
Automatic hierarchical classification using time-based co-occurrences

Abstract
While a tracking system is unaware of the iden-

tity of any object it tracks, the identity remains the
same for the entire tracking sequence. Our system
leverages this information by accumulating joint co-
occurrences of the representations within the sequence.
These joint co-occurrence statistics are then used to
create a hierarchical binary-tree classification of the
representations. This method is useful to classify se-
quences as well as individual instances. We illustrate
the use of this method on two separate representations-
the tracked object’s position, movement, and size; and
the tracked object’s binary motion silhouettes.

1 Introduction
Infants have an innate ability to do primitive track-

ing. As they track objects, they are unaware of the
identity of the object. But as long as they observe a
stable input signal, they can be relatively certain that
the object is the same object. Whether this informa-
tion is simply useful in the development of a normal
visual system or absolutely necessary can be debated
at another time. In either case, we are investigat-
ing using the information gained by simple, primitive
tracking behavior to aid in visual tasks- in particular,
unsupervised hierarchical classification.
1.1 Our approach
Our simple adaptive background tracker, as de-

scribed in [1, 4], has tracked over 10 million objects
over the past 15 months. As shown in Figure ??, ev-
ery frame that an object is tracked its location (x,y),
speed/direction (dx,dy), and size are recorded. Also,
an image of the object and a binary motion silhou-
ette are cropped from the original image and the bi-
nary difference image respectively. The two sets of ex-
periments covered in this paper perform classification
based on the {x,y,dx,dy,size} representation and the
binary motion silhouette representation using literally
millions of training examples. Rather than using se-
quences to create a sequence classifier(as is most com-
mon), we are using the sequences to create a instance
classifier.
Our method involves developing a codebook of rep-

resentations using an on-line Linear Vector Quanti-
zation(LVQ) on the entire set of representations ac-

Figure 1: This figure shows a single frame from a typ-
ical scene and the information which recorded for the
two moving objects. The fields which are used for the
two classification examples are labeled.

quired by the tracker. Second, we accumulate joint
co-occurrence statistics over the codebook by treating
the set of representations in each sequence as an equiv-
alency multi-set. Finally, we perform hierarchical clas-
sification using only the accumulated co-occurrence
data.

1.2 Previous work
Our method is most similar to the work of John-

son and Hogg [2]. They begin their process by on-line
Linear Vector Quantization on the input space. But,
they then quantize again into a predetermined number
of probability distribution functions (pdfs) over their
discrete states. While a significant number of these
pdfs will result in tight clusters of activity, it is un-
clear how to relate two inputs that are grouped into
separate pdfs or to select the proper number of pdfs.
Our hierarchical classification involves a step that

has the flavor of Normalized Cuts and its many deriva-
tives (see [3]). It has discrete nodes (defined by the
codebook). It has edges which represent pair-wise dis-
tances (or dissimilarities or costs) between them. In
addition, the goal is to determine two sets of nodes
that are dissimilar. However, that is the extent of
the similarity. Our “costs” are probabilities, not “dis-
tances.” Those similarities are not directly related to
the coordinates or properties of the nodes, but rather
are measured empirically from the data. Our “cut”
does not produce two discrete sets that minimize the
cut “similarities.” It produces two distributions that
both explain the observed joint statistics and are rel-
atively dissimilar and match the co-occurrence data.

The following sections describe the method, show
two sets of results, discuss ways of improving this
method, and draw conclusions.

2 The Method
This section outlines the basic process. First, a

codebook is generated using Linear Vector Quantiza-
tion. Second, the automatically tracked sequences are
used to define a co-occurrence matrix. Finally, the
co-occurrence data is used to probabilistically break
apart the representations in the codebook into a bi-
nary tree representation.
We assume that the tracker will produce sequences

of representations of the same object(e.g. a particular
person or particular vehicle). This must be taken into
account when developing the tracker, because acciden-
tal tracking errors can result in false equivalences.
2.1 Codebook generation
A codebook is a set of prototypes which can be used

to represent the input. Once a codebook is generated,
it is used as a lookup table for incoming values. Given
the desired size of the codebook, the goal of quantizing
is to determine a set of prototypes which best repre-
sents the dataset. Our results were produced with
codebooks of 400 prototypes. An input is defined by
the prototype which is nearest to it. More complex
spaces (e.g. color image space) would necessitate a ei-
ther more prototypes or more complex prototypes.
Depending on the complexity of the input space,

it may be difficult to create an effective codebook of
representations. If all the representations in the code-
book are equally likely to result from all the underlying
classes, this system will fail. For example, if none of
the representations in your codebook is more likely to
result from a person than a vehicle, there will be no
possibility of using those representations to differen-
tiate people and vehicles without additional informa-
tion.
While this may seem unsettling, we are encouraged

by our ability to generate large codebooks. Large
codebooks are usually troublesome because as the size
of the codebook, K, increases, the amount of data
needed for effective codebook generation increases on
the order of K. Also, the amount of data needed for
co-occurrence statistics accumulation increases on the
order of K2. Since our system automatically collects
and processes data, we have hundreds of gigabytes of
tracking data for future processing steps. And, our
method converges as the amount of data increases
rather than suffering from over-fitting.
For the quantity of data and the number of proto-

types we use, an off-line method, such as K-means, is
not an option. The simplest method of Linear Vector

