∂

∂2y2
ε(yt

s). (3)

4.3. Updating Poses
This section shows how to incorporate a set of observed
pose-changes into the posterior distribution of (1). By as-
suming that these observations are the true pose-change
corrupted by Gaussian noise, we can employ the Gauss-
Markov equation.

Suppose that at timet, there is an up-to-date es-
timate of the posext−1 and of the frames in the
model, so thatp(xt−1, xM|y1..t−1) is known. De-
note the new pose-change measurements asy1..t =
{y1..t−1, y

t
t−1, y

t
M1

, yt
M2

, . . .}, whereM1,M2, . . . are the
indices of key frames selected as base frames. We would
like to computep(xt, xM|y1..t).

The update first computes a prior forp(xt|y1..t−1) by
propagating the marginal distribution forp(xt−1|y1..t−1)
one step forward using a dynamical model. This is simi-
lar to the prediction step of the Kalman filter.

The variables involved in the update arext, the previous
frame posext−1 and the key-frames chosen as base frames
xM1 , xM2 , etc. These are stacked together in a variableX :

X =
[

xt xt−1 xM1 xM2 · · ·
]>

.

The covariance between the components ofX is denoted
by ΛX . The rows and columns ofΛold

X corresponding to
the poses of the key-frames are mirrored inΛM. Together,

X andΛX completely determine the posterior distribution
over the pose of the key-frames, the current frame, and the
previous frame.

Following the result of Section 4.2, a pose-change mea-
surementyt

s between the current frame and a base frame in
X is modeled as having come from:

yt
s = CX + ω,

C =
[

I 0 · · · −I · · · 0
]
,

whereω is Gaussian with covarianceΛy|xx. Each pose-
change measurementyt

s is used to update all poses using
the Kalman Filter update equation:

[Λnew
X ]−1 =

[
Λold
X

]−1
+ C>Λ−1

y|xxC (4)

Xnew = Λnew
X

([
Λold
X

]−1Xold + C>Λ−1
y|xxyt

s

)
(5)

After individually incorporating the pose-changesyt
s using

this update,Xnew is the mean of the posterior distribution
p(xt, xt−1,M |y1..t) and Cov[Xnew] is its variance. This
distribution can be marginalized by picking out the appro-
priate elements ofXnew andΛnew

X .

4.4. Convergence
In the context of our tracker, we define drift to mean grow-
ing uncertainty in the estimate of the pose of the current
frame and key-frames. We show here that the updates of
the previous section can only lower the uncertainty in these
pose estimates.

The elements along the diagonal ofΛM are the marginal
variances for the pose of each frame and their pose uncer-
tainty. We therefore prove that the updates of the previous
section shrink these elements. Using the matrix inversion
lemma, we can write equation (5) as:

Λnew
X = Λold

X − Λold
X C

(
Λy|xx + C>Λold

X C
)−1

C>Λold
X .

(6)
Because positive definite matrices have diagonal entries
greater than zero, we can show that the diagonal entries of
Λnew
X are no larger than those ofΛold

X by proving that the
second term in equation 6 is positive semi-definite.

This term is an outer product, and is positive semi-
definite if

(
Λy|xx + C>Λold

X C
)−1

is positive definite. But
this is the case because the sum of a positive matrix (Λy|xx)
and non-negative matrices (C>Λold

X C) is positive, and so is
the inverse of the sum. This shows that the uncertainty in
the pose of the key frames is non-decreasing.

Because the uncertainty in the key-frame poses shrinks,
the uncertainty in the pose estimatext of any frame regis-
tered against a key-frame must also be bounded: initially,
xt is the sum of the pose of a key frame and a pose change.
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Hence its variance is the sum of the variance of these. Sub-
sequent registrations reduce this variance as per the argu-
ment above. Thus a loose upper bound on the variance of
xt is the variance of any of the key-frames, plus the variance
Λy|xx of the pose change estimate.

We have shown that the marginal variance of the pose of
the key frames shrinks. Using this argument, we proved that
the marginal variance of any frame registered against these
is also bounded.

5. Acquisition of View-Based Model
This section describes an online algorithm for populating
the view-based model with frames and poses. After esti-
mating the posext of each frame as per the updates of Sec-
tion 4.3, the tracker decides whether the frame should be
inserted into the appearance model as a key-frame.

