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The Problem: Pixel representations for images do not have resolution independence. When we zoom into a
bitmapped image, we get a blurred image. Figure 1 shows the problem for a teapot image, rich with real-world
detail. We know the teapot’s features should remain sharp as we zoom in on them, yet standard pixel interpolation
methods, such as pixel replication (b, c) and cubic spline interpolation (d, e), introduce artifacts or blurring of edges.
For images zoomed 3 octaves, such as these, sharpening the interpolated result has little useful effect (f, g).

Many applications in graphics or image processing could benefit from such pixel resolution independence,
such as texture mapping, enlarging consumer photographs, and converting NTSC video content to HDTV. We
don’t expect perfect resolution independence—even the polygon representation doesn’t have that—but increasing
the resolution independence of pixel-based representations is an important task for image-based rendering. Our
example-based super-resolution algorithm yields Fig. 1 (h, i).

Previous Work: Researchers have long studied image interpolation, although only recently using machine learn-
ing or sampling approaches, which offer much power.

Cubic spline interpolation [5] is a very common image interpolation function, but suffers from blurring of edges
and image details. Recent attempts to improve on cubic spline interpolation [6, 8, 2] have met with limited suc-
cess. Schreiber and collaborators [6] proposed a sharpened Gaussian interpolator function to minimize information
spillover between pixels and optimize flatness in smooth areas. Schultz and Stevenson [7] have used a Bayesian
method for super-resolution, but hypothesized the prior probability. A proprietary, undisclosed algorithm, Al-
tamira Genuine Fractals 2.0 [1] (an Adobe Photoshop plug-in), suffers from blur in regions of texture and at fine
lines.

Approach: One would expect that the richness of real-world images would be difficult to capture analytically.
This motivates a learning-based approach: in a training set, learn the fine details that correspond to different image
regions seen at a low-resolution; then use those learned relationships to predict fine details in other images. For
the past several years [3, 4], we have been exploring this approach for enlarging images. See those publications for
implementation details.

We exploit regularities over images: we use small pieces of one image, modified for generalization by the appro-
priate pre-processing, to create plausible image information in a second image. Without very specific training data,
it is not reasonable to expect to generate the correct high-resolution information. We aim for the more attainable
goal of generating visually plausible image details, such as sharp edges, and plausible looking texture.

To generate our training set, we start from a collection of high resolution images, and degrade each of them in a
manner corresponding to the degradation we plan to undo in the images we later process. Typically, we blur and
subsample them to create a low-resolution image of 1

4 the number of original pixels.

We describe a Markov random field whos maximum probability solution corresponds to the best collection of
high resolution patches from the training data to use for zooming each patch of the input image. We have explored
different fast solution methods for this Markov random field problem [3, 4].

Future Work: We want to add more high level knowledge to our estimation problem, in order to remove the
occasional artifacts from the algorithm outputs.
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Figure 1: (a) An image (100x100) of a real-world teapot shows a richness of texture, but yields a blocky or blurred
image when zoomed in by a factor of 8 in each dimension by (b, c) pixel replication or (d, e) cubic spline interpola-
tion. (Images (b) through (i) were 32x32 pixel original sub-images, zoomed by 8 to 256x256 images). Sharpening the
cubic spline interpolation may not help to increase the perceptual sharpness (f, g, using “sharpen more” in Adobe
Photoshop). (h, i) show the results of our example-based super-resolution algorithm, maintaining edge and line
sharpness, and plausible texture details.
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