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The Problem: Robotic spacecraft for exploration of the solar system and beyond must be designed to navigate and
operate in harsh, dynamic and uncertain environments. Such operating conditions make it difficult for the systems
engineers and programmers responsible for encoding onboard software sequences to meet the requirements for
very high reliability. We propose a robust solution to challenging sequencing problems (e.g. Planetary Entry, De-
scent and Landing), which combines discrete configuration commanding with continuous navigation and control,
and will allow systems engineers to generate ”executable specifications” of desired spacecraft behavior.

Motivation: Operational sequences for robotic spacecraft can be quite complex, involving multiple hardware re-
configurations, navigation computations and controlled maneuvers. Providing robustness for such spacecraft in
the face of highly dynamic or uncertain environments requires the following: high-reliability software; fault pro-
tection built into the control sequence; a highly reactive sense-decide-act loop; and tight coupling between atti-
tude/position control and spacecraft configuration control.

One particularly relevant illustration of the importance of robust sequence execution was the recent loss of the
Mars Polar Lander spacecraft during Mars entry, descent and landing (EDL, see Figure 1). After months of analysis,
the failure investigation team concluded that the vehicle most likely crashed into Mars because it incorrectly shut
down its engine at 40 meters above the planetary surface. This failure resulted from a misinterpretation of the
vehicle’s dynamics, in this case due to a faulty software monitor. Using a traditional embedded software approach,
it is difficult to anticipate low-level subsystem interactions and explicitly encode responses to each possible fault.
We would like to support spacecraft systems engineers and software programmers with a new type of embedded
language that operates directly on system states, allows reasoning from commonsense models of the system, and
accommodates seamless integration of trajectory planning and control.

Figure 1: Entry, Descent and Landing Scenario

Previous Work: This effort develops the notion of model-based programming introduced in [3], and folds in
results from previous work in model-based reasoning for discrete hardware reconfiguration [7], trajectory planning
based on mathematical programming theory [4] and control theory. The modeling formalism leverages work in
Timed Automata [1], from the Hybrid Systems field. This work builds off of the model-based execution capability
developed for the Deep Space 1 spacecraft, and currently being extended for the Space Technology 7 mission. We
also rely on ongoing work in Hybrid Mode Estimation [6].
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Approach: Our approach is based on developing a new paradigm for embedded programming, called model-based
programming. The underlying principle is that control programs can be written by asserting and checking states
which may be “hidden”, i.e. not directly controllable or observable, rather than by operating on observable and
control variables. Such a control program is input to a sequencing engine, for onboard execution. An underlying
model-based executive deduces the system state from observables and figures out how to achieve specified goal
states. This model-based executive is comprised of:

• a hybrid mode estimation engine, which can infer both continuous states and discrete modes of the system
[6].

• a reactive commanding engine, which takes in hardware configuration goals and reasons through a concurrent
transition system model of the spacecraft to generate and execute an appropriate series of commands which
will achieve the desired configuration. This deductive engine can reason about states of physical components
in the system, or abstract states representing subsystem-level behavior.

• a navigation and control engine, which takes in continuous position and attitude goals, and generates appro-
priate maneuver commands to achieve the desired position/attitude. In its simplest form, this engine consists
of some type of controller implementation (e.g. PID, LQ control). It can also include a trajectory planner to
generate a sequence of maneuvers which will achieve the desired goal state (e.g. trajectory planning via linear
programming techniques [4]).

In order to express model-based programs, a new embedded programming language has been developed, the
Reactive Model-based Programming Language (RMPL) [3]. RMPL programs may be viewed as specifications of
deterministic state transition systems, which act on the plant by asserting and checking constraints expressed in a
propositional state logic. The propositions are assignments of state variables to values within their domains. Reac-
tive combinators allow flexibility in expression of complex system behavior and dynamic relations. The constructs
of RMPL are similar to those developed in TCC, a language for timed concurrent constraint programming [5].

Impact: Through the development of sequencer control programs using model-based programming, we will pro-
vide spacecraft systems engineers with the ability to directly encode executable specifications of the desired system
behavior, e.g. as usually specified in State-Charts [2]. System robustness will be improved by coupling fault protec-
tion with navigation, control and discrete configuration commanding within the sequencer.

Future Work: To achieve the level of robustness discussed above, the current RMPL representation will be ex-
tended to accommodate assertion of discrete and continuous states, conditional branching on discrete states, con-
tinuous states and time, as well as clock initialization.

A Model-based Executive architecture will be established, which integrates the Hybrid Mode Estimation, Reac-
tive Commanding, and navigation and control engines.

An important element of this work will be to study the interplay between trajectory planning, control, and fault
protection, within the reactive sense-decide-act loop. The results of this study will shed significant light on the
trades between system reactivity, robustness and versatility.
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