Sketch Recognition in Software Design

Tracy Hammond, Krzysztof Gajos, Randall Davis & Howard Shrobe Q

Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 lél é

http://www.ai.mit.edu @ MIT

The Problem: Sketching is a natural and integral part of software design. Software developers use sketching
to aid in the brainstorming of ideas, visualizing programming organization, and understanding of requirements.
Unfortunately, when it comes to coding the system, the drawings are left behind. We see sketch recognition as a
way to bridge that gap.

In addition to the vast amount of information given by a sketch, a plethora of other design information may be
voiced during a software design meeting. We can capture the spoken and visual software design meeting informa-
tion by videotaping the meeting and any white-boards used. By indexing these videos, we make it easy to retrieve
the videotaped information without watching the entire video from start to finish.

Motivation: We want to allow software design meetings to continue as they are, with software designers dis-
cussing the design and drawing free-hand sketches of these designs on a white-board. Using our system, designers
can sketch naturally, as we place few requirements on the sketcher. We recognize and interpret these diagrams
using sketch recognition. Because the diagrams are interpreted, we provide natural editing capabilities to the de-
signers, allowing the users to edit their original strokes in an intuitive way. For instance, the designer can drag
their drawn class from the center and move all of the strokes used to draw the class as well as stretch and skew the
strokes used to create an attached arrow. The interpreted diagrams are used to automatically generate stub code
using a software engineering tool. Software design meetings are videotaped to capture visual and spoken design
information unobtrusively. When drawn items are interpreted, we use these understood sketch events to index the
videotape of the software design meeting.

We decided to design our application as a Metaglue agent since the Metaglue agent architecture provides sup-
port for multi-modal interactions through speech, gesture, and graphical user interfaces[2]. The Metaglue agent
architecture also provides mechanisms for resource discovery and management which allows us to use available
video agents or screen capture agents in a Metaglue supported room.

We have selected UML-type diagrams because they are a de facto standard for depicting software applications.
Within UML [1] we focused on class diagrams, first because of their central role in describing program structure,
and second because many of the symbols used in class diagrams are quite similar, and hence, offer an interesting
challenge for sketch recognition. We added several symbols for agent-design since many of the applications created
in the Intelligent Room [6] of the MIT Al Lab are agent-based.

Previous Work: Work at Berkeley by Hse [7] has shown that users prefer a single-stroke sketch-based user inter-
face to a mouse-and-palette based tool for UML design.

One company [3] has developed a gesture based diagramming tool, Ideogramic UML, ™which allows users to
sketch UML diagrams. The tool is based on a graffiti-like implementation and requires users to draw each gesture
in one stroke, in the direction and style as specified by the user manual. As a consequence, some of the gestures
drawn only loosely resemble the output glyph. For example, ¢ is the stroke used to indicate an actor, drawn by the
system as a stick figure.

Work at Queen’s University has developed a system to recognize sketches of UML diagrams using a distance
metric [8]. Each glyph (square, circle, or line) is classified based on the total stroke length compared to the perimeter
of its bounding box (e.g., if the stroke length is approximately equal to the perimeter of the bounding box, it is
classified as a square). The shape of the stroke is not considered.

379



Figure 1. The sketched view, interpreted view, and auto-generated code of a UML diagram in Tahuti

fé8ource file: c:iyhcardgame' yDeck. java

e — = = public class Deck implements Dealable

il == {
public Game thelGame:
public Card theCard:

" FEL

. ; * @roseuid 3C4623D50279
Ly

= o= public Deck()

{

¥

Approach: We have created Tahuti [4], a system for recognizing hand-drawn sketches of UML class diagrams.
Users can sketch UML-type diagrams on a white board in the same way they are drawn on paper, and have the
diagrams recognized by the computer. The system differs from graffiti-based approaches to this task in that it
recognizes objects by how they look, not by how they are drawn. While sketching, the sketcher can seamlessly
switch between the interpreted designs and the original strokes (See Figure ). Editing commands operate identically
in the two views.

The recognizable shapes in Tahuti include the components of UML class diagrams as well as agents (indicated
by a double-edged rectangle), and speech grammars (indicated by a triangle) [5]. Tahuti itself has been designed as
an agent in the Intelligent Room, enabling it to interact with other agents in the room, such as a videotaping agent
and the Meeting Manager [9]. Tahuti labels significant events in the sketching of a software diagram to help index
a video of a design meeting.

Impact: A small user study shows that users prefer drawing and editing in Tahuti over a traditional paint appli-
cation and a professional UML editing tool.

Tahuti has been used at Columbia University to teach 65 students Object Oriented Programming. The system
was well-received and appeared to aid both in the initial program design and in progressive program design,
although a formal study was not done. Even simply having a graphical picture of the program seemed to allow the
students to maintain a clear picture of the program structure throughout the coding process. Tahuti has recently
been integrated into the Intelligent Room at the MIT Al Lab for use in software design meetings, including the
design of agent-based systems.

Future Work: Future system enhancements include allowing the user to sketch more detail about a program. For
instance, we plan to add the ability to recognize multiplicity relationships by interpreting annotations on associ-
ations (e.g., co — 1). We would also like to recognize other software diagram types. We also hope to integrate a
code editor, allowing users to alternate between diagram view and code view, using existing software to reverse
engineer the code into diagrams.

Research Support: This work is supported by the MIT Project Oxygen partnership and by DARPA through the
Office of Naval Research under contract number N66001-99-2-891702.

References:

[1] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide. Addison-Wesley, Reading,
MA, 1998.

[2] Michael H. Coen, Brenton Phillips, Nimrod Warshawsky, Luke Weisman, Stephen Peters, and Peter Finin. Meet-
ing the computational needs of intelligent environments: The metaglue system. In Proceedings of MANSE’99,
1999.

[3] Christian Heide Damm, Klaus Marius Hansen, and Michael Thomsen. Tool support for cooperative object-
oriented design: Gesture based modeling on an electronic whiteboard. In CHI 2000. CHI, April 2000.

[4] Tracy Hammond and Randall Davis. Tahuti:a geometrical sketch recognition system for uml class diagrams.
AAAI Spring Symposium on Sketch Understanding, pages 59-68, March 25-27 2002.

380



[5] Tracy Hammond, Krzysztof Gajos, Randall Davis, and Howard Shrobe. An agent-based system for capturing
and indexing software design meetings. In Proceedings of International Workshop on Agents In Design, WAID’02,
2002.

[6] Nicholas Hanssens, Ajay Kulkarni, Rattapoom Tuchinda, and Tyler Horton. Building agent-based intelligent
workspaces. In Proceedings of The International Workshop on Agents for Business Automation, 2000.

[7] Heloise Hse, Michael Shilman, A. Richard Newton, and James Landay. Sketch-based user interfaces for collab-
orative object-oriented modeling. Berkley CS260 Class Project, December 1999.

[8] Edward Lank, Jeb S. Thorley, and Sean Jy-Shyang Chen. An interactive system for recognizing hand drawn
UML diagrams. In Proceedings for CASCON 2000, 2000.

[9] Alice Oh, Rattapoom Tuchinda, and Lin Wu. Meetingmanager: A collaborative tool in the intelligent room. In
Student Oxygen Workshop, 2001.

381





