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Abstract. We propose a probabalistic model of single source multi-
modal generation and show how algorithms for maximizing mutual infor-
mation can find the correspondences between components of each signal.
We show how non-parametric techniques for finding informative sub-
spaces can capture the complex statistical relationship between signals
in different modalities. We extend a previous technique for finding infor-
mative subspaces to include new priors on the projection weights, yield-
ing more robust results. Applied to human speakers, our model can find
the relationship between audio speech and video of facial motion, and
partially segment out background events in both channels. We present
new results on the problem of audio-visual verification, and show how
the audio and video of a speaker can be matched even when no prior
model of the speaker’s voice or appearance is available.

1 Introduction

Relating multi-modal signals is an important and challenging task for machine
perception systems. For example, given audio and video signals, one would like
to find the audio-visual correspondences: that portion of the signals which can be
inferred to have come from the same underlying source. Applied to observation
of human speakers, this ability can be useful for several different tasks. It can
help localize the position of the speaker in the video frame (video localization),
enhance the audio quality of the speaker by segmenting it from other sources
(audio localization), and finally verify whether the person being observed is the
person speaking (audio-visual verficiation).

We propose an independent cause model to capture the relationship between
generated signals in each individual modalitiy. Using principles from information
theory and nonparametric statistics we show how an approach for learning max-
imally informative joint subspaces can find cross-modal correspondences. We
analyze the graphical model of multi-modal generation and show under what
conditions related subcomponents of each signal have high mutual information.

Non-parametric statistical density models can be used to measure the degree
of mutual information in complex phenomena [6] which we apply to audio/visual
data. This technique simultaneously learns projections of images in the video
sequence and projections of sequences of periodograms taken from the audio
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sequence. The projections are computed adaptively such that the video and audio
projections have maximum mutual information (MI). Applied to audiovisual
data, early results with this technique on video and audio localization have been
reported [4], but without any derivation from a probabalistic framework. In
practice, these techniques may fail to converge to a useful solution, since the
projection parameters were underconstrained.

In this paper we ground the mutual information algorithm in probabalistic
model, and extend the informative subspace algorithm to include a prior bias
towards small projection coefficients. We also present new results on the problem
of audio-visual verification without prior models of user speech or appearance,
an application not previously addressed in the literature.

In the next section we review related work on audio-visual fusion and in-
formation theoretic adaptive methods. We present our probabalistic model for
cross-modal signal generation, and show how audio-visual correspondences can
be found by identifying components with maximal mutual information. We
then review techniques for efficient estimation of mutual information using non-
parametric entropy models. Finally, we show a new application to a verification
task where we detect whether audio and video come from a single speaker. In
an experiment comparing the audio and video of every combination of a group
of eight users, our technique was able to perfecly match the corresponding audio
and video from a single user. These results are based purely on the instantaneous
cross-modal mutual information between the projections of the two signals, and
do not rely on any prior experience or model of user’s speech or appearance.

2 Related Work

Humans routinely perform tasks in which ambiguous auditory and visual data
are combined in order to support accurate perception. In contrast, automated
approaches for processing multi-modal data sources lag far behind. This is pri-
marily due to the fact that few methods adequately model the complexity of the
audio/visual relationship. Classical approaches to multi-modal fusion usually ei-
ther assume a statistical relationship which is too simple (e.g. jointly Gaussian)
or defer fusion to the decision level when many of the joint (and useful) proper-
ties have been lost. While such pragmatic choices may lead to simple statistical
measures, they do so at the cost of modeling capacity.

