Speakers' Access to the Phonological Structure of the Syllable in Word Games

Nelson Cowan & Lewis A. Leavitt
University of Missouri & University of Wisconsin

Most linguists probably would agree that more than one type of evidence is relevant to the linguistic description of syllables and other units of speech. Whereas formal linguistic analyses rely on various phonotactic and morphological properties of the language to help determine what definition of units would simplify the linguistic description the most, that information can be supplemented by methods in which human subjects are to indicate, directly or indirectly, the units of speech that they use. One does run the risk of finding that speakers do not have access to the units for uses other than natural speech, or that the accessible units are influenced by a different set of factors than the ones that influence natural speech. However, the present Parasession is a tribute to the difficulty that linguists have had in agreeing upon a description of the syllable. Given this circumstance, we believe that psycholinguistic methods of inquiry can supplement the purely linguistic methods in important ways, especially if the observed syllabic units turn out to be relatively invariant across different behavioral contexts.

A taxonomy of these psycholinguistic methods would include several varieties, each of which has its own strengths and weaknesses. First, one can simply ask the speaker to syllabify a word or phrase. For example, Sapir (1949) asked a speaker of the American Indian language Southern Paiute to repeat the word [pəə] (which means "at the water") slowly, with the syllables enunciated separately. The speaker insisted on producing the form [pəə], with a medial [ə] instead of [ə]. Along with linguistic evidence, Sapir was able to realize that the underlying word form did include a medial [ə], as the speaker insisted, but with pronunciation rules changing this [ə] to [s] in a medial context. Speakers are unaware of the contextually specific rules that they use to pronounce phonemes, but they sometimes can provide information about abstract units or forms underlying speech.

In a second, much less direct psycholinguistic method, one can wait for people to make speech errors, and then one can determine the size and nature of the units that were shifted, replaced, or transposed within those errors (e.g., Fromkin, 1971). This method has the advantage that it does not depend upon subjects' conscious understanding of speech. It has revealed that various-sized units,
including not only syllables but also words, morphemes, subsyllabic units, phonemes, and subphonemic features all play a role in speech. However, the method is not ideal for an in-depth investigation of particular linguistic issues, because one cannot control the characteristics of the words on which speech errors are made. There has been some work in which speech errors have been experimentally elicited through a combination of phonemic and semantic pressures (Motley, 1985), but the purpose of that work was to study the activation of units rather than their linguistic description. The phonemic pressures that are used to evoke the errors within this method could contaminate the data so far as linguistic analyses are concerned.

A third method is more direct than waiting for speech errors, but less direct than simply asking subjects to divide speech into syllables. In this method, subjects are asked to play a word game in which the syllables must be reordered in some way. This method allows the experimenter to control the stimuli without relying upon an explicit, conscious judgment as to the division of the word into syllables. In the word game, the subject's linguistic divisions must be made rapidly and implicitly if the task is to be performed with some virtuosity. There are at least two varieties of this task. In one variety, a relatively large number of naive subjects are brought into the laboratory and tested following minimal training (e.g., Fallows, 1981; Morais, Carey, Alegría, & Bertelson, 1979; Treiman & Zukowski, 1990). This method promotes the generalizability of the results to the population at large. However, the origins of variability in the data may not be clear. It could reflect individual differences in linguistic representation, or it could reflect differences in the way people respond to a novel task and particular individuals' different patterns of guessing when in doubt.

The other variety of the language game provides fewer data, but it can supplement the first type. In it, a small number of willing subjects are examined after they have practiced the task for a relatively long time. Presumably, under this circumstance subjects will have worked harder to arrive at an optimal strategy for playing the game, and the optimal solution might well be one that relies on the psychologically valid units of speech. For example, Sherzer (1970) investigated the phonology of a language spoken by the Cuna Indians of Panama on the basis of a speech game that children in that culture played, in which the first syllable of each word was moved to the end of the word.

Our own data are of the latter type, and involve two subjects who were studied in detail. One source of evidence is an adult woman who has played a syllable-reordering game since childhood and can carry out this sort of reasoning that we know of. The same is true of Latin over the course of its history. It does not require an elaborate or formal basis-based errors were often on our own data from these studies is that the evidence for examining syllables, with phonetic, is basically consistent with our understanding of syllables.