Quanitization is to initialize the codebook randomly
with K prototypes centered at existing data points.
Then, take a single data point and find the closest
prototype in the codebook. Then, adapt that proto-
type towards the current data point using a learning
factor, α. The α value is slowly decreased over time
until the prototypes are static.
Unfortunately, a prototype may be too far from

any data points to “win” leaving it stranded in an
area where it doesn’t represent significant data. We
have circumvented this problem with a method used
by Johnson and Hogg[2].
An area of high data point density may accumulate

a large portion of the prototypes, leaving few proto-
types for the rest of input space. In some cases, it may
be desirable to have a large number of prototypes in
the high-density areas because those regions may be
the most ambiguous regions of the input space (e.g.
traffic at an intersection). In other cases, the areas of
high density may arise from uninteresting, repetetive
input data (e.g. scene clutter) and there is no ben-
efit to wasting a large portion of your prototypes in
that region. We currently filter most of the sequences
which are less than a few seconds in duration. This fil-
ters most of the repetative motions in the scene before
the learning process.

2.2 Accumulation of co-occurrence statis-
tics

Once the codebook has been generated, the input
space is no longer considered. Every input data point
is labeled as the most representative prototype- the
one that is nearest to it. So rather than considering
a sequence of images, binary silhouettes, positions, or
histograms, we only consider sequences of symbols, s1

through sK , corresponding to the K prototypes.
Further, our method disregards the order of the se-

quence and considers them as multi-sets of symbols. A
multi-set is a set which can contain multiple instances
of the same element.
The goal of this system is to produce a classifica-

tion system which can be given one or more observa-
tion(e.g. an image, a silhouette, etc.) of a particular
class and classify it. This is in contrast to systems
that are specifically designed to recognize sequences
(e.g. Hidden Markov Models). When the system has
learned to classify an object based on its motion sil-
houette, color histogram, or size, it should be capable
of doing so with a single example. Of course, the sys-
tem should perform better if given multiple examples,
but it should not rely on seeing a complete sequence.
Our model for the production of the sequences is

simple. There are N underlying classes which occur

with some prior probability, πc. A class c, when ob-
served, has some probability distribution, pc(.), defin-
ing the probability it will produce each of the pro-
totype’s symbols. As long as the object is observed,
it will produce symbols given the same distribution.
This model reflects our assumption of the indepen-
dence of samples in a sequence discussed earlier.
The multi-sets of prototypes are used to estimate a

co-occurrence matrix, C where ci,j is the estimated
probability that a sequence from the training se-
quences will contain an input represented by the ith

prototype and a separate input represented by the jth

prototype.
First, an matrix of the accumulated co-occurrences,

Ctotal
i,j , is initialized to zeros or a prior joint distribu-
tion (see Future work section). Given a multi-set, each
possible pair (excluding pairing symbols with them-
selves) is added to Ctotal weighted inversely by the
number of pairs in that sequence. Given a sequence,
S = {S1, S2, ...}, for each pair {Si, Sj where i �= j}

Ctotal
i,j = Ctotal

i,j + 1/P (1)

where P = |S|2 − |S| is the number of valid pairs
in this sequence. Then the current joint co-occurrence
estimate, C, is Ctotal normalized

C = Ctotal/Z (2)

where Z is the number of sequences currently used
to estimate Ctotal.
If there was a single underlying class and infinite

sequences to train, Ci,j would converge to p1(i)∗p1(j).
In such a case, nothing can be said about the relative
relationships of the prototypes. With N underlying
classes,

lim
Z→∞

Ci,j =
N∑

c=1

πc ∗ pc(i) ∗ pc(j) (3)

