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Abstract

We present a robust implementation of stereo-based head
tracking designed for interactive environments with uncon-
trolled lighting. We integrate fast face detection and drift
reduction algorithms with a gradient-based stereo rigid mo-
tion tracking technique. Our system can automatically seg-
ment and track a user’s head under large rotation and il-
lumination variations. Precision and usability of our ap-
proach are compared with previous tracking methods for
cursor control and target selection in both desktop and in-
teractive room environments.

1. Introduction

Head pose or gaze is a potentially powerful and intu-
itive pointing cue if it can be obtained accurately and non-
invasively. In interactive environments, like public kiosks or
airplane cockpits, head pose estimation can be used for di-
rect pointing when hands and/or feet are otherwise engaged
or as complementary information when desired action has
many input parameters. In addition, this technology can be
important as a hands-free mouse substitute for users with
disabilities or for control of gaming environments.

When interacting directly with users, robustness and ef-
ficiency are key requirements for a successful system. Inter-
active environments often include dynamic video projection
across multiple large screens, and thus have illumination
levels which can change spontaneously. A head tracking
system for such environments must be able to handle vari-
ations of illumination and large head rotations. In addition,
the system should be fast enough to maintain transparent
interaction with the user.

In this paper, we evaluate a head pose tracker designed
for interactive environments. Our system is accurate, fast,
and automatically initialized. We rely on a online drift re-
duction algorithm based on Rahimiet al.[17] and a rigid
stereo motion tracking technique[10] which can deal with
large rotations of the user’s head. Our intensity- and depth-
based technique is relatively insensitive to illumination vari-

ation. Since it is based on real-time 3-D observation, it can
be more accurate than previous approaches that presumed
approximate models.

The performance of our system was evaluated on a shape
tracing task and a selection task. We compared our tracker
performance with published reports and side-by-side imple-
mentations of two other systems. We evaluated tracing ac-
curacy with small and large head rotations and with differ-
ent levels of lighting variation. We also compared the per-
formance of our tracker with that of a head-mounted inertial
sensor.

In the following section, we review related work on head
tracking. We then describe the components of our tracking
system, followed by our experimental paradigm and inter-
action task. We evaluate the spatial accuracy and temporal
resolution of our system, compare it to previously reported
systems, and conclude with a discussion of these results.

2. Related Work

Several authors have recently proposed face tracking for
pointer or scrolling control and have reported successful
user studies [19, 15]. In contrast to eye gaze [23], users
seem to be able to maintain fine motor control of head gaze
at or below the level needed to make fine pointing gestures1.
However, performance of the systems reported to date has
been relatively coarse and many systems required users to
manually initialize or reset tracking. They are generally un-
able to accurately track large rotations under rapid illumi-
nation variation (but see [16]), which are common in inter-
active environments (and airplane/automotive cockpits).

Many techniques have been proposed for tracking a
user’s head based on passive visual observation. To be
useful for interactive environments, tracking performance
must be accurate enough to localize a desired region, robust
enough to ignore illumination and scene variation, and fast
enough to serve as an interactive controller. Examples of
2-D approaches to face tracking include color-based [22],
template-based [15] and eigenface-based [9] techniques.

1Involuntary microsaccades are known to limit the accuracy of eye-
gaze based tracking[14].



Techniques using 3-D models have greater potential for
accurate tracking but require knowledge of the shape of
the face. Early work presumed simple shape models (e.g.,
planar[2], cylindrical[16], or ellipsoidal[1]). Tracking can
also be performed with a 3-D face texture mesh [18] or 3-D
face feature mesh [21].

Very accurate shape models are possible using the ac-
tive appearance model methodology [5], such as was ap-
plied to 3-D head data in [3]. However, tracking 3-D ac-
tive appearance models with monocular intensity images is
currently a time-consuming process, and requires that the
trained model be general enough to include the class of
tracked users.

