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The Problem: The memory model of early computers was simple: memory was external storage for data; data could
be modified or retrieved by supplying the memory with an appropriate physical address. This model was directly
implemented in hardware by discrete memory components. After several decades of computing, memory models have
expanded to include mechanisms such as virtual memory, segmentation, and protection in a shared environment, yet
the underlying hardware has not changed (other than becoming faster and denser). Instead, complexity has been added
to processors in the form of logic which performs translations from sophisticated memory models to simple physical
addresses.

There are a number of drawbacks to this approach. The overhead associated with each memory reference is large
due to the need to look up segment descriptors and page table entries. All modern processors make use of translation
lookaside buffers (TLB’s) to try to avoid the performance penalties associated with these lookups. A TLB is essentially
a cache, and as such provides excellent performance for programs that use sufficiently few segments/pages, but is of
little use to programs whose working set of segments and/or pages is large. For example, an attempt to use segments
to implement per-object protection would be disastrous for programs with a large working set of objects. Another
problem common to any form of caching is the “pollution” that occurs in a multi-threaded environment; a single TLB
must be shared by all threads which reduces its effectiveness and introduces a cold-start effect at every context switch.
Thus, reliance on a TLB is an obstacle to fine-grained multithreading. Finally, in a multiprocessor environment the
TLB’s must be kept globally consistent which places constraints on the scalability of the system.

Motivation: An alternate approach which is conceptually appealing is to introduce hardware mechanisms which
directly implement the memory model. With the recent ability to place logic and memory on the same die, this
approach may be not only appealing but also practical. There is an opportunity to explore novel memory system
architectures with improved support for flexible security, efficienct multithreading and high scalability (beyond one
million nodes).

Previous Work: A number of interesting mechanisms have been described in the literature and/or implemented in
commercial machines. Guarded Pointers [2], introduced by Carter et. al., are a form of unforgeable capabilities [3]
which include both a pointer and segment information within the guarded pointer itself. This allows the hardware to
guarantee that user programs will make no illegal memory references without requiring any form of capability/segment
table. It is therefore safe to use a single shared virtual address space which greatly simplifies the memory model.
Additionally, the number of segments is essentially unbounded; in particular object-based protection schemes become
practical.

The address centrifuge in the Cray T3E [4] is used to distribute virtual addresses among physical processing nodes in
a flexible and relatively efficient manner. For each index into a large distributed object, a mask specifies which bits
are used to form the processing element number. This allows data to be arranged in a hypercube divided into identical
sub-cubes, where all sides are arbitrary powers of two and individual sub-cubes are mapped to a single processing
element. Furthermore, no global translation tables are required.

Both the Tera [1] and the Cray T3E [4] support simple atomic read-modify-write memory operations such as adding
an integer to the contents of a memory location. These operations are useful for synchronization and are inexpensive
to implement in hardware.

Approach: The Aries architecture, currently under development, is a shared memory multiprocessor with a number
of hardware mechanisms which directly implement the memory model. The architecture uses 129 bit guarded pointers
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which are broken down into 1 tag bit to distinguish pointers from data, 64 bits of virtual address, and 64 bits of
segment information (e.g. permission bits, segment size, etc). Our guarded pointer format supports pointer arithmetic,
nearly-tight object bounds (less than 6% internal fragmentation), sub-segmentation, typing, and exact array bounds.

Virtual to physical address translation is performed by the memory itself rather than by the processor. Associated
with each bank of DRAM is a hardware page table with one entry per physical page. These hardware page tables are
similar in structure and function to the TLB’s of conventional processors. They differ in that they are persistent (since
there is a single shared virtual address space) and complete; they do not suffer from pollution or cold-starts. They are
also slightly simpler from a hardware perspective due to the fact that a given entry will always translate to the same
physical page.

To translate virtual addresses to physical nodes, the Aries architecture usesmultistriped addressing. The top five bits
of the virtual address index the node ID N within the address itself (Figure 1). This allows data in a contiguous virtual
address space to be striped across nodes with any power-of-two granularity ranging from one byte to two gigabytes.
Multistriped addressing is a simplification of the Cray T3E address centrifuge [4]: neither software cooperation nor
external masks are required.

With the ability to place logic and memory on the same die, there is a strong temptation to engineer “intelligent”
memory by adding some amount of processing power. However, in systems with tight processor/memory integration
there is already a reasonably powerful processor next to the memory; adding an additional processor would do little
more than waste silicon and confuse the compiler. The processing performed by memory in the Aries architecture
is therefore limited to simple single-cycle atomic memory operations such as addition, maximum, and boolean logic.
These operations are similar to those of the Tera and Cray T3E memory systems [1, 4].

Impact: The memory model and its implementation have a direct impact on system performance, programmability
and scalability. Guarded pointers provide a flexible security model and guarantee the safety of a shared virtual address
space. A single virtual address space reduces the amount of state associated with a thread of execution, resulting
in more efficient multithreading. Implementing virtual memory at the memory rather than at the processor, using a
combination of hardware page tables and multistriped addressing, obviates the need for global translation tables or
TLB’s and therefore improves system scalability. Atomic memory operations augment existing datapaths with small
amounts of logic to provide an efficient set of synchronization primitives.

Future Work: It remains to properly evaluate the described hardware mechanisms. Incorporating them into the Aries
architecture will allow us to quantify their costs and benefits in the context of a massively parallel shared memory
machine.
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Figure 1: Multistriped addressing. The striping granularity (S) specifies the loca-
tion of the node ID (N) within the virtual address.
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