A key-frame should be available whenever the object re-
turns to a previously visited pose. To identify poses that
the object is likely to revisit, the 3 dimensional space of
rotations is tesselated into adjacent regions maintaining a
representative key-frame. Throughout tracking, each region
is assigned the frame that most likely belongs to it. This
ensures that key-frames provide good coverage of the pose
space, while retaining only those key-frames whose pose
can be determined with high certainty.

The probability that a particular frame belongs to a re-
gion centered atxr is:

Pr[xt ∈ B(xr)] =
∫

x∈B(xr)

N (x|xt,Λt)dx,

whereB(x) is the region centered around a locationx, and
Λt is the pose covariance of the current frame and can be
read fromΛM.

If this frame belongs to a region with higher probabil-
ity than any other frame so far, it is the best representative
for that region, and so the tracker assigns it there. If the
frame does not belong to any region with sufficiently high
probability, or all regions already maintain key-frames with
higher probability, the frame is discarded.

The above criteria exhibit two desirable properties: 1)
frames are assigned to regions near their estimated pose. 2)
Frames with low certainty in their pose are penalized, be-
cause the integral of a Gaussian under a fixed volume de-
creases with the variance of the Gaussian. 3) Key-frames
are replaced when better key-frames are found for a given
region.

When a frame is added to the appearance model,X and
ΛM must be upgraded. This involves creating a new slot as
the last element ofX and moving the first component ofX
(which corresponds toxt) to that slot. These changes are
similarly reflected inΛM. The slot forxt in X is initial-
ized to zero. This newxt is initially assumed to be very

uncertain and independent of all frames observed so far, so
its corresponding rows and columns inΛM are set to zero.
Following these operations, the updates from Section 4.3
can be applied to subsequent frames.

6. Experiments
This section presents three experiments where the view-
based appearance model is applied to tracking objects un-
dergoing large movements in the near-field (∼1m) for sev-
eral minutes. All three experiments use a 6 DOF registration
algorithm (described in the following subsection) to track
the object and create an appearance model. In the first ex-
periment, we compare qualitatively 3 approaches for head
pose tracking: differential tracking, first frame as keyframe
and our adaptive view-based model. In the second experi-
ment, we present a quantitative analysis of our view-based
tracking approach by comparing with an inertial sensorIn-
ertia Cube2 . Finally, we show that the view-based appear-
ance model can track general object including a hand-held
puppet. All the experiments were done using a Videre De-
sign stereo camera [7].

6.1. 6 DOF Registration Algorithm
Given frames(It, Zt) and (Is, Zs), the registration algo-
rithm estimates the pose changeyt

s between these frames. It
first identifies the object of interest by assuming that it is the
front-most object in the scene, as determined by the range
imagesZt andZs . These pixels are grouped in regions of
interestRt andRs. The registration parameters are com-
puted in several steps: First the centers of mass of the re-
gions of interest are aligned in 3D translation. This transla-
tional component is then refined using 2D cross-correlation
in the image plane. Finally, a finer registration algorithm
[15] based on Iterative Closest Point (ICP) and the Bright-
ness Constancy Constraint Equation (BCCE) is applied.

The correlation step provides a good initialization point
for the iterative ICP and BCCE registration algorithm. Cen-
tering the regions of interest reduces the search window of
the correlation tracker, making it more efficient.

The ICP algorithm iteratively computes correspondences
between points in the depth images and finds the transfor-
mation parameters which minimize the distance between
these pixels. By using depth values obtained from the
range images, the BCCE can also be used to recover 3D
pose-change estimates [9]. Combining these approaches
is advantageous because BCCE registers intensity images
whereas ICP is limited to registering range imagery. In
addition, we have empirically found that BCCE provides
superior performance in estimating rotations, whereas ICP
provides more accurate translation estimates.

To combine these registration algorithms, their objective
functions are summed and minimized iteratively. At each
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step of the minimization, correspondences are computed for
building the ICP cost function. Then the ICP and BCCE
cost functions are linearized, and the locally optimal solu-
tion is found using a robust least-squares solver [10]. This
process usually converges within 3 to 4 iterations. For more
details, see [15].

6.2. Head Pose Tracking
We tested our view-based approach with sequences ob-
tained from a stereo camera [7] recording at 5Hz. The
tracking was initialized automatically using a face detec-
tor [20]. The pose space used for acquiring the view-based
model was evenly tesselated in rotation. The registration al-
gorithm used about 2500 points per frame. On a Pentium
4 1.7GHz, our C++ implementation of the complete rigid
object tracking framework, including frame grabbing, 3D
view registration and pose updates, runs at 7Hz.