In contrast to these head tracking systems, our system
is robust to strong illumination changes, automatically ini-
tializes without user intervention, and can re-initialize au-
tomatically if tracking is lost (which is rare). In addition,
it can track head pose under large rotations and does not
suffer from drift.

3. Stereo-Motion Head Tracking

Our system has three main components. Its core is an
algorithm for instantaneous depth and brightness gradient
tracking [10], combined with two other modules for initial-
ization, and stabilization/error-correction. For initialization
we use a fast face detection scheme to detect when a user is
in a frontal pose, using the system reported in [20]. To min-
imize the accumulation of error when tracking in a closed
environment, we rely on a scheme which can perform track-
ing relative to multiple base frames [17].

The following subsections describe the initialization and
basic tracking algorithm which recovers the rotation and
translation of an object between two time stepst and s,
given imagesIt andIs. The last subsection explains how
to use multiple base frames to reduce drift.

3.1. Initialization with Face Detection

When it first comes online, the tracker scans the image
for regions which it identifies as a face using the face de-
tector of [20]. As soon a face has been consistently located
near the same area for several frames, the tracker switches
to tracking mode. The face detector is sensitive only to
completely frontal heads, making it possible for the tracker
to assume that the initial rotation of the head is aligned
with the coordinate system. The face detector provides the
tracker an initial region of interest, which is updated by the
tracker as the subject moves around. Since depth informa-
tion is readily available from the stereo camera, the initial
pose parameters of the head can be fully determined by 2D
region of the face with the depth from stereo processing.

When we observe erratic translations or rotations from
the tracker, the tracker automatically reinitializes by revert-

ing to face detection mode until a new target is found. This
occurs when there is occlusion or rapid appearance changes.

3.2. Finding Pose Change Between Two Frames

Our system uses stereo cameras by applying the tradi-
tional Brightness Change Constraint Equation (BCCE) [11]
jointly with the Depth Change Constraint Equation (DCCE)
of [10] on range and intensity imagery.

To recover the motion between two frames, the BCCE
finds motion parameters which minimize the appearance
difference between the two frames in a least-squares sense:

Æ� = argmin
Æ
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whereu(x; Æ) is the image flow at pixelx, parameterized
by the details of a particular motion model. In the case of
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whereX is the world coordinate of the image pointx, Æ! is
the infinitesimal rotation of the object,Æ� is its infinitesimal
translation, andf is the focal length of the camera[4].

The DCCE of [10] uses the same functional form as
equation (1) to constrain changes in depth. But since un-
der rotation, depth is not preserved, the DCCE includes an
adjustment term:

�DCCE =
X
x

kZt(x)� Zt+1(x+ u(x; Æ)) + Vz(x; Æ)k
2;

whereVz is the flow towards the Z direction induced by
Æ. Note that the DCCE is robust to lighting changes since
lighting does not affect the depth map. We combine the
BCCE and DCCE into one function optimization function
with a weighted sum:

Æ� = argmin
Æ

�BCCE(Æ) + ��DCCE(Æ);

The only unknown variables are the pose parameters, since
Z is available from the depth maps. For an approximate
way to optimize this function, see [10], where one iteration
of Newton-Raphson is shown to be adequate for tracking.

3.3. Reducing Drift

Given a routine for computing the pose differenceÆts be-
tween framesIs and It, there are two common strategies
for estimating the pose�t of frameIt relative to the pose of
frameI0. One approach is to maintain the pose difference
between adjacent framesIs andIs+1, for s = 0::t� 1, and



to accumulate these measurements to obtain the pose differ-
ence between framesIt andI0. But since each pose change
measurement is noisy, the accumulation of these measure-
ments becomes noisier with time, resulting in unbounded
drift. A common alternative is to compute the pose differ-
ence betweenIt andI0 directly. But this limits the allow-
able range of motion between two frames, since most track-
ing algorithms (including the one described in the previous
section) assume that the motion between the two frames is
very small.