Given enough synthetically produced data from a
system for which each class has one prototype for
which it is the sole producer, it is possible to solve
for all parameters of the model. Since this is a re-
strictive case, we will not pursue it here. The next
section outlines how our system extracts a hierarchi-
cal approximation to these classes.
2.3 Hierarchical classification
Our classification method involves taking the entire

set of prototypes and the co-occurrence matrix and
attempting to determine two distributions, or proba-
bility mass functions(pmfs), across the prototypes of
the codebook that best explain the co-occurrence ma-
trix. Once these distributions are determined, each

distribution is treated as another set of prototypes and
their co-occurrence matrix is estimated. The process
is repeated to produce a binary classification tree of a
predetermined height.
The root of the tree represents the universal pmf

including every prototype in proportion to how often
it actually occurred. At each branch in the tree, the
pmf is broken into two separate pmfs that are rela-
tively dissimilar. This process does not necessarily
guarrantee that the two pmfs will sum to the parent
pmf.
At each branch, we initialize two random pmfs with

two priors, π1 and π2, use the pmfs and priors to create
an estimate of the co-occurrence matrix,

Ĉi,j =
N∑

c=1

πc ∗ pc(i) ∗ pc(j) (4)

and iteratively re-estimate the parameters to mini-
mize the sum squared error

E =
∑

i,j

(Ci,j − Ĉi,j)2 (5)

The update rules are

πc = (1−απ)∗πc+(απ)∗
∑

i,j

(Ci,j − Ĉi,j)∗pc(i)∗pc(j)

(6)
and

pc(i) = (1−αp) ∗ pc(i) + (αp) ∗
∑

j

(Ci,j − Ĉi,j) ∗ pc(j)

(7)
where c is the class(c ∈ {0, 1}) and the learning fac-

tor for the priors, απ , is higher than the learning factor
for the pmfs, αp. It is sometimes useful to put soft con-
straints on the priors to insure both distributions rep-
resent significant portions of the co-occurrence data.
At each branch, the parent distribution is used

to estimate the co-occurrences that result from that
class. The co-occurrence for the left branch subprob-
lem would be derived from the original co-occurrence,
C, and the left pmf, p0(.) as follows

C0
i,j = Ci, j ∗ p0(i) ∗ p0(j) (8)

C0 is used to determine the children pmfs of p0(.),
p00(.) and p01(.). For example, if a pmf was uni-
form over half the prototypes, the co-occurrence ma-
trix used for its children would include only the co-
occurrences between those prototypes. If this was not
done, every branch may result in the same pmfs as the
initial branch.

Figure 2: This figure shows a synthetic classifica-
ton example with three underlying classes. The first
branch separates the class which doesn’t have any over-
lap from the other two. That separable class cannot
be further separated. The other two classes are sepa-
rated at the next branch. Increasing the height of this
synthetic example would result only in duplicating the
current leaf nodes.

2.4 Using the classifier
Once the parameters for the pmfs have been de-

termined. Any exclusive set of them can be used as
classifiers. An exclusive set of prototypes can be deter-
mined by using the leaf nodes of any pruned version
of the binary tree. In the examples below, we have
simply chosen a single level to do the classification.
Each observation in a sequence is treated as an

independent observation. Thus the probability of a
particular class is the product of the probabilities of
that class producing each of the observations in the
sequence. This can be computed by using the dot
product of the log of the pmfs(with prior) with the
accumulated prototype histogram from the sequence.
2.5 A simple example
Figure 2 shows a synthetic example. Using the pre-

defined classes and priors, a root pmf and a root co-
occurrence matrix can be formed. At each branch the
pmf is broken into two pmfs which best explain the
observed joint co-occurrences. The classification hi-
erarchy behaves as would be expected, first breaking
apart the class which never presents like the other two
classes, then breaking the other class.

3 Results
The following two examples involve creating a clas-

sification hierarchy using the same number of proto-
types, the same learning parameters, and the same
sequences produced by our tracking system. The only
difference is that one uses position, speed, direction,

and size as a representation while the other uses bi-
nary motion silhouettes as a representation.
3.1 Classifying activities
This example classifies objects based on a repre-

sentation of their position, speed, direction and size
(x,y,dx,dy,s). First, four hundred representative pro-
totypes are determined. Each prototype represents
all the objects of a particular size that are seen in a
particular area of a scene moving in a particular direc-
tion. Co-occurrences are accumulated using 24 hours
of sequences from that scene. Finally, the universal
pmf (the true pmf of the entire set of sequences) is
probabilistically broken into two pmfs.
The process is repeated to produce a binary tree

of height 4 detailed in Figure 3. Figure 4 shows the
history of one particular day.
3.2 Classifying motion silhouettes
While this example results in a rather simple clas-

sification, it illustrates an intended use for this type of
classification. LVQ resulted in 400 silhouettes of vehi-
cles and people. The first break broke the silhouettes
into two relatively discrete classes, people and vehicles.
Some of the more blurry prototypes remained ambigu-
ous because they matched both vehicles and people.
Figure 5 shows the co-occurrence matrix, the pmfs,
and some examples of prototypes from both classes.
In this case, the first branch was the only significant
branch. Further, branches were less interesting. The
resulting classifier was over 98people.

