1 Q1

1.1 1 (7 points)
+7 if numbers are right

1.2 2 (23 points)
+7 plot looks correct (circles tend towards the boundary)
+5 say that the error is a random variable
+6 errors of AC are reasonable, and train \(\hat{\varepsilon} \) test
+6 mention that AC points tend to be chosen around boundary
+3 mention that low-density points help little (and/or that reducing the grid bounds would help)
+3 mention other thoughts that appear in the solutions
2 Q2

2.1 1 (25 points)
+7 use the hint i.e. write
\[E_{p(x,y)} [L(y, \hat{y}(x))] = \ldots = \int_x p(x) \sum_y (1 - \delta_y, \hat{y}(x)) p(y|x) dx \]
\[\text{ (1) } \]
(+ 3 if start right but then get confused)

+8 show (convincingly) it is enough to minimize cost for every x

+4 only say it is enough to minimize for every x (not convincing they understand why it’s enough)

+10 derive thre rule from (1)

2.2 2 (10 points)

+6 correct rule (in general form)

+4 explain how to derive

+2 show simplification for binary case

Do not deduct points for same mistakes as in 1!
3 Q3

3.1 1 (10 points)
+2 right numbers
+2 right plots
+4 say that as $n \to \infty$ boundar approaches the optimal boundary
+2 only say that boundary becomes linear (without saying that optimal bound-
ary is linear)
+2 explain it is difficult to estimate Gaussians with few points
-2 say the boundary for XY_{large} is linear

3.2 2 (25 points)
+2 right numbers
+2 right plots
+3 say that the two models have similar generalization error when trained on
XY_{large}.
+5 explain disatvantage of generative models with few points (diificult to
estimate Gaussians)
+15 explain that boundaries approach each other, and the optimal boundary
(only +7 if claims are correct but not explained)
+7 only say boundaries both approach a linear boundary (but do not say
that’s the optimal boundary)
-5 say one of the methods (or both) can not produce linear boundary (or
have different number of degrees of freedom)
-3 say log. reg. is much worse because the boundary looks worse