To address the issue of drift in parametric tracking,
we compute the pose change betweenIt and several base
frames. These measurements can then be combined to yield
a more robust and drift-reduced pose measurement. When
the trajectory of the target crosses itself, pose differences
can be computed with respect to early frames which have
not been corrupted by drift. Trackers employing this tech-
nique do not suffer from the unbounded drift observed in
other differential trackers.

In [17], a graphical model is used to represent the the true
poses�t as hidden variables and the measured pose changes
Æts between framesIs andIt as observations. Unfortunately,
the inference algorithm proposed is batch, requiring that
pairwise pose changes be computed for the entire sequence
before drift reduction can be applied.

We use a simple online algorithm to determine the pose
of a frameIt. Our algorithm first identifies thek frames
from the past which most resembleIt in appearance. The
similarity measure we use is the sum of squared differences:

dts =
X
x

X
y

kIs(x; y)� It(x; y)k
2: (3)

Since the frames from the past have suffered less drift, the
algorithm discounts the similarity measure of newer frames,
biasing the choice of base frame toward the past.

Once the candidate base frames have been identified, the
pose change between each base frameIs to It is computed
using the algorithm described in the previous section. The
final pose assigned to frameIt is the average pose of the two
base frames, weighted by the similarity measure of equation
(3):
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As an alternative, we are investing an algorithm for per-
forming online inference on the graphical model of [17].

4. Experiments and Results

To evaluate the system we performed two series of ex-
periments, the first in a desktop screen environment and the
second in an interactive room with large projection screens.
In the following subsection, we describe the tracking sys-
tems used in this user study. We then present the experi-
mental setups and results for both experiments.

4.1. Tracking Techniques

We compared side-by-side the stereo motion tracker of
section 3 with a 2D tracker based on normalized cross-
correlation, and a head-mounted inertial rotation sensor.
The following sections describe each tracker in more detail.

4.1.1 Stereo-Motion Tracker

The stereo-motion head tracker is a standalone system
which takes video-rate intensity and range imagery from
a stereo camera such as the SRI Small Vision System [6]
camera and locates and tracks heads in real-time. The SRI
camera software produces 320x240 pixel resolution inten-
sity and range images at 15 fps. The tracker runs on a 1.5
Ghz Pentium 4 running a Windows operating system, and
takes advantage of Intel’s SIMD architecture through the
Intel Performance Library. This tracker uses the rigid mo-
tion stereo algorithm described above, together with face
detection and drift reduction (with 2 past frames).

As in [19], we use the tracked head position to infer a
point of intersection of a ”face ray” with the control or dis-
play surface, and use this to set a pointer target.

4.1.2 Inertial Rotation Sensor

We used evaluted tracking in comparision to an intertial ro-
tation sensor, using InterSense’sIntertrax2 [12]. The man-
ufacturer reports that it is able to measure changes in ro-
tations in three axes with 0.02 degrees of precision. Our
software samples the tracker at about 100 samples per sec-
ond, though the tracker is reported to have a 256 Hz internal
sampling rate; it was attached to the test PC via USB. The
documentation for the tracker reports zero jitter, which af-
ter some experimentation, we concluded was the result of a
hysteretic filter. Based on a patent filed by the manufacturer,
the inertial sensor may combine various sources of inertial
measurement such as the earth’s magnetic and gravitational
fields[7].

In contrast to the vision-based tracker of section 3 which
automatically tracks after detecting a face, the Intertrax
tracker must be manually initialized to provide it with a ref-
erence frame. The head-mounted tracker is equipped with
a reset button which must be pushed before the user begins
each experiment in order to define the initial coordinate sys-
tem and to reset the accumulated drift.

4.1.3 Normalized Cross-Correlation Tracker

We evaluated 2D tracking techniques to explore the impor-
tance of stereo observations for robust real-time tracking.
We used a side-by-side implementation of 2D normalized
correlation tracking similar to that proposed in [15]. (We
also compared published reports of other 2D trackers, as
reported below.) The normalized cross-correlation tracker
works in two phases, similar to the stereo tracker described
above: first, a face detector [20] locates a face and reports



Figure 1. Brightness change during the lighting variation
experiment. Left: lamp on. Right: lamp off.

a region of interest which represents the bounding box of a
face. Second, the correlation tracker takes a snapshot of the
resulting region, scales its magnitude to 1, and uses it as the
template in its tracking phase[8].