Let us start with the knowledge of her that arose from the study of the phonology of the language. In particular, it turned out that phonemic units. For example, the phonology of the language was found to be different from the American English phonology. The reason for this is that the language has a different set of phonological representations. In particular, the language has a different set of phonological rules that govern the pronunciation of words. For example, the word choice [t.
words, morphemes, subsyllable
atures all play a role in speech,
in-depth investigation of
we cannot control the charac-
ters are made. There has
not been experimentally
emic and semantic pressures
work was to study the activation
scription. The phonemic
errors within this method could
atic analyses are concerned.
not have waiting for speech errors,
cts to divide speech into
asked to play a word game in
in some way. This method
stimuli without relying upon
e division of the word into
ct's linguistic divisions must
sk is to be performed with
varieties of this task. In one
ive subjects are brought into
al training (e.g., Fallows,
on, 1979; Treiman &
, the generalizability of the
over, the origins of variability
ct individual differences in
ct differences in the way
cular individuals' different

game provides fewer data,
it, a small number of willing
icized the task for a
in this circumstance subjects
mal strategy for playing
well be one that relies on
For example, Sherzer (1970)
spoken by the Cuna Indians
that children in that culture
word was moved to the end
and involve two subjects
f evidence is an adult
ring game since childhood
and can carry out this sort of skill more adeptly than any other per-
son that we know of. The second source is a child who tried to learn
Pig Latin over the course of a year, when he was still preliterate. Pig
Latin does not require an analysis of speech into syllables, but syllable-
based errors were often made. In our presentation, we will focus
on our own data from these two subjects, but an overarching mes-
sage is that the evidence from the various psycholinguistic methods
of examining syllables, with their different strengths and limita-
tions, is basically consistent. This convergence of evidence across
methods lends credence to the hypothesis that they might increase
our understanding of syllables on an abstract, linguistic level.

Let us start with the adult woman who reorders syllables. Our
knowledge of her arose from a prior study (Cowan, Leavitt, Massaro,
& Kent, 1982) in which we examined the ability of a 31-year-old
philosophy professor to rapidly talk backward, which he
accomplished, it turned out, by reversing the order of abstract
phonemic units. For example, negotiating for peace would be spoken
in reverse as [genitwogen refo sip]. The publicity generated by this
study led to our being contacted by about 50 other backward talkers
from around the United States and from other countries. About half
of them reversed a phonological representation of each word, and the
other half reversed an orthographic representation. All of them
believed that they began this game in late childhood, generally
between 7 and 11 years of age. This was also the case with the
woman who rearranged syllables, although she was unique in terms
of the form of her language game. The detailed evidence for
phonological representation on the basis of a subset of these special
subjects, including the subject who rearranged syllables, was
reported previously (Cowan, Braine, & Leavitt, 1985).

Although the group of backward talkers who reordered a
phonological representation is not strictly relevant to the issue of
syllables, it is helpful to consider for a moment the relation between
natural speech and language games that emerged from a considera-
tion of that group. We could tell that the basis of their skill was
phonemic rather than orthographic because they did not pronounce
silent letters that appeared in the written forms of the words, and
because homographs like the two g's in the word garage were always
pronounced differently. (Specifically, garage was reversed as
gereg.) Moreover, it was clear that these subjects were not
functioning as reversed tape recorders. Compound units such as the
diphthongs [au], [ei], and [au] and the affricates [dz] and [tf]
were consistently preserved as units rather than being reversed. For
example, the word choice [tʃɔs] would be [stʃtʃ] in a reversed tape
recording, but the subjects reversed it as \([\textsc{sket}t]\) instead. Because the stated aim of these subjects was generally to function as reversed tape recorders, their failure to do so reflects phonological constraints on their acoustic analytic capabilities. Importantly, these constraints are consistent with the phonemic analyses of many modern linguistic theories. Further, it appears that at least some of the subjects' limitations in phonemic analysis were language-specific rather than universal. In particular, two German backward talkers reversed the diphthongs, unlike the native English-speaking backward talkers. In general, it can be said that people carry out word games like this one by manipulating units of speech, and that the games are informative because subjects are compelled to perform these manipulations on units that are psychologically valid.

The woman who rearranged syllables had a standard set of three reorderings that she always produced in a fixed order, in rapid succession. In the first of these, she would reverse the order of syllables, but would keep the order of phonemes within each syllable in the forward order. In the second reordering, she would produce the syllables in their forward order, but with the order of phonemes within each syllable reversed. In the third reordering, she would reverse the order of phonemes from the end of the utterance, without regard for syllables. For example, the word basket \([\textsc{bæskət}]\) would be reordered as

\[
[\textsc{tæbæs}, \textsc{sæbtek}, \textsc{tæksæb}].
\]

