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Problem: This work addresses the problem of finding geometric representations for the multiple motions present
across many frames of a video sequence. We examine several geometric models that capitalize on the continuity and
redundancy of points tracked across frames in a sequence.

Motivation: The ability to automatically understand multiple motions in video streams when both the camera and
the foreground objects are moving is relevant to a variety of video manipulation applications. Multi-frame motion
models make possible a wealth of applications that might involve warping, stitching, editing, modifying, tracking,
synthesizing, indexing, or querying video.

Previous Work: Historically, motion analysis methods have focused on fitting geometric models to pairs or triplets
of images in an image sequence. Computational simplicity and mathematical completeness are good reasons for
analyzing only 2 or 3 images at a time, but modeling the geometry of a video stream as a chain of image pairs has
the drawback that the sets of matching points from non-consecutive frames are not explicitly constrained to satisfy a
single geometric model. They are only implicitly related through the chain of pairwise models. Such pairwise models
make sense when analyzing a collection of images taken from widely spaced and oriented camera poses because only
some views overlap enough to provide enough point matches for reliable estimates. In video, however, an abundance
of scene points are visible in every frame, son-tuples of matching image points should fit an explicit multiple-view
model of rigid motion. The problem is how to find a geometric model for a multiple-frame sequence that is both
tractable to compute and has the right numbers of degrees of freedom for the underlying camera motion. Several
approaches to fitting general, geometric models to many frames may be found in [2, 5, 7].

When the camera motions are not rich enough for general motion models, one recourse is to make simplifying as-
sumptions about the motions. Because video streams are taken from a continuously moving camera, simplified motion
models are often good local approximations to a globally more general motion, and can be modeled using differential
or instantaneous models in which 3D motions and their 2D projections are represented as time-varying functions [1, 4].
By approximating these functions with low-order Taylor polynomials, we may obtain low degree of freedom multiple-
view models that do not require 3D analysis.

Approach: Our approach to video motion analysis is to constrain the geometry of points tracked across many views
without explicitly computing 3D scene structure and camera motion. Our most general model is a collection of inter-
dependent fundamental matrices whose building block is a novel parameterization for the “third” fundamental matrix
in a triplet of images. Suppose we have three non-collinear cameras viewing a scene, and the epipolar geometry
between two pairs of the triplet has been reliably estimated. Then the fundamental matrix relating the third pair of
views is partially determined by the first two matrices. Ordinarily, the fundamental matrix has 7 degrees of freedom,
4 for the epipoles and 3 for the epipolar transformation, the collineation mapping the epipolar lines in one view to
those in the other. However, the two known epipolar geometries constrain the epipoles of the unknown view pair to
lie on a straight line, and hence only 1 parameter of each epipole is free. In addition, the known fundamental matrices
completely determine one matching line of the unknown view pair’s epipolar transformation, so the collineation has
only 2 degrees of freedom.

We have developed a technique for expressing the 4 parameters of the third fundamental matrix in terms of the two
known epipolar geometries. These parameters are then computed from point matches using a nonlinear minimization,
and are used to construct the fundamental matrix. This method is embedded in several algorithms that explore how to
choose the order of fundamental matrix estimation given many views, and how a novel frame may be integrated into
the model by constraining it to agree with a subset of frames with previously estimated relative epipolar geometries.
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Such a collection of dependent epipolar geometries forces points viewed in many images to adhere to a consistent
rigid 3D motion.

While dependent, parameterized fundamental matrices form a single, general geometric model of the relative motion
between the camera and the background, we have found that simplified motion models over multiple frames can be
good indicators of distinct 3D motions. Figure 1 shows how by making first-order approximations to instantaneous
motion models and simplifying assumptions about the complexity of motion over many frames, we can classify inter-
polated optical flow tracks into regions of distinct motions.

Difficulty: The question of how many parameters accurately model the motions in a video sequence is of great
importance. If a fully general model is chosen but the motion is linear or the optical center is stationary, the model
is under-constrained. If a simplified 3D motion model is fit, but the camera motion is very rich, the model will not
capture the full complexity of the motion.

Future Work: A difficult and pervasive problem is how to decide how general or specific the motion model for a
particular video sequence should be. For any given model, it is easy to find a video sequence for which the motions or
scene structure violate any simplifying assumptions, or for which the underlying motions are too simple to be properly
constrained by a general model. Model selection [6] is one approach to finding the most general model for which the
motions in a sequence are not degenerate. We would like to find methods that neither require a brute-force search of
all potential models, nor an a priori specification of the types of motions present in the sequence.
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Figure 1: (a) Every other frame of a ten-frame input sequence. Both the camera and the foreground jeep are moving
and points are tracked over many frames using interpolated optical flow. (b) Segmentation of the foreground (left) and
the background (right) regions. White circles indicate the locations where optical flow is measured.
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