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The Problem: Functional Magnetic Resonance Imaging (fMRI ) assesses brain activity by taking a volumetric
sampling of blood flow (BOLD) in the head, over time. Due to the fine temporal and spatial resolution with which
fMRI can non-invasively evaluate blood flow, it is often used in experiments designed to determine what regions
of the brain are engaged during different activities. These include protocols whereby subjects perform repetitive
motor or cognitive tasks, or attend to sensory stimuli, while being scanned by fMRI . We are developing Information
Theoretic (IT) techniques to analyze the relationship between such protocols and fMRI time series.

Motivation: By measuring blood flow, fMRI provides only an indirect indication of cognitive function. In fact,
cerebral blood flow and the fMRI signal may be affected by factors extrinsic to the experimental protocol, including
unrelated cognitive processes, lapses in the subject’s attention to the protocol, cardiac and respiratory fluctuations,
scanner noise, and other non-Gaussian, colored noise [3, 7]. Furthermore, while the BOLD response has been
modeled for certain types of tasks and in certain brain regions, observed non-linearities have not been accounted
for [1].

We propose using Information Theoretic techniques to model the dependency between an fMRI time-series
and its corresponding experimental protocol. The IT framework is appealing in that it is a principled methodology
requiring few assumptions about the structure of the fMRI signal, and the nature of uncertainty (i.e. Gaussianity).
It is capable of detecting unknown nonlinear and higher-order statistical dependencies, and is straightforward to
implement.

Previous Work: Our work has centered on the block-paradigm protocol for brain activity experiments. In block
protocols, a brain region’s involvement in a task or perception is inferred by contrasting the functional response of
that region between known periods of subject activity and inactivity. In [8], we presented an approach for calculat-
ing fMRI activation maps by estimating the mutual information between an encoding of the experimental protocol
and fMRI voxel time-series. Subsequently in [6], we demonstrated the equivalence of the method to a statistical
hypothesis test when the underlying densities are unknown. As a consequence, the computation of the activation
map can be formulated as a binary MAP detection problem using the Ising model as a spatial prior and solved
exactly in polynomial time [2]. Such a prior has been used to encode a relationship between adjacent voxels in fMRI
.

Approach: We combine Information Theoretic principles with adaptive estimation of temporal dependency, both
in estimating statistics relating a voxelwise fMRI time series to its past and to the protocol, and in quantifying the
degree of that dependency [5].

Following [4], we model the fMRI time series as a random process, whose current sample may be dependent on
its finite past and on side information in the form of the experimental protocol and, possibly, confounding signals.
As the amount of fMRI data is limited (e.g. 60 time samples per voxel over an 180 sec. experiment), we assume that
this dependency may be summarized in lower dimensional functions. These functions are trained to be maximally
informative with respect to the current fMRI sample.

The dependence can then be quantified by the Information Theoretic concept of entropy rate (ER), which eval-
uates the average uncertainty about future values conditioned on the past and possibly side information. With
this concept, a generalization of our method using mutual information [8], we form an activation statistic T as the
difference between the fMRI entropy conditioned only on its past, and the fMRI entropy conditioned both on its
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past and on the experimental protocol.
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Where yk is a voxel’s fMRI signal at time k, and where fa, fb represent a signal model based on the finite past of yk,
{y}k−1

k−My
, and an interval of the protocol encoding, {u}k

k−Mu
. Differential entropy is denoted h(), which in practice

we evaluate using Parzen density estimates. In [5], we show that using this ER statistic is equivalent to a statistical
hypothesis test deciding whether the fMRI signal is dependent on the protocol encoding, when the underlying joint
density is unknown.
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Figure 1: Visual task experiment. (a) fMRI signal (dash), protocol encoding (dot), and linear estimate of the fMRI
based on the protocol (solid). (b) The model estimation error due only to the fMRI past (dash) has similar variance,
but much greater entropy than the error when the protocol is included in the model (solid). A classical F-test fails
to detect this “partial responder”, whereas our ER statistic does. (c) An ER activation map and (d) F-test activation
map of the visual cortex during the protocol.

Future Work: So far, we have restricted ourselves to linear functions of the past, a special case of the more general
approach described in [4], and have shown the advantage of an entropy-rate hypothesis test for detecting particular
types of activations that can be hidden from classical tests. Now we are exploring whether IT training of fMRI
signal models could highlight more complex forms of protocol dependency. We are also interested in extending
this approach from block-paradigm to event-related experimental protocols that are now common in the field.
Event-related protocols are more powerful and are characterized by rapid, randomized presentation of stimuli.
In the manner of [6], we may also incorporate spatial priors into our entropy-rate hypothesis testing framework,
extending the approach to account for the shape of the cerebral cortex where most higher brain function is localized.
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