
Generating Relations from Natural Language Using
REXTOR

Boris Katz, Jimmy Lin & Sue Felshin

Artificial Intelligence Laboratory
Massachusetts Institue Of Technology
Cambridge, Massachusetts 02139

http://www.ai.mit.edu

The Problem: Everyone wants to be able to find information rapidly and conveniently. Ideally, we would like to have
a system with the understanding of a human being and the perfect memory of a computer. A user should be able to
pose a question in plain English—for example, “what do frogs eat”—and get a sensible answer, such as “Adult frogs
eat mainly insects and other small animals, including earthworms, minnows, and spiders.”

A full natural language processing (NLP) system should have the language comprehension of a human, but NLP has
not yet advanced to that level. When applied to information retrieval (IR), NLP systems suffer from poor recall because
data cannot be parsed quickly or accurately enough, so that too little knowledge is correctly indexed.

The field of IR has traditionally sidestepped NLP and relied on simple, fast techniques, primarily the “bag-of-words”
approach, which equates the weighted component keywords of a document with its semantic content. Keyword-based
IR systems suffer from poor precision because they will retrieve documents containing query keywords regardlesss
of whether the keywords are related to the sense of the query. For example, such a system might erroneously answer
“what do frogs eat” with “Bowfins eat mainly other fish, frogs, and crayfish”, because both query and answer contain
the words ‘frogs’ and ‘eat’.

Motivation: Keyword-based IR is clearly useful to a degree, as demonstrated by the popularity of Web search engines,
yet too many searches return a large number of irrelevant links. A solution to the full NLP problem, which would yield
high precisionandhigh recall, could still be years away. In the interim, we would like to build a system that combines
the high recall of IR with the high precision of current NLP.

Previous Work: For a more detailed description of REXTOR, see [2].

Approach: We wish to bridge the gap between natural language and information retrieval by distilling natural lan-
guage text into a representational structure that is amenable to fast, large-scale indexing. We believe that a finite-state
model of natural language with ternary expression representation is currently the most suitable combination for this
task.

Two major problems in producing representations with full NLP systems are that language is so complex that it cur-
rently takes too long to parse large amounts of text (and much text can not be parsed at all without human intervention)
and that when we do manage to parse, the resulting representations are so detailed that they overwhelm current index-
ing and retrieval schemes with too much data.

While a finite state parser cannot perfectly model theoretical human linguistic capabilities, its computational power is
good enough for practical purposes; that is, a finite state parser can capture most of the structure of the language which
humans actually produce.[3] By substituting a finite state parser for a fully capable parser, we can parse rapidly and
still find most of the linguistic relationships within language. We can customize our grammar to parse more or fewer
relationships, so as to find and index only as many relationships as our indexer can efficiently index and retrieve.

Rather than representing linguistic relationships as syntactic parse trees or semantic case frames, we represent them as
ternary expressions. Ternary expressions are two place predicates of the form{subject relation object}, for example
{frog eat insect} or {animal include earthworm}. For 20 years, they have been successfully used by the START
system [1] to store knowledge and answer queries. Ternary expressions fail to capture some subtleties of language, but
they represent the basic sense of language, and because they are so simple in form, they can be indexed and retrieved
rapidly.

1



Our finite state parser uses a grammar of extraction rules to find syntactic structures within text and relation rules to
construct ternary expressions from syntactic structure.

Given the noun phrasethe big, bad wolf of the dark forest, REXTOR uses extraction rules to recognize two “noun
groups”: the big, bad wolfandthe dark forest. The corresponding relation rule triggers, and generates the following
relations (ternary expressions):< big describes wolf >, < baddescribes wolf >, < darkdescribes forest>.
In addition, the entire noun phrasethe big, bad wolf of the dark forestwill be recognized as a complex noun group.
This will result in the following relation:< wolf related-to forest>.

The relations are then indexed, and queries are answered by matching ternary expressions from the query with ternary
expressions extracted from the indexed text.

Difficulty: Although the system composed of REXTOR and the ternary expressions indexer is slower than the simple
keyword indexer, we believe that the potential to dramatically increase precision offsets the longer processing time.
More notably, when making use of the linguistic relations in text, it is necessary to detect when structures have similar
meanings but differ in form, e.g., “eat” should match “feed on”; “the frog’s diet is X” should match “the frog eats
X”. Otherwise the system’s recall will suffer as it fails to match queries to text that was indexed differently. The ideal
full NLP system would completely understand not just the structure but also the meaning of all text. REXTOR, on the
other hand, is capable of equating minor variations in language, such as synonyms, active/passive, etc., but it cannot
yet recognize greater variations.

Impact: By using simplified NLP techiques which are rapid yet retain much of the intelligence of full NLP, and
applying them to the domain of IR, we should be able to improve on keyword-based IR algorithms without suffering
the drawbacks of full NLP systems, as shown in Figure 1. Here, a standard keyword-based IR system retrieved 32
answers from an encyclopedia, two of which were correct, while REXTOR returned only the two correct answers.

Question: What do frogs eat?
Answer:

Keyword-based IR system:
(R1) Adult frogs eat mainly insects and other small animals,
including earthworms, minnows, and spiders.
(R2) Bowfins eat mainly other fish, frogs, and crayfish.
(R3) Most cobras eat many kinds of animals, such as frogs,
fishes, birds, and various small mammals.
(R4) Cranes eat a variety of foods, including frogs, fishes,
birds, and various small mammals.
(R5) Frogs eat many other animals, including spiders, flies,
and worms.
. . .
(R32)

REXTOR:
(R1) Adult frogs eat mainly insects and other small animals,
including earthworms, minnows, and spiders.
(R2) Frogs eat many other animals, including spiders, flies,
and worms.

Figure 1: Example of keyword-based IR vs. REXTOR.

Future Work: The current version of REXTOR is a prototype; we need to extend the grammar, index large amounts
of text, and test a variety of queries to vet the effectiveness of this approach. We would like to explore combined
approaches to resolve some of the speed and low recall issues with REXTOR; perhaps we could use keyword-based IR
as a first pass and REXTOR as a second pass.

Research Support:This research is funded by DARPA under contract number F30602-00-1-0545 and administered
by the Air Force Research Laboratory.

References:

[1] B. Katz. Using English for Indexing and Retrieving. in P. H. Winston and S. A. Shellard (eds.),Artificial
Intelligence at MIT: Expanding Frontiers,vol. 1, MIT Press, 1990.

[2] B. Katz and J. Lin. REXTOR: A System for Generating Relations from Natural Language. (to appear inProceed-
ings of ACL 2000 Workshop on Recent Advances in Natural Langauge Processing and Information Retrieval).

[3] K. Church. On memory limitations in natural language processing.Technical Report TR-245, MIT Laboratory
for Computer Science, 1980.

2