Information theory motivates fusion at the measurement level without rea-
gard to specific parametric densities. The idea of using information-theoretic
principles in an adaptive framework is not new (e.g. see [3] for an overview)
with many approaches suggested over the last 30 years. A critical distinction in
most information theoretic approaches lies in how densities are modeled (either
explicitly or implicitly), how entropy (and by extension mutual information) is
approximated or estimated, and the types of mappings which are used (e.g. linear
vs. nonlinear). Approaches which use a Gaussian assumption include Plumbley
[12, 11] and Becker[1]. Additionally, [1] applies the method to fusion of artificially
generated random dot sterograms.
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With regards to audio/visual processing, there has been substantial progress
on feature-level integration of speech and vision. For example, Meier et al [9],
Stork [14] and others have built visual speech reading systems that can im-
prove speech recognition results dramatically. However, many of these systems
assume that no significant motion distractors are present and that the camera
was “looking” at the user uttering the audio signal. Speech systems (both those
that integrate viseme features and those that do not) are easily confused if there
are nearby speakers also making utterances, either directed at the speech recog-
nition system or not. Our system, described below, is designed to be able to
detect and disambiguate cases where audio and video signals are coming from
different sources. Since our method is not dependent on speech content, it would
have the advantage of working on non-verbal utterances.

Other audio/visual work which is closely related to ours is that of Hershey
and Movellan [7] which examined the per-pixel correlation relative to an audio
track, detecting which pixels have related variation. Again, an inherent assump-
tion of this method was that the joint statistics were Gaussian. Slaney and Covell
[13] looked at optimizing temporal alignment between audio and video tracks us-
ing canonical correlations (equivalent to mutual information in the jointly Gaus-
sian case), but did not address the problem of detecting whether two signals
came from the same person or not.

The idea of simply gating audio input with a face detector is related to ours,
but would not solve our target scenerio above where the user is facing the screen
and a nearby person makes an utterance that can be mistakenly interpreted
as a system command. We are not aware of any prior work which can perform
audio-visual verification at a signal-level, without any prior speech or appearance
model.

3 Probabalistic Models of Audio-Visual Fusion

We consider multimodal scenes which can be modeled probabalistically with one
joint audio-visual source and distinct background interference sources for each
modality. We note that the proposed method can be extended to multiple multi-
modal sources. Each observation is a combination of information from the joint
source, and information from the background interferer for that channel. We
use a graphical model, figure 1 to represent this relationship. In the diagrams,
B represents the joint source, while A and C represent single modality back-
groud interference. Our purpose here is to analyze under which conditions our
methodology should uncover the underlying cause of our observations.

Figure 1a shows an independent cause model for our typical case, where
{A, B, C} are unobserved random variables representing the causes of our (high-
dimensional) observations in each modality {Xa, Xv}. In general there may be
more causes and more measurements, but this simple case can be used to il-
lustrate our algorithm. An important aspect is that the measurements have
dependence on only one common cause. The joint statistical model consistent
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with the graph of figure 1a is

P (A, B, C, Xa, Xv) = P (A)P (B)P (C)P (Xa|A, B)P (Xv|B, C) .

Given the independent cause model a simple application of Bayes’ rule (or
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Fig. 1. Graphs illustrating the various statistical models exploited by the algorithm: (a)
the independent cause model - Xa and Xv are independent of each other conditioned
on {A, B, C}, (b) information about Xa contained in Xv is conveyed through joint
statistics of A and B, (c) the graph implied by the existence of a separating function,
and (d) two equivalent Markov chains which can be extracted from the graphs if the
separating functions can be found.

the equivalent graphical manipulation) yields the graph of figure 1b which is
consistent with

P (A, B, C, Xa, Xv) = P (Xa)P (C)P (A, B|Xa)P (Xv|B, C) ,

which shows that information about Xa contained in Xv is conveyed through
the joint statistics of A and B. The consequence being that, in general, we
cannot disambiguate the influences that A and B have on the measurements.
A similar graph is obtained by conditioning on Xv. Suppose decompositions of
the measurement Xa and Xv exist such that the following joint densities can be
written:

P (A, B, C, Xa, Xv) = P (A)P (B)P (C)P (Xa
A|A)P (Xa

B |B)P (Xv
B|B)P (Xv

C |C)

where Xa = [Xa
A, Xa

B] and Xv = [Xv
B, Xv

C ]. An example for our specific ap-
plication would be segmenting the video image (or filtering the audio signal).
In this case we get the graph of figure 1c and from that graph we can extract
the Markov chain which contains elements related only to B. Figure 1d shows
equivalent graphs of the extracted Markov chain. As a consequence, there is no
influence due to A or C.

