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Objective: To develop a computational model of object detection in rapidly presented visual images, using a three-
pronged approach consisting of computational modeling in interaction with human psychophysics and physiological
studies in the macaque.

Motivation: During natural viewing, humans constantly make eye movements, on average three per second [18].
Consequently, the visual system must be able to quickly extract relevant information from a visual scene, for instance
during object detection tasks such as predator/prey detection. Previous work [7] has shown that humans are able to
detect objects (e.g., “a car”) even when they appear in a series of images presented at rates of over 8/s. So far, it is
unclear how the visual system can perform this rapid high-level cognitive task.

Previous Work: The impressive ability of the human visual system to rapidly perform object detection tasks in briefly
presented visual images was first quantitatively investigated in experiments by Potter [7] that showed that the visual
system is able to perform object detection in novel images even when they are presented at a rate of over 8/s. While
reaction times, i.e., including the time required to perform the detection as well as the (button-press) motor response,
in that study were on the order of 450ms, a recent EEG study [16] has provided evidence that the visual system can
determine within 150ms whether a novel picture contains a member of a certain object class (e.g., an animal). This
is on the order of the latency of cells tuned to (views of) complex objects in inferotemporal cortex [6], a brain area
thought to be crucial for object recognition. Taken together, these studies indicate thatat least some object detection
tasks can be performed in a time interval roughly equal to a single feed-forward pass through the ventral stream.

Surprisingly, no computational model of object detection has been proposed in the cognitive literature, where it is com-
monly assumed that “rapidly presented pictures of objects and scenes can be immediately understood” ([1], p. 239),
without closer specification of the process that enables this “immediate” scene understanding.

Approach: Given the tight time constraints and the computational complexity of scene analysis, a computationally
sensible approach to perform a detection task is to not analyze the whole scene completely but to focus on detecting the
object in question in the image, e.g., by comparing candidate image regions to templates of the target object. This is
the strategy used in state-of-the-art computer vision algorithms for object detection in cluttered scenes [5, 12, 15, 13].
These computer vision systems generally rely on a global, serial scanning procedure under central control to examine
the image. An alternative approach that uses a local, purely bottom-up process in which the image is analyzed in
parallel by a hierarchy of increasingly complex feature detectors has very recently been presented with the “HMAX”
model of object recognition in cortex by Riesenhuber and Poggio [10]. Preliminary results have been obtained for
recognition in scenes with more than one object in the visual field [9]. Building on HMAX, our approach will be to
develop a feedforward computational model in which cues act to “tune” the visual system for the task at hand. The
model’s predictions will be tested in psychophysical (in collaboration with Pawan Sinha and Molly Potter, MIT) and
physiological studies (in collaboration with Earl Miller, MIT) — the results of which in turn will serve to refine the
model. Special importance will be placed on using the same conditions in model and experiment to allow a quantitative
comparison, as we have done successfully in the case of view-tuned cells in inferotemporal cortex [10]. In particular,
we will vary cue specificity (identical picture cue, basic level cue, superordinate level cue), distractor/target similarity
(i.e., distractors of the same basic level class for identity cues etc.), and scene complexity (single, isolated objects;
combinations of isolated objects; cluttered scenes). In the psychophysical part of the project, we plan to run subjects
on an RSVP (rapid serial visual presentation) paradigm, while in the physiological studies, monkeys will perform a
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detection task similar to the one used in [16] on an identity level and a basic level, leveraging the results of an ongoing
study where two monkeys have been trained on a cat/dog basic level categorization task [3]. Here, recordings in
inferotemporal cortex will allow us to directly look at the time course of the neural response and the detection process,
and also to investigate the influence of top-down cue signals on neuronal firing.

Difficulty: While the images used in previous RSVP studies [7, 8, 4] were only loosely controlled for target/distractor
similarity and scene complexity, our proposed studies require a finer level of control of these parameters. For identity
level trials, we can use a 3D morphing system developed in Poggio lab [14] to generate distractor objects that can be
made arbitrarily similar to the target objects. We have already used this technique successfully in modeling studies
[11] and physiology experiments [3] on object categorization. In trials involving cues beyond the identity level (e.g.,
basic or superordinate level), special care must be taken to assure that subjects’ categorization schemes agree with
the ones assumed in the experiment. In the physiology experiment, it will be challenging to train the monkeys on an
additional recognition task using the same stimuli as in the categorization task.

Impact: The question we are studying, how cues on a higher level can influence processing on lower levels, is of
fundamental interest not only in vision but in many other areas of cognitive neuroscience where the brain has to filter
out the task-relevant component from a stream of incoming signals, such as in speech perception when a voice has to
be filtered out among other signals, even other speakers, such as in the “cocktail party” setting. Hence, we believe that
the mechanisms we are investigating in the visual system are likely of general relevance also to cognitive processing
in other areas of cortex. On a more practical note, insight into how the visual system performs recognition in clutter
might also be relevant to developing more powerful computer vision systems.
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