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The Problem: An increasing number of parameter estimation tasks involve the use of at least two information
sources, one complete but limited, the other abundant but incomplete. Standard algorithms such as EM (or em)
used in this context are unfortunately not stable in the sense that they can lead to a dramatic loss of accuracy
with the inclusion of incomplete observations. Although stability can be achieved by downweighting the effect
of incomplete data at the expense of smaller potential gains, standard algorithms do not offer any guidance for
determining the optimal weighting.

Motivation: Many modern application areas such as text classification involve estimating generative probability
models under limited labeled and abundant unlabeled data. Empirically [5] unlabeled data provides under model
constraints rich information valuable for classification, thus its inclusion in training may lead to a significant in-
crease in accuracy. However, unlabeled data alone cannot identify the assignment of labels to classes; trusting it too
much may actually hurt performance. Indeed, experiments show that in a standard maximum likelihood setting,
the inclusion of unlabeled data may dramatically improve as well as degrade the accuracy. It is imperative to find
methods that remain stable while fully exploiting the potential of incomplete information.

Previous Work: Many algorithms for complete-data only or incomplete-data only estimation have been adapted
to combine the two sources of information, most of them relying on heuristics without strong theoretical justifi-
cation. EM [4] is the most popular, and it has been successfully applied in domains such as text classification [5].
Extensions of this idea include Co-training [2] which can be shown to work well at least under rather strong model-
ing assumptions, and kernel expansions [6] that change the problem by means of non-parametric density estimates.
Castelli [3] gives a theoretical argument under unrealistic assumptions showing that incomplete information is ex-
ponentially less important then complete information. However, we are not aware of any previous analysis of the
stability of such algorithms. Our discussion here is limited to approaches based on generative models.

Approach: We start from a criterion that explicates the mixing λ between complete and incomplete information,
optimized by a standard iterative algorithm such as EM or Amari’s em [1]. Instead of finding the typical fixed
point for a given λ, we cast the problem in terms of differential equations that govern locally optimal solutions as a
function of λ and we continuously evolve such solutions. We start from the unique complete-data solution at λ = 0,
and increase the mixing towards incomplete-data only estimation specified by λ = 1. The intuition here is that
models whose parameters can be continuously traced back to the complete-data solution are both well-grounded
in the available complete information and make a good use of the incomplete data.

The advantage of our approach is that we can explicitly identify critical λ’s after which the solution of the
differential equation cannot be extended continuously. Evolving fixed points beyond such critical mixing would
break the connection with complete information (the choice of the ensuing paths not determined by the complete
information) leading to unpredictable classification performance. Our method finds the best mixing of the data
sources (largest λ) that still leads to a stable solution. The resulting locally optimal density esitmate is likely to
differ from that provided by, e.g., the EM algorithm for the same value of the mixing parameter λ.

To illustrate our method we applied it to the 20 newsgroups document classification task. The generative model
was naive Bayes with binary word occurrence features, and the criterion was weighted log-likelihood of both la-
beled and unlabeled data optimized by standard EM. You can see in Figure 1 that accuracy drops significantly at
critical mixing, and that our algorithm, DIFFEM, is more stable than EM.

Impact: The proposed algorithm leads to stable estimation when standard algorithms would degrade perfor-
mance by potentially over-emphasizing incomplete information. The idea of tracing paths of solutions via differen-
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Figure 1: Three runs of DIFFEM versus EM on 50 labeled and 5000 unlabeled samples. For each run the upper
graph is a criterion that signals a critical λ when 0, and the lower graph the classification accuracy of DIFFEM and
EM as a function of λ. Most of the time the dotted-line EM coincides with DIFFEM.

tial equations is very general and has potential to improve other algorithms that undergo phase transitions as the
source allocation, temperature, or other parameter is varied. This work also demonstrates the utility of geometric
methods in solving fundamental estimation problems.

Future Work: Since the exact solution of the differential equation can be found in O(n3) time in the number
of parameters, more efficient approximate methods or methods for better exploiting the structure of the problem
need to be developed. Also, it is important to be able to evolve solutions beyond critical mixing by identifying all
branches of fixed points that can follow.
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