Of course, we are still left with the formidable task of finding a decomposition,
but given the decomposition it can be shown, using the data processing inequality
[2], that the following inequality holds:

I(Xa
B, Xv

B) ≤ I(Xa
B, B) (1)

I(Xa
B, Xv

B) ≤ I(Xv
B, B) (2)
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More importantly, these inequalities hold for functions of Xa
B and Xv

B (e.q.
Y a = f (Xa; ha) and Y v = f (Xv; hv)). Consequently, by maximizing the mu-
tual information between I(Y a; Y v) we must necessarily increase the mutual
information between Y a and B and Y v and B. The implication is that fusion
in such a manner discovers the underlying cause of the observations, that is,
the joint density of p(Y a, Y v) is strongly related to B. Furthermore, with an
approximation, we can optimize this criterion without estimating the separating
function directly. In the event that a perfect decomposition does not exist, it
can be shown that the method will approach a “good” solution in the Kullback-
Leibler sense.

4 Informative Subspaces from Linear Projections

From the perspective of information theory, estimating separate projections of
the audio video measurements which have high mutual information makes intu-
itive sense as such features will be predictive of each other. The advantage is that
the form of those statistics are not subject to the strong parametric assumptions
(e.g. joint Gaussianity) which we wish to avoid.

We can find these projections using a technique that maximizes the mutual
information between the projections of the two spaces. Following [4], we use
a nonparametric model of joint density for which an analytic gradient of the
mutual information with respect to projection parameters is available. First we
review that technique, and then present new extensions to add a prior bias term
on the projection coefficients. We have found that without this extension the
technique may not converge to a useful subspace.

In principle the method may be applied to any function of the measurements,
Y = f (X ; h), which is differentiable in the parameters h (e.g. as shown in [4]).
Here we consider a linear fusion model which results in a significant computa-
tional savings at a minimal cost to the representational power (largely due the
nonparametric density modeling of the output):

[
yv
1 · · · yv

N

ya
1 · · · ya

N

]
=

[
hT

v 0T

0T hT
a

] [
xv

1 · · ·xv
N

xa
1 · · ·xa

N

]
(3)

where xv
i ∈ !Nv and xa

i ∈ !Na are lexicographic samples of images and peri-
odograms, respectively, from an A/V sequence. The linear projection defined by
hT

v ∈ !Mv×Nv and hT
a ∈ !Ma×Na maps A/V samples to low dimensional features

yv
i ∈ !Mv and ya

i ∈ !Ma . Treating xi’s and yi’s as samples from a random variable
our goal is to choose hv and ha to maximize the mutual information, I (Y a; Y v)),
of the derived measurements.
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Mutual information, which is a combination of entropy terms, is defined for
continuous random variables as [2]

I (Y v; Y a) = h (Y a) + h (Y v)− h (Y a, Y v)

=
∫

RY a

pY a (y) log (pY a (y)) dy +
∫

RY v

pY v (y) log (pY v (y)) dy

−
∫ ∫

RY a×RY v

pY a,Y v (x, y) log (pY a,Y v (x, y)) dxdy . (4)

Mutual information indicates the amount of information that one random vari-
able conveys on average about another. The usual difficulty of MI as a criterion
for adaptation is that it is an integral function of probability densities. Further-
more, in general we are not given the densities themselves, but samples from
which they must be inferred. To overcome this problem, we replace each entropy
term in equation 4 with a second-order taylor-series approximation as in [6]

Î (Y v, Y a) = Ĥ(Y a) + Ĥ(Y v)− Ĥ(Y v, Y a) (5)

