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The Problem: In [1], we address the classic problem of handwritten character recognition. That is, given some
class-labeled training examples of images of handwritten characters, identify the class of each of a set of test exam-
ples to the greatest possible accuracy. For example, when given a particular image of the character “8”, identify it as
such. On isolated single character test images, success rates of over 99 percent have been achieved on standard data
sets, so one may question the need to continue addressing this problem. However, there are several good reasons
to continue to work on this problem.

Motivation: First, the most successful character recognizers have typically used a large training set, (6,000 exam-
ples per character), and furthermore have artificially augmented this training set by creating extra examples that
are slight variations of the actual training data. In these cases, the training sets have grown in size to 60,000 exam-
ples per character. One goal is to greatly reduce the number of training examples without dramatically reducing
the performance. If we are successful in this endeavor, then the application of these methods to other classification
problems should be greatly facilitated, since not as much training data will be needed.

Second, many methods use significant domain specific knowledge, making it difficult to transfer these methods
to other visual applications. While our method uses particular characteristics of the visual world (i.e. projective
geometry), it uses no information specific to the classification of characters, and hence can be applied to other
problems in visual classification.
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Figure 1: A diagram of the high-dimensional manifold of “2’s”, showing the foliation into style and transform.
The curve C1 and the curves approximately parallel to it represent the variation in style of the character. Each
vertical curve represents a certain degree of transformation of the character. The curves labelled C2 and C3 show
equivalence classes of characters with the same style, but at different transforms. The canonical element of each of
these classes (the one closest to the empirical mean) is found at the intersection of their defining curve with the
curve C1. Roughly speaking, during testing, a new image is transported along the manifold until it reaches C1, at
which point it is compared with the canonical version of the style of “2” found at that point on the manifold. Hence,
this procedure is essentially a form of non-linear projection.

Previous Work: The method of “tangent distance” [2] shares with our work the assumption that a class forms a
manifold in image space. However, the ability of the algorithm to generalize depends upon the size of the neigh-
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borhood of a point in which the manifold is approximately flat. Since this neighborhood is small in the case of
handwritten characters, a large number of training examples must be used to obtain good performance. [3] worked
on separating “style” and “content” of characters in a factor model of characters. The chief difference from our
work is that their model was bilinear, and ours is non-linear.

Approach: We model the variation in each class of character as depending on three factors, the “style” of the
character, the “transform” of the character from an empirically defined canonical position, and independent pixel
noise. The total probability of a character, given a particular model, is then given as the product of two probabilities,
one that is independent of the transform component of the character, and one which is only a function of the
transform.

In a non-linear projection step, a test character is transported along the equivalence class contours of the space
(shown by the curves C2 and C3 in the figure). When the character is as close as possible to the canonical sub-
manifold (represented by the curve C1), a distance (or negative log likelihood) can be computed between the tran-
ported character and the canonical sub-manifold.

The other component of the probability is arrived at by assigning a probability density to the affine transform
used to do the non-linear projection in the previous step. For example, if a large rotation were used to make a “6”
look like a “9”, we would intuitively assign a low probability to such a transform, since we rarely need to rotate
characters 180 degrees before they are recognized. Thus, for test character C, model M , and a transform T that
transports the original C to the most canonical possible version of that style Ccanon, we have:

P (C|M) = P (Ccanon, T |M) = P (Ccanon|T , M) ∗ P (T |M) (6)

There are two benefits to performing this non-linear affine transport. First, it allows a denser modeling of the
styles of a character with a small number of training examples. This is a basic characteristic of any factoring scheme.
Second, by sharing the density used in the second factor above (P (T )|M)) between different character models, we
hope to get a good density estimator for a character from just a few (or even just one!) examples.

One of the primary difficulties with this problem is that it is computationally intensive. Finding the optimal
transform of a test character requires an on-line optimization, and this must be repeated for each model to be
tested. Currently, this takes up to a minute per test character, even with only ten models. Clearly, a speed up in this
performance would be desirable.

Impact: By sharing an understanding of transforms across models, we hope to significantly reduce the amount of
training data required to develop models for new characters, and even other types of objects.

Future Work: Ultimately classifiers should do better by sharing additional features, other than just the densities
on affine transforms. Searching for good sharable features will be a focus of future work.
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