
Data and Process Migration in the Aries Decentralized Ab-
stract Machine (ADAM)

Andrew Huang

Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

http://www.ai.mit.edu
@ MIT

The Problem: Access latency to memory is a performance bottleneck for contemporary computer systems. The
partitioning of computers into separate memory and processor components has become a bottleneck simply due to
the distance signals have to travel between these components. Figure 1 [1] illustrates the negative trend between
on-chip wire scaling and the number of reachable bits within a fixed number of gate delays. Also, the complex
memory hierarchy required to hide memory access latency hinders fast multiprocessor synchronization, limiting
system scalability.

Figure 1: Span of reachable bits vs. wire geometry; a bit is 1 SRAM cell measured at 700 λ2 (no SRAM support
circuits considered). The span first increases for f16 (f16=16FO4) as the capacity of the chip increases. Later, as wire
delays kick in, span decreases.

Motivation: The scientific and research communities have always demanded larger and faster machines. Many of
the classic “big-iron” challenges have yet to be solved, and as machines become more powerful, computer modeling
as a research tool has become more popular for almost every discipline. Some examples of problems that could
benefit from bigger computers include computational chemistry, finite element modeling, large database systems,
speech understanding and machine learning.

Previous Work: A large concern in parallel architectures that rely on caches for latency hiding are the false shar-
ing, aliasing and capacity issues that lead to lower cache hit rates. The ADAM architecture distributes processors
throughout memory at a fine granularity so there is less of a need for caches, and so the issues surrounding data
placement and movement are different. The more relevant bodies of work are in the areas of process and thread
migration. Active Threads [3] and Hsieh’s thesis [2] on dynamic computation migration are examples of previous
work that have addressed the issue of process and thread migration.

Please see also the abstract on the Aries Decentralized Abstract Machine (ADAM) for a broader overview of the
ADAM architecture.

Approach: Seymour Cray once said “You can’t fake what you don’t have”. If latency hiding is running out of
steam, then latency reduction is the only option. In a classic centralized computer organization, overall latency

16



is fundamentally limited by the amount of memory that can be packed within a certain clock-cycle radius of the
processor. However, ADAM is a decentralized machine, i.e., it is a sea of interconnect with small islands of processor
and memory sprinkled throughout. In such a machine model, one reduces latency by migrating a process and its
data closer together (figure 2).

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

40 mm�

delay >> 1�
clock cycle�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

P�

M�

40 mm�

delay ~ 1�
clock cycle�

Figure 2: Illustration of process migration to reduce latency. Interconnect area omitted for clarity. Darkest areas are
defective nodes.

Process and data migration are not new ideas; however, most efforts have been stymied by the overhead as-
sociated with migration. The limiting factors on migration include raw network performance, operating system
overhead (updating process and routing tables, message passing overhead, etc.), and most importantly, pointer up-
dates. Programs written in languages such as C or C++ are tough to break apart and migrate across a distributed
machine due to the difficulty associated with tracking down the pointers to any given data structure. The stack-
and-heap paradigm of a program runtime also complicates data relocation because of the complex pointer graphs
within and between the stack and the heap.

The ADAM architecture provides an effective solution to this problem as a result of its capability-based ad-
dressing scheme, queue-based mechanism for passing values between threads, and global uniform address space
for both memory and synchronization. Threads are light-weight under ADAM; they are tantamount to a method
invocation in conventional systems. The entire state of a thread’s computation–including the backing store for the
processor state during a context switch–is encapsulated within a single capability that is also the thread’s process
ID. These IDs are unique throughout the machine. Architecturally visible queues that take the place of a register
file in a conventional architecture enable communication between threads through queue remapping. By intimately
integrating the inter-process communication and synchronization mechanism into the architecture, OS overheads
and message passing overheads are kept to a minimum. Every queue mapping has the source and destination
process IDs recorded with it, so that migrating a thread consists of simply copying the thread capability to a new
location and updating the mappings, or leaving forwarding pointers where convenient. The decision to migrate a
thread is done through an introspective mechanism implemented by a distributed management coprocessor.

Impact: The ability to efficiently and easily migrate objects throughout a machine creates a path for machine
scalability in the latency-bound technology scenario of tomorrow. Most problems exhibit some locality, and object
migration allows the run-time to exploit this locality without programmer knowledge of the exact size or physical
layout of the target machine.

Future Work: A number of interesting and challenging issues have yet to be addressed in this nascent work. When
and where to move objects is an important issue that has yet to be answered. The current idea is to provide an intro-
spective distributed management coprocessor that runs in parallel with the ADAM execution cores; this coprocessor
will take note of the amount and destination of network traffic, and make decisions to migrate processes based on
these profiles. A first-pass at the migration algorithm is to use the “drift versus diffusion model” used to model
minority carriers in semiconductor physics; the drift force would be proportional to the volume of communication
per direction, and the diffusive force would be proportional to the congestion and load on individual nodes. This
model was chosen because it demonstrates global self-organizing behavior through a set of local rules.

Research Support: Support for this research was provided by the Air Force Research Laboratory, agreement num-
ber F30602-98-1-0172, “Active Database Technology”.

References:

[1] William J. Dally (chair). The last classical computer isat study. Slides obtained electronically, 2001.

17



[2] W.C. Hsieh. Dynamic computation migration in distributed shared memory systems. Technical Report
MIT/LCS/TR-665, Massachusetts Institute of Technology, September 1995.

[3] B. Weissman, B. Gomes, J.W. Quittek, and M. Holtkamp. Efficient fine-grain thead migration with active threads.
Proceedings of the First Merged International PPS and SPDP, pages 410–414, 1998.

18