Once a template is acquired, for each new image, the
correlation tracker scans a 70 by 30 pixel region around the
location where the face was originally found. For each can-
didate location(u; v), it computes the similarity measure:

�(u; v) =
X
x

X
y

k~It(x+ u; y + v)� ~T (x; y)k2; (4)

where ~T is the magnitude-normalized face template ac-
quired during detection and~It is the magnitude-normalized
current image.

The correlation tracker reports the value of(u; v) which
minimizes (4). Typically, this displacement would be scaled
by constants inu and v and used as the location of the
pointer on the screen. However, because the domain of�
is integers and the resolution of the camera is low, the ap-
proach is insensitive to small motion. As such, the pointer’s
precision suffers.

Instead, we resolve the motion(u; v) to sub-pixel reso-
lutions, by approximating the D by D pixel neighborhood
around the minimum of� by a second order polynomial�̂.
Then instead of reporting the minimum of�(u; v), the cor-
relation tracker reports the minimum of�̂.

4.2. Desktop Experiment

The desktop experiment involved 8 experiments per sub-
ject. Each subject tested the three tracking techniques de-
scribed in section 4.1. Each of the trackers was tested in
small-screen and wide-screen mode. The former allows the
user to trace the rectangle using small head motions. The
latter simulates a larger screen which requires larger head
rotations to navigate. In addition, the correlation tracker
and the stereo motion tracker were tested in the small-screen
mode under abruptly varying lighting conditions (see figure
1).

As shown in figure 2, users sat about 50 cm away from
a typical 17” screen, subtended a horizontal angle of about

Figure 2. A user during the desktop experiment. The SRI
stereo camera is placed just over the screen and the user is
wearing theIntertrax2 device on his head.
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Figure 3. Comparison of average error on tracing task
of the desktop experiment. The error bars in the histogram
reprensent the standard deviation between user results.

30 degrees and a vertical angle of about 20 degrees. The
screen displayed a black background and a white rectangu-
lar path drawn in the middle. The task was to use head pose
to move a 2D pointer around the screen to trace the rectan-
gular path as accurately as possible. Users were allowed to
take as much time as they liked, as long as they were able
to complete the path eventually. Thus, we suggest that the
dominant feature under observation is the tracker’s accuracy
in mapping the user’s head to a 2D location.

4.2.1 Results

The first three rows of figure 3 compares the accuracy of
the stereo motion tracker with the 2D normalized cross-
correlation tracker and theIntertrax2 tracker. The his-
togram shows the average error and standard deviation of
4 subjects. The average error is computed as the average
distance in pixels between every point on the cursor trajec-
tory and the closest point on the given rectangular path. The
three last rows of the same figure compares our results with
some published system: an optical flow tracker[13], cylin-
drical tracker[16], and an eye gaze tracker[23].



Figure 4 shows typical pointer trajectories for each sce-
nario. It took an average of 50 seconds to trace each rectan-
gle.

In a desktop environment, small rotations are sufficient
to drive a cursor, since the angle subtended by the screen
tends to be small. This situation serves as a baseline where
all three trackers can be compared under moderate condi-
tions. Under the small rotation scenario, all trackers showed
similar deviation from the given trajectory, with an aver-
age deviation of 7.5 pixels for the stereo motion tracker, 9.8
pixels for the normalized cross-correlation tracker, and 8.3
pixels for the inertial tracker. Note that the drift of the iner-
tial sensor becomes significant during the last quarter of its
trajectory (figure 4), forcing subjects to compensate for its
error with exaggerated movements.

