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The Problem: The goal of this research project is to infer the underlying mechanism and pattern of gene regulation
in yeast on the basis of combined constraints arising from multiple information sources. The available data sources
include gene expression measurements, location analysis data, as well as upstream DNA binding motifs. We need
a flexible computational framework that fully exploits the partial constraints that can be inferred from each data
source.

Motivation: Inferring the principles and mechanism of gene expression is one of the grand challenges in func-
tional genomics. A single source of information such as gene expression data is, however, rather limited in its
ability to restrict possible interpretations of the underlying regulatory processes. Other sources of information such
as (tentative) factor-gene pairs revealed by location analysis (Ren et al. [1]) provide complementary (physical level)
constraints on the models of regulatory processes. By integrating limited but complementary data sources we can
realize a mutually consistent hypothesis bearing stronger similarity to the underlying causal structure.

Previous Work: A typical approach for exploiting two or more data sources in functional genomics uses one type
of data to validate the results generated independently from the other (i.e., no data fusion). For example, Tavazoie
et al. ([6]), Spellman ([5]), and Zhang ([8]) perform clustering on the basis of gene expression data and identify
consensus motifs in the promoters within each cluster. The underlying assumption here is that genes co-expressed
under varying experimental conditions are likely to be co-regulated by the same (possibly unknown) transcription
factors. For example, a specific transcription factor may bind to the region of DNA that possesses its consensus
sequence. Holmes et al. ([4]) construct a joint likelihood score based on consensus motif and gene expression
and use this score to perform clustering (thus performing a type of data fusion). Segal et al. ([3]) build relational
probabilistic models by incorporating gene expression and functional categories as input variables. Pe’er et al. ([2])
infer causal models from knock-out data by exploiting the distinction between observational and interventional data
in causal inference ([7]).

Approach: We develop a computational framework which integrates gene expression data, sequence data, lo-
cation analysis and knock-out experiments to identify regulatory networks. Expression data captures the statistical
dependencies of genes. We build graphical models (Gaussian-Markov models, Bayesian networks, dynamic Bayesian
networks) from expression data and extract local dependencies of gene pairs. Two genes g1 and g2 are directly de-
pendent if there exist no other genes which can explain away their interactions, i.e., there exists no S s.t. g1 ⊥ g2|S.
Each dependency must be explained by some causal relations. In functional genomics, this corresponds to finding
the pathway(s) linking the dependent genes.

Expression data alone is rather limited in providing information about the underlying causal relations. However,
sequence data, location analysis and knock-out experiments, albeit limited in quantity, reflect physical processes of
gene regulation. We build a physical models consistent with all the available data. Location analysis and consensus
motifs impose constraints on links between specific (or unknown) transcription factors and genes that they poten-
tially regulate. Knock-out experiments, on the other hand, provide partial ordering constraints for the regulatory
pathways. Using a physical level model to explain gene expression data may not yield a high likelihood score since
many intermediate steps are not carried out (directly) via transcriptional changes. The goal here is to determine
what part of the network is exercised in a specific expression dataset or, in another words, what part of the physical
model can explain the statistical dependencies observed in the expression dataset.

We use physical level models and explain statistical dependencies in gene expression data by hypothesizing
potential paths mediating the observed dependence. There may be multiple paths which explain the same relation.
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We identify paths in the physical model that participate in explaining a large number of statistical dependency
relations. Such paths are likely to reflect the underlying causal processes. We can determine the direction and, in
principle, also the delay in the effect of regulation when time series data is available.

Impact: Our method allows us to infer the regulatory network from the genomic data rather than merely depicting
the phenomenon of gene expression. Such models correspond more closely to biologists’ understanding of the
regulatory system and naturally lend themselves to optimum experiment design methods. The information fusion
methodology developed in this project is more widely applicable to tasks of inferring underlying causal processes
from multiple limited data sources.

Future Work: An immediate extension of this work is to cast the physical level constraints on a sound probabilistic
framework. Instead of evolving (or realizing) a single underlying physical model we can generate multiple models
and assign probability scores to them on the basis of statistics derived from individual data items. The inference
task consequently changes to identifying pathways with the ability to explain expression dependencies and which
occur with high probability in the physical level. We are also in the process of adapting and further developing
appropriate experiment design methods for models of this type.
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