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The Problem: We study the problem of approximating a target matrix with a matrix of low rank, with respect to
a weighted Frobenius norm.

Motivation: Low-rank matrix approximation with respect to the squared or Frobenius norm has wide applicabil-
ity in estimation and can be easily solved with singular value decomposition. For many application, however, the
deviation between the observed matrix and the low-rank approximation has to be measured relative to a weighted-
norm.

Weighted-norms can arise in several situations. A zero/one weighted-norm, for example, arises when some
of the entries in the matrix are not observed. External estimates of the noise variance associated with each mea-
surement may be available (e.g. gene expression analysis) and using weights inversely proportional to the noise
variance can lead to better reconstruction of the underlying structure. In other applications, entries in the target
matrix represent aggregates of many samples. When using unweighted low-rank approximations (e.g. for sepa-
rating style and content [4]), we assume a uniform number of samples for each entry. By incorporating weights,
we can account for varying numbers of samples in such situations. Low-rank approximations are also used in the
design of two-dimensional digital filters, in which case weights might arise from constraints of varying importance
[3].

We also consider other measures of deviation, beyond weighted-Frobenius norms. Such measures arise, for
example, when the noise model associated with matrix elements is known, but is not Gaussian. Classification,
rather than regression, also gives rise to different measures of deviation. Classification tasks over matrices arise, for
example, in the context of collaborative filtering. To predict the unobserved entries, one can fit a partially observed
binary matrix using a logistic model with an underlying low-rank representation (input matrix).

Approach: We develop two alternate methods for solving the problem. We first study the problem from a numeric
optimization perspective. We study in detail the structure of the problem and the differences between weighted and
unweighted low-rank approximation which are responsible for the gap in their hardness. We then show a closed-
form solution for part of the parameters of the problem, and calculate the derivatives with respect to the other
parameters, enabling us to use standard numerical optimization techniques to solve the problem.

We also apply an expectation-maximization (EM) approach in which the problem is viewed as a missing-values
problem. To do so, we actually relax the problem to a slightly more general problem that can be viewed as a
missing-values problem. In fact, we consider a family of such problems, with increasingly more missing values,
that approach a weighted low-rank approximation when the number of missing values goes to infinity. Each such
problem can be solved using EM, and the solution is independent of the number of parameters, enabling us to
apply the EM approach also for the weighted low-rank approximation problem. This results in an extremely sim-
ple iterative algorithm that can implemented in a few lines of code and is effective in finding weighted low-rank
approximations in many cases.

Having developed methods for solving weighted low-rank approximation problems, we show how they can be
applied as a subroutine, using iterative variational methods, for solving more general low-rank problems.

Impact: Low-rank matrix approximation is one of the most commonly used tools in estimation, control, machine
learning, computer vision and in other areas of engineering and statistics. Currently, low-rank matrix approxima-
tion is almost invariantly performed with respect to the Frobenius norm. In many situations the use of the Frobenius
norm is well founded, and is the appropriate loss function, corresponding to a maximum likelihood estimation in
the presence of white Gaussian noise. However, in many other cases, the Frobenius norm is used not because it
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Figure 1: The improvement in reconstruction attained by introducing weights. Reconstruction error as a function
of noise in reconstructing a planted low-rank matrix with simulated noise of varying variance. Weighted low-rank
approximation is compared to a simpler approach of “clipping” entries with extreme noise variance.

is the correct loss function, but because it is the convenient loss function, for which optimization tools are readily
available. Our work opens the door to other measures of deviation, and enables researchers and engineers to use
loss functions which are appropriate for the task at hand.

Future Work: We are continuing to study the weighted low-rank approximation problem, understanding the sen-
sitivity of EM and gradient methods to the weight distribution. We are applying these techniques to problems
involving factor-gene binding arrays and robust collaborative filtering. We are also studying further loss functions,
such as those in which the noise model is viewed as a nuisance parameter, and those arising in Sufficient Dimen-
sionality Reductions [1].
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