Navigating a pointer on a wide screen (multiple moni-
tors, projection screens, cockpits) requires larger head ro-
tations. As expected, the correlation tracker loses track of
the subject during rotations beyond 20 degrees, because the
tracker is initialized on the appearance of the frontal face
only. It incurred an average error of 41.0 pixels. The stereo
motion tracker, however, successfully tracks the head as it
undergoes large rotations, with an average error of 6.4 pix-
els. TheIntertrax2 tracker shows an average error of 6.2
pixels. Note that due to the accumulated drift of the inertial
sensor, typical users had difficulty controlling the cursor in
the last portion of the trajectory.

Under varying lighting conditions (the light was mod-
ulated at about 1/2 Hz), the normalized cross-correlation
tracker lost track of the target regardless of the degree of
rotation, yielding an average error of 31.9 pixels as opposed
to its 9.9 pixels under unvarying lighting. The stereo motion
tracker did suffer slightly, averaging an error rate of 12.4
pixels as opposed to its initial error of 7.5 pixels under nor-
mal lighting conditions. This is only a factor 1.6 increase in
average error, compared to the correlation tracker’s factor
of 3.2 loss of performance.

4.2.2 Discussion

The inertial rotation sensorIntertrax2 is accurate for a
short period of time, but it accumulates noticeable drift. Ap-
proximately after 1 minute of use of the tracker, subjects
were often forced to contort their bodies significantly in or-
der to compensate for the drift.

The normalized cross-correlation tracker appears to be
suitable for situations involving small head rotations and
minimal illumination changes.

The stereo motion tracker is robust to lighting varia-
tions because it largely relies on depth information, which
is unaffected by the illumination changes. In addition, it
can track arbitrarily large transformations without suffering
from drift due to the drift reduction algorithm described in
section 3.3.

Figure 5. Setup for the room experiment. The SRI stereo
camera is placed on the table.

Small rotation

Large rotation

Light variation

Average error Standard deviation
(in pixel) (in pixel)

6.3

6.1

11.5

0.4

0.6

3.1

Table 1. Experimental results of the stereo-based tracker
inside the interactive room.

4.3. Interactive Room Experiment

As shown in figure 5, the second experiment was run
in an interactive room with large projection screens. Users
were sitting about 1.8 meters away from a 2.1m x 1.5m pro-
jection screen, subtended a horizontal angle of about 100
degrees and a vertical angle of about 80 degrees. Subject
were asked to perform two tasks: the tracing task described
in section 4.2 and a selection task where the user must reach
different colored squares without touching the red squares.
A short interview was performed following the experiment
to obtain feedback from the subject about the usability of
these head trackers.

4.3.1 Results and Discussion

With more then 90 degrees of rotation to reach both sides
of the screens, the limitations of the normalized cross-
correlation tracker appeared clearly. Subjects could not use
the tracker without unnaturally translating their heads over
long distances to move the cursor correctly.

The stereo-based tracker was successful on both the trac-
ing task and the selection task. Table 1 presents the average
errors and standard deviation for the tracing task of 3 sub-
jects.

The interviews after the second experiment showed that
users doesn’t like a linear mapping between the head pose
and the cursor position. For slow movement of the head, the
ratio cursor distance by head movement should be smaller
to give more precision on small selections. For fast move-
ment of the head, the ratio should larger to give more
speed on large displacement. These observations corrob-
orate Kjeldson results[15].
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Figure 4. Typical trajectories for all three trackers when users perform small rotations (first row), large rotations (second row) and
under light variation (last column). The trajectory starts from the upper left corner of the rectangle and ends in the same location.

5. Conclusion
The stereo head tracking system presented here requires

no manual initialization, does not drift, and has been shown
to be accurate at driving cursors and selecting objects. Per-
formance of this tracker was compared against that of a
head-mounted inertial sensor and a simple tracker based on
normalized cross-correlation. The latter tracker was prone
to lighting changes, and the former experienced drift over
time. The stereo system was insensitive to these conditions,
and was found usable by naive users. We believe this track-
ing system will be an important module in designing per-
ceptual interfaces for intelligent environments, cockpit ap-
plications, and for disabled users who are not able to use
traditional interfaces.
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