Figure 2 shows tracking results from a 2 minute test se-
quence. The subject underwent rotations of about 110 de-
grees and translations of about 80cm, including some trans-
lation along the Z axis. We compared our view-based ap-
proach with a differential tracking approach which registers
each frame with its previous frame, concatenating the pose
changes. To gauge the utility of multiple key-frames, we
show results when the first frame in the sequence is the only
key-frame.

The left column of Figure 2 shows how the that the dif-
ferential tracker drifts after a short while. When track-
ing with only the first frame and the previous frame (cen-
ter column), the pose estimate is accurate when the sub-
ject is near-frontal but drifts when moving outside this re-
gion. The view-based approach (right column) gives ac-
curate poses during the entire the sequence for both large
and small movements. Usually, the tracker used 2 or 3 base
frames (including the previous frame) to estimate pose.

6.3. Ground Truth Experiment
To analyze quantitatively our algorithm, we compared our
results to anInertia Cube2 sensor from InterSense[11].In-
ertia Cube2 is an inertial 3-DOF (Degree of Freedom) ori-
entation tracking system. The sensor was mounted on the
inside structure of a construction hat. By sensing gravity
and earth magnetic field,Inertia Cube2 estimates for the
axis X and Z axis (where Z points outside the camera and
Y points up) are mostly driftless but the Y axis can suffer
from drift. InterSense reports a absolute pose accuracy of
3◦RMS when the sensor is moving.

We recorded 4 sequences with ground truth poses using
the Inertia Cube2 sensor. The sequences were recorded at
6 Hz and the average length is 801 frames (∼133sec). Dur-
ing recording, subjects underwent rotations of about 125 de-
grees and translations of about 90cm, including translation

Previous 
frame only

First and 
previous frames

Adaptive
View-based model

Figure 2: Comparison of face tracking results using a 6 DOF
registration algorithm. Rows represent results at 31.4s, 52.2s, 65s,
72.6, 80, 88.4, 113s and 127s. The thickness of the box around
the face is inversely proportional to the uncertainty in the pose
estimate (the determinant ofxt). The number of indicator squares
below the box indicate the number of base frames used during
tracking.
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Figure 3:Head pose estimation using an adaptive view-based appearance model.

Pitch Yaw Roll Total
Sequence 1 2.88◦ 3.19◦ 2.81◦ 2.97◦

Sequence 2 1.73◦ 3.86◦ 2.32◦ 2.78◦

Sequence 3 2.56◦ 3.33◦ 2.80◦ 2.92◦

Sequence 4 2.26◦ 3.62◦ 2.39◦ 2.82◦

Table 1: RMS error for each sequence. Pitch, yaw and roll
represent rotation around X, Y and Z axis, respectively.

along the Z axis. Figure 3 shows the pose estimates of our
adaptive view-based tracker for the sequence 1. Figure 4
compares the tracking results of this sequence with the in-
ertial sensor. The RMS errors for all 4 sequences are shown
in table 1. Our results suggest that our tracker is accurate to
within the resolution of theInertia Cube2 sensor.

6.4. General Object Tracking
Since our tracking approach doesn’t use any prior informa-
tion about the object, our algorithm can works on different
class of objects without changing any parameters. Our last
experiment uses the same tracking technique described in
this paper to track a puppet. The position of the puppet in
the first frame was defined manually. Figure 5 presents the
tracking results.

7. Conclusion
We presented a method for online rigid object tracking us-
ing adaptive view-based appearance models. The tracker
registers each incoming frame against the key-frames of the

view-based model using a two-frame 3D registration algo-
rithm. Pose-changes recovered from registration are used to
simultaneously update the model and track the subject. We
tested our approach on real-time 6-DOF head tracking task
using stereo cameras and observed an RMS error within
the accuracy limit of an attached inertial sensor. During all
our experiments, the tracker had bounded drift, could model
non-Lambertian reflectance and could be used to track ob-
jects undergoing large motion for a long time.
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Figure 4:Comparison of the head pose estimation from our adap-
tive view-based approach with the measurements from theInertia
Cube2 sensor.
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Figure 5:6-DOF puppet tracking using the adaptive view-based
appearance model.
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