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The Problem: Modeling highly articulated objects such as people is an extremely difficult problem in computer
vision. This work investigates an alternative to the two extremes of using explicit models and using “exemplars.”
Rather than fitting an articulated model to a silhouette or treating the silhouettes holistically, this work explains
how to derive a sparse basis to represent the observed silhouettes. The coefficients of the basis vectors indicate the
presence of a body part at a particular location.

Motivation: The advantage of this representation is the ability to exploit structure in the coefficient values. We can
factor the basis into “functional groups” representing particular limbs in different locations. We are investigating
how a Boltzmann Machine can be used to constrain coefficient vectors to the manifold of “valid” silhouettes. This
factorable, sparse representation holds promise for generative modeling and activity recognition.

Previous Work: Articulated models have become vastly more useful in the recent past. Unfortunately, model
specification, model initialization, and tracking stability have limited their use for general applications. Constrain-
ing the models to the manifold of “valid” positions is difficult, although it has been done for specific types of actions
[2].

Image-based approaches to articulated tracking have been severely limited. Using correlation between silhou-
ettes, some gait work has been accomplished[3]. Other gait recognition work have used descriptions of motion in
regions of a walking silhouette[6], but these regions are decided in arbitrary manners and do not strongly corre-
spond to our intuitive understanding of functional groups of a human body. Using exemplars has been effective for
certain classes of activities [1], but is not factorable and not compact.

Approach: Our approach involves first deriving a sparse basis to represent the motion silhouettes. To prove the
general concept we created a dataset of silhouettes of an articulated figure with each of its five random indepen-
dently moving limbs. Figure 1 shows an example subsequence.

Figure 1: This figure shows an example sequence of the synthetically generated silhouettes.

After normalizing the silhouettes so that each pixel’s variance was uniform, we use NMF[5]2 to determine 100
basis vectors representing different body parts in different locations. After converging, we have the basis shown in
Figure 2a. This is a sparse, localized basis for representing the silhouettes.

As was stated earlier, one of the advantages of this representation is that the statistics of the coefficients tell us
a lot about the silhouettes. One such advantage that is particularly true of our dataset is the different limbs are
independent. To exploit this fact, we have done a binary, hierarchical decomposition of the basis to find groups of
basis vectors which have the minimum correlation. This decomposition performed as in [7]. These groups of basis
vectors correspond to sets basis vectors representing particular limbs in different locations. Figure 2b shows the
corresponding (negative) correlation matrix. The four groups of basis vectors correspond to the two arms and the

2This is closely related to Thomas Hofmann’s “aspect model.”[4]
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two legs that were segmented at the second level of the decomposition hierarchy.

Impact: This work allows a descriptive basis for articulated motions to be automatically derived from simple
tracking data. Further, this basis holds promise for both generative modeling of human activities and recognition
of classes of human activities.

Future Work: We seek to further develop this work to determine what types of bases are derived for different
types of human and non-human activities (e.g., tennis, karate, construction vehicles). Also, we will investigate
generative models and articulated activity recognition.

Research Support: This work has been funded by DARPA under contract number N00014-00-1-0907administered
by the Office of Naval Research.
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Figure 2: (a) is the basis of 100 features derived from the data. (b) is the corresponding (anti)correlation matrix. The
elements are sorted based on the hierarchical decomposition and correspond to sets of features representing the
four independent body components.
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