=
∫

RY a

(p̂Y a(y)− pu(y))2 dy +
∫

RY v

(p̂Y v(y)− pu(y))2 dy

−
∫

RY a×RY v

(p̂Y v ,Y a(x, y)− pu(x, y))2 dxdy (6)

where RY a is the support of one feature output, RY v is the support of the other,
pu is the uniform density over that support, and p̂(x) is a Parzen density [10]
estimate computed from the projected samples. The Parzen density estimate is
defined as

p̂ (y) =
1
N

∑
i

κ (y − yi, σ) (7)

where k ( ) is a gaussian kernel (in our case) and σ is the standard deviation.
The Parzen density estimate has the capacity to capture relationships with more
complex structure than typical parametric families of densities.

Note that this is essentially an integrated squared error comparison between
the density of the projections to the uniform density (which has maximum en-
tropy over a finite region). An advantage of this particular combination of second-
order entropy approximation and nonparametric density estimator is that the
gradient terms (appropriately combined to approximate mutual information as
in 6) with respect to the projection coefficients can be computed exactly by eval-
uating a finite number of functions at a finite number of sample locations in
the output space as shown in [5, 6]. The update term for the individual entropy
terms in 6 (note the negative sign on the third term) of the ith feature vector at
iteration k as a function of the value of the feature vector at iteration k − 1 is
(where yi denotes a sample of either Y a or Y v or their concatenation depending
on which term of 6 is being computed)

∆yi
(k) = br(yi

(k−1))− 1
N

∑
j "=i

κa

(
yi

(k−1) − yj
(k−1), Σ

)
(8)
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br(yi)j ≈ 1
d

(
κ

(
yi +

d

2
, Σ

)
j

− κ

(
yi − d

2
, Σ

)
j

)
(9)

κa (y, Σ) = κ(y, Σ) ∗ κ′(y, Σ)

= −
(
2M+1πM/2σM+2

)−1

exp
(
−yT y

4σ2

)
y (10)

where M = Ma, Mv, or Ma+Mv depending on the entropy term. Both br(yi) and
κa(yi, σ) are vector-valued functions (M -dimensional) and d is the support of the
output (i.e. a hyper-cube with volume dM ). The notation br(yi)j indicates the
jth element of br(yi). Adaptation consists of the update rule above followed by a
modified least squares solution for hv and ha until a local maximum is reached.
In the experiments that follow Mv = Ma = 1 with 150 to 300 iterations.

In [4] early results were demonstrated using this method for the video-based
localization of a  speaking user. However, the technique often failed to con-
verge, since the projection coefficients were under-determined. To improve on
the method, we thus introduce a capacity control mechanism in the form of a
prior bias to small weights.

Capacity Control. The method of [6] requires that the projection be differ-
entiable, which it is in this case. Additionally some form of capacity control is
necessary as the method results in a system of underdetermined equations. To
address this problem we impose an L2 penalty on the projection coefficients of
ha and hv. Furthermore, we impose the criterion that if we consider the projec-
tion hv as a filter, it has low output energy when convolved with images in the
sequence (on average). This constraint is the same as that proposed by Maha-
lanobis et al [8] for designing optimized correlators the difference being that in
their case the projection output was designed explicitly while in our case it is
derived from the MI optimization in the output space.

The adaptation criterion, which we maximize in practice, is then a combina-
tion of the approximation to MI (equation 5) and the regularization terms:

J = Î (Y v, Xa)− αvhv
T hv − αaha

T ha − βhv
T R̄−1

V hv (11)

where the last term derives from the output energy constraint and R̄−1
V is average

autocorrelation function (taken over all images in the sequence). This term is
more easily computed in the frequency domain (see [8]) and is equivalent to
pre-whitening the images using the inverse of the average power spectrum. The
scalar weighting terms αv, αu, β, were set using a data dependent heuristic for
all experiments.

