A Simple, Scalable Processor-in-Memory Micrn-
processor for HPC Systems

Michael P. Phillips

Artificial Intelligence Laboratory
Massachusetts Institue Of Technology
Cambridge, Massachusetts 02139

@ MIT
http://www.ai.mit.edu

The Problem: There is a need for computer systems which can provide large amounts of computing power to solve
problems with enormous requirements in terms of memory, computation, and communication resources. Examples of
such problems are protein folding, graphics rendering, physical simulations, and factoring. Traditional microprocessor
designs suffer from inefficient use of silicon area, power consumption, scalability problems, and the legacy of how the
designs have evolved over time.

Motivation: Advances in semiconductor fabrication technologies, such as modern transistor densities and new logic
processes like processor-in-memory (PIM), might best be incorporated into new processor designs by starting from a
completely clean slate. The goal is to develop a system scalable to at least one million processors with sufficiently high-
bandwidth network interconnect and processing power to enable the system to set new standards for high-performance
computing (HPC) systems.

Although there are many elements to this complex system, the design of the processor itself is certainly of interest. The
need to replicate the processor one million times requires that the design be area- and power- efficient. Fast processing
in a simple processor core will rely on being able to have fast access to memory (hence, PIM seems ideal) and on being
able to support multiple simultaneous threads in order to hide latency when communicating with remote processors or
accessing remote data.

Previous Work: Several promising investigations of the utility of PIM systems[1, 2, 3, 4] are part of the inspiration for

this approach to processor design. There are several supercomputer implementations and designs based on networking
a large number of processors, from cluster approaches like Beowulf, to more tightly integrated solutions from SGI
and Sun. These solutions do not scale well to very large numbers of nodes. IBM’s on-going Blue Gene project is an
example of a project with motivations similar to ours. While not complete, the design appears to suffer from very low
network bandwidth and may fall short of providing a sufficient amount of processing power to meet its goal of being a
good platform for modeling protein-folding. It is difficult to evaluate at this stage, but it appears that PIM technology

will not play arole.

Approach: We need a simple processor that is efficient in terms of area used for actual computation and power con-
sumption. Traditional microprocessors spend an enormous amount of area on caches and control, with a comparatively
small amount of area being spent on actual computation. This is consistent with being optimized for a single-thread
of execution. Our processor can give up much of this complexity and focus on being able to execute many threads,
switching among them to hide latency when data is needed but not yet available. By not including circuitry to perform
complex operations such as out-of-order issue, speculative execution, and branch prediction, we believe we will save
a significant amount of area.

With a small enough processor core, we can actually combine multiple cores on the same silicon die. This is advan-
tageous for a couple of reasons. First, we observe that at current transistor sizes, clock rates, and die sizes, it is not
possible to communicate across the die in a clock cycle or two. We prefer that the core be simple and compact, to keep
communication delays between components to a minimum. Second, bigger problems can be solved on a single die if
there are multiple cores each capable of executing multiple threads. It is preferable to keep network communication
on-chip if possible for speed and bandwidth.

Integration of processor and memory is also key. Cache coherency protocols do not scale well to large numbers of
processing nodes. Tight integration of processing elements and memory reduces the desire for caches, as the memory
itself provides a wide high-bandwidth connection to the core. We believe that the view of a processor and off-chip



memory connected by a high-latency low-bandwidth pipe is a thing of the past, thanks to innovations in memory
fabrication technology[5].

Impact: The design of such a processor provides a key element to a new shared-memory HPC architecture. While it
is not the whole story, it is vital that the processor be simple enough to be designed quickly and to make scaling to
one million nodes or more feasible. Currently, we are working on processor core designs using FPGA synthesis and
simulation tools. When the core is ready for further testing, it will be implemented on a Processor-In-Memory System
Simulator[6] known as the “Moore board.”

Future Work: The Moore board will provide a test environment suitable for evaluating several design variations.
There are plenty of features that require some investigation before a specific design is settled upon. Handling multiple
threads elegantly, providing hardware support for a VLIW-style instruction set architecture, providing capabilities
support, and dealing with intra-node communication on and off chip are all examples of such features. A very large
body of data will be obtained on the utility of such features and on their particular implementations. When a suitable
processor design is selected, the task then shifts to prototyping a small system, a single board with a handful of such
processors, for additional scalability testing and fine-tuning before a larger system is built.

[height=3in, width=3in]figures/phillips.eps
Potential configuration of several processing elements (PE) on a single die.

Research Support: Support for this research was provided by the Air Force Research Laboratory, agreement number

F30602-98-1-0172, “Active Database Technology.”

References:

[1] F T.Chong, M. Oskin, T. Sherwood. Active Pages: A Computation Model for Intelligent Meh8@A 1998,
Barcelona, Spain

[2] C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic, N. Cardwell, R. Fromm, J. Golbus,
B. Grbistad, K. Keeton, R. Thomas, N. Treuhaft, K. Yelick. Scalable Processors in the Billion-Transistor Era:
IRAM |IEEE ComputerSeptember, 1997, pp. 75-78.

[3] Margolus, Norman. An Embedded DRAM Architecture for Large-Scale Spatial-Lattice ComputdS@ws
2000, Vancouver, CanadRroceedings, pp. 149-160.

[4] S. Perissakis, Y. Joo, J. Ahn, A. DeHon, J. Wawrzynek. Embedded DRAM for a ReconfigurableAoeged-
ings of the 1999 Symposium on VLSI Circuiisne 1999.

[5] Glaskowsky, Peter N. MoSys Explains 1T-SRAM Technolddigroprocessor ReporSept 1999.
[6] Huang, Andrew. Processor-In-Memory System Simula¥ti. Al Lab Abstracts of Research Projeceall 2000.