4 Future work
The most obvious weakness of this algorithm is the

need to discretize complex input spaces. We are cur-
rently investigating automatically deriving local fea-
ture sets using LVQ on sub-images and learning those
features similarities using local (in time and space) co-
occurrence measurements. Doing this hierarchically
hold promise for learning useful feature sets and bet-
ter prototypes.
This could also be useful for texture segmentation.

For example, create 10,000 texture prototypes and
define their similarity based on which prototypes oc-
cur near other prototypes (spatially and temporally).
Learning similarities this way, rather than attempt-
ing to assert a prior for which textures are similar,
takes advantage of domain specific regularities and
could define regularities in domains where it is not
certain how similar two textures are.
Of course, assumed similarities are useful, particu-

larly in cases where there is not enough data. In such
cases, the Ctotal can be seeded with a co-occurrence
matrix. Hence, prototypes without sufficient represen-
tation will assume the similarities they are given while

Figure 3: This figure shows an image of the scene(upper left), the classification hierarchy(center), and the co-
occurrence matrix(upper right) and normalized pmfs for each element of the tree. The scene contains a road with
adjacent parking spots and a path through the grass near the loading bay of our building. The binary tree shows
accumulated motion templates for each node of the tree. The first break separates traffic moving in one direction
around the building and traffic moving in the other direction, because objects in this scene did not generally change
their direction. The second break for both branches separates traffic on the road and traffic on the path. While there
are some prototype states which we common to both activities, these two activities were significantly different and
accounted for a significant amount of the data. Further bifercations result in classes for: pedestrians on the path;
pedestrians and lawn-mowers on the lawn; activity near the loading dock. cars; trucks; etc. These classes can
be viewed in a Java 1.1 compatible browser at: http://www.ai.mit.edu/projects/vsam/Classification/Cclasses/.
Note: the co-occurrence matrix has been ordered to make some of its structure more evident.

Figure 4: This figure shows how many of the activities were detected on a particular day. The first two columns
correspond to the initial branch. The following four columns correspond to the next level of the binary classification
tree. The last 8 columns are the leaf nodes of the classification tree. Below some of the columns the primary type
of activity for that node is listed. Morning rush hour is highlighted in green and shows traffic moving mostly in
one direction. The lunch-time pedestrian traffic is highlighted in red. The evening rush hour is highlighted in blue
and shows more movement in the opposite direction as the morning rush hour.

(a)

(a)

(a)

(a)

Figure 5: (a) shows the co-occurrence matrix and re-
sulting pmfs. Some of the prototypes from the person
class(b), vehicle class(c), and some prototypes which
were significantly ambiguous(d). In C, the upper left
corresponds to silhouettes of people and the lower right
corresponds to silhouettes of vehicles. The vehicles
show less statistical independence because vehicles in
this particular scene were only scene as they passed
through particular orientations. If the scene contained
vehicless driving in circles, the corresponding proto-
types would exhibit more independance. Note: the co-
occurrence matrix has been ordered to make some of
its structure more evident.

the similarities of the prototypes which are observed
often are determined by the data.
Finally, we are investigating using both the pro-

totypes and the co-occurrences to detect outliers. If
many data points in a sequence are not represented
by a prototype, it may be an unusual event. Also, a
sequence’s co-occurrences are very unlikely given the
joint co-occurrences, it is likely to be unusual.

5 Conclusions
We have motivated and implemented a new ap-

proach to automatic object classification. This ap-
proach has shown promise with two contrasting clas-
sification problems. In one case, it produced a non-
parametric activity classifier. In the other case, it pro-
duced an binary image-based classifier. We are cur-
rently investigating many other possible uses for this
method.
Acknowledgments
This section is intentionally left blank for the review

process.

References
[1] Grimson, W.E.L., Chris Stauffer, Raquel Romano,
and Lily Lee. “Using adaptive tracking to clas-
sify and monitor activities in a site,” In Computer
Vision and Pattern Recognition 1998(CVPR98),
Santa Barbara, CA. June 1998.

[2] Johnson N. and Hogg D. C. “Learning the Distri-
bution of Object Trajectories for Event Recogni-
tion.” In Pycock D., editor, British Machine Vi-
sion Conference, pages 583-592. BMVA, Septem-
ber 1995.

[3] Shi, Jianbo and Jitendra Malik. ”Normalized Cuts
and Image Segmentation,” In Proc. of the IEEE
Conf on Computer Vision and Pattern Recogni-
tion, San Juan, Puerto Rico, June 1997.

[4] xxx, xxx. “Adaptive background mixture models
for real-time tracking,” In submission, 199x.