The interesting thing to note is that computing hv can be decomposed into
three stages:

1. Pre-whiten the images once (using the average spectrum of the images)
followed by iterations of
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2. Updating the feature values (yv
i ’s), and

3. Solving for the projection coefficients using least squares and the L2 penalty.

The pre-whitening interpretation makes intuitive sense in our case as it accentu-
ates edges in the input image. It is the moving edges (lips, chin, etc.) which we
expect to convey the most information about the audio. The projection coeffi-
cients related to the audio signal, ha, are solved in a similar (and simultaneously)
without the initial pre-whitening step.

5 Empirical Results

We now present new experimental results in which the general method described
previously is used to first to localize the speaker in the video (i.e., audio-based
video localization) and second to measure whether the audio signal is consistent
with the video signal (i.e., audio-visual verification).

Our motivating scenerio for this application is a user interacting with an
anonymous handheld device or kiosk using spoken commands. Given a recieved
audio signal, we would like to verify whether the person speaking the command is
in the field of view of the camera on the device, and if so to localize which person
is speaking. If there are numerous handheld devices in an area, one would like
them not all to respond to a command given to one of them. Simple techniques
which check only for the presence of a face (or moving face) would fail when two
people were looking at their individual devices and one spoke a command. Since
future devices may be anonymous and interchangeable, we are interested in the
case where no prior model of the voice or appearance of users are available to
perform the verification and localization. The technique described in the previous
sections is thus an appropriate approach.

We collected audio-video data from eight subjects. In all cases the video
data was collected at 29.97 frames per second at a resolution of 360x240. The
audio signal was collected at 48000 KHz, but only 10Khz of frequency content
was used. All subjects were asked to utter the phrase “How’s the weather in
Taipei?”. This typically yielded 2-2.5 seconds of data. Video frames were pro-
cessed as is, while the audio signal was transformed to a series of periodograms.
The window length of the periodogram was 2/29.97 seconds (i.e. spanning the
width of two video frames). Upon estimating projections the mutual informa-
tion between the projected audio and video data samples is used as the measure
of consistency. All values for mutual information are in terms of the maximum
possible value, which is the value obtained (in the limit) if the two variables are
uniformly distributed and perfectly predict one another. In all cases we assume
that there is not significant head movement on the part of the speaker during the
utterance of the sentence. While this assumption might be violated in practice
one might account for head movement using a tracking algorithm, in which case
the algorithm as described would process the images after tracking.
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5.1 Video Localization of Speaker

Figure 2a shows a single video frame from one sequence of data. In the figure
there is a single speaker and a video monitor. Thoughout the sequence the video
monitor exhibits significant flicker. Figure 2c shows an image of the pixel-wise
standard deviations of the image sequence. As can be seen, the energy associated
with changes due to monitor flicker is greater than that due to the speaker.
Figure 2b shows the absolute value of the output of the pre-whitening stage for
the video frame in the same figure. Note that the output we use is signed. The
absolute value is shown instead because it illustrates the enhancements of edges
in the image.

Figure 4a shows the associated periodogram sequence where the horizontal
axis is time and the vertical axis is frequency (0-10 Khz). Figure 2d shows the
coefficients of the learned projection when fused with the audio signal. As can
be seen the projection highlights the region about the speaker’s lips. Figure 3a

(a) (b) (c)

(d) (e)

Fig. 2. Video sequence contains one speaker and monitor which is flickering: (a) one
image from the sequence, (b) magnitude of the image after pre-whitening, (c) pixel-wise
image of standard deviations taken over the entire sequence, (d) image of the learned
projection, hv , (e) image of hv for incorrect audio

shows results from another sequence in which there are two people. The person
on the left was asked to utter the test phrase, while the person on the right moved
their lips, but did not speak. This sequence is interesting in that a simple face
detector would not be sufficient to disambiguate the audio and video stream.
Furthermore, viseme based approaches might be confused by the presence of
two faces. Figures 3b and 3c show the pre-whitened images as before. There are
significant changes about both subjects lips. Figure 3d shows the coefficients of
the learned projection when the video is fused with the audio and again the
region about the correct speaker’s lips is highlighted.
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(a) (b) (c)

(d) (e)

Fig. 3. Video sequence containing one speaker (person on left) and one person who
is randomly moving their mouth/head (but not speaking): (a) one image from the
sequence, (b) magnitude of the image after pre-whitening, (c) pixel-wise image of stan-
dard deviations taken over the entire sequence, (d) image of the learned projection, hv ,
(e) image of hv for incorrect audio.

5.2 Quantifying Consistency between the Audio and Video

In addition to localizing the audio source in the image sequence we can also check
for consistency between the audio and video. Such a test is useful in the case
that the person to which a system is visually attending is not the person who
actually spoke. Having learned a projection which optimizes MI in the output
feature space, we can then estimate the resulting MI and use that estimate to
quantify the audio/video consistency.

Using the sequences of figure 2 and 3 we compared the fusion result when us-
ing separately recorded audio sequence from another speaker. The periodogram
of the alternate audio sequence is shown in figure 4b. Figures 2e and 3e show
the resulting hv when the alternate audio sequence is used. In the case that the
alternate audio was used we see that coefficients related to the video monitor
increase significantly in 4e while energy is distributed throughout the image of
3e. For figure 2 the estimate of mutual information was 0.68 relative to the max-
imum possible value for the correct audio sequence. In contrast when compared
to the periodogram of 4b, the value drops to 0.08 of maximum. For the sequence
of figure 3, the estimate of mutual information for the correct sequence was 0.61
relative to maximum, while it drops to 0.27 when the alternate audio is used.

5.3 Eight-Way Test

Finally, data was collected from six additional subjects. These data were used
to perform an eight-way test. Each video sequence was compared to each au-
dio sequence. No attempt was made to optimally align the mismatched audio
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(a)

(b)

Fig. 4. Gray scale magnitude of audio periodagrams. Frequency increases from bottom
to top, while time is from left to right. (a) audio signal for image sequence of figure 2.
(b) alternate audio signal recorded from different subject.

sequences. Table 1 summarizes the results. The previous sequences correspond
to subjects 1 and 2 in the table. In every case the matching audio/video pairs
exhibited the highest mutual information after estimating the projections.

Table 1. Summary of results over eight video sequences. The columns indicate which
audio sequence was used while the rows indicate which video sequence was used. In all
cases the correct audio/video pair have the highest relative MI score.

a1 a2 a3 a4 a5 a6 a7 a8

v1 0.68 0.19 0.12 0.05 0.19 0.11 0.12 0.05
v2 0.20 0.61 0.10 0.11 0.05 0.05 0.18 0.32
v3 0.05 0.27 0.55 0.05 0.05 0.05 0.05 0.05
v4 0.12 0.24 0.32 0.55 0.22 0.05 0.05 0.10
v5 0.17 0.05 0.05 0.05 0.55 0.05 0.20 0.09
v6 0.20 0.05 0.05 0.13 0.14 0.58 0.05 0.07
v7 0.18 0.15 0.07 0.05 0.05 0.05 0.64 0.26
v8 0.13 0.05 0.10 0.05 0.31 0.16 0.12 0.69

6 Conclusions and Future Work

We have presented an information theoretic approach to the problem of find-
ing cross-modal correspondence. A new probabalistic formulation of joint signal
generation was proposed, and we showed how maximizing mutual information
could find desired correspondences. Informative subspaces can be found with
non-parametric density models and second order approximations to mutual in-
formation. To find these robustly, we proposed new prior terms on projection
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coeficients. Our approach was applied to the problem of audio-visual localization
and verification, detecting the correspondence between the speech and appear-
ance of a human speaker without having any prior model of that user in either
domain. In all the cases that we tried, our technique was able to correctly pair
the video with the corresponding audio from a particular individual, and localize
where in a video frame the user’s face was present.
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