The utterance *urban and rural cultures* \([\textsc{ərən} \text{and} \textsc{rûr}] \textsc{kəlt(ə)}z\) was reordered as follows:

\[
[\textsc{tækəl}'səl;\textsc{rûr}';\textsc{ænd} insurgents]
\]

\[
[\textsc{rubdnes};\textsc{rul}e'la\textsc{kərvt}]\]

\[
[\textsc{rvt}\textsc{lälke}rurdne'nbərə]\]

In the first two of this woman's three methods of reordering, she has to decide where to place the division between syllables. For example, her solution for the word *basket* (see above) makes clear that the division was \([\textsc{bæskət}]\). If the division were \(*[\textsc{bæskət}]\), it would have led instead to the production of \(*[\textsc{sket}bæz, \textsc{æbtek}, \textsc{tæksæb}]\). We presented to this subject a corpus of 230 words and 37 sentences and phrases to reorder, in a number of separate recording sessions. The solutions that were given almost always implicated the same syllabification rather than two conflicting syllabifications for the different reorderings of a word on a single presentation. On the other hand, there were occasional for the same word when it was sessions (e.g., \([\textsc{skel}]\) and \([\textsc{pretzəl}]\) as \([\textsc{pækəs}e]\) vs. \([\textsc{pəækəs}e]\) did not base her responses on rather that she rapidly performed word was presented. In suppos method of reordering depended on words were pronounced.

This woman said that she around 8 years of age. Like m thought that the skill came to developed the game privately, anyone with a similar or complems likely that the syllabic were those that she found to b Most linguistic theories similar manner, by counting p sounds within an utterance. I in how they determine where to be placed. Therefore, it is of co locations of syllabic boundary. Our finding was that the sylls to a number of previously defi

The first is the principle sequence of phonemes that wo English word can be consider example, in the word *evening* cannot be in the same syllable end with a \([\textsc{vn}]\) sequence. The possible: \([\textsc{lvn}ˌ\textsc{ŋ}]\). Our subject phrases always conformed to

There are other principle appear to exert pressures that the principle that stressed syll example of this in our own sufxx shifted the pattern of w *telegraph* has a stressed first \([\textsc{teləgræf}]\), with the [l] sound contrast, the word *telegraphy* and it was syllabified as \([\textsc{təˈlægrəfi}]\). This type of effect of
as [sɔːt] instead. Because the
ily to function as reversed
fects phonological constraints
Importantly, these conic
anies of many modern
that at least some of the
sis were language-specific
German backward talkers
ative English-speaking
said that people carry out
ng units of speech, and that
cts are compelled to perform
chologically valid.
les had a standard set of
ed in a fixed order, in rapid
rd reverse the order of
omenes within each syllable
dering, she would produce
ith the order of phonemes
rd reordering, she would
nd of the utterance, without
rd basket [ˈbækət] would be

[ˈtʃɪn and ˈrɪf natʃəz] was

hods of reordering, she has
on syllables. For example,
) makes clear that the
[ˈbækət], it would have
eks, ˈtekəb]. We
ords and 37 sentences and
recording sessions.
always implicated the
ing syllabifications for
le presentation. On the

other hand, there were occasional discrepancies between reorderings
for the same word when it was presented twice in different test
sessions (e.g., solo as [səʊ.ə] vs. [sə.ə], sugar as [ˈʃugər] vs. [ˈʃugər],
and pretzel as [ˈpre.tzel] vs. [ˈpre.tzel]). This suggests that the subject
did not base her responses on some sort of memorized syllabary, but
rather that she rapidly performed a syllabic segmentation when the
word was presented. In support of this idea, she did tell us that her
method of reordering depended upon the way in which the stimulus
words were pronounced.

This woman said that she began to play this speech game at
around 8 years of age. Like most of the other backward talkers, she
thought that the skill came to her naturally and easily. She
developed the game privately, kept it to herself, and did not know
anyone with a similar or comparable skill. Given this history, it
seems likely that the syllabifications that our subject decided upon
were those that she found to be easily manipulable.

Most linguistic theories define the number of syllables in a
similar manner, by counting peaks in the sonority or audibility of the
sounds within an utterance. However, the theories differ a great deal
in how they determine where the boundaries between syllables are to
be placed. Therefore, it is of considerable interest to determine the
locations of syllabic boundaries decided upon by a native speaker.
Our finding was that the syllabifications were orderly and conformed
to a number of previously defined principles of syllabification.

The first is the principle of phonotactic constraints. Any
sequence of phonemes that would be illegal within a monosyllabic
English word can be considered illegal within a syllable, as well. For
example, in the word evening [ˈevnɪŋ], the phonemes [v] and [n]
cannot be in the same syllable, because English words do not begin or
end with a [vn] sequence. Therefore, only one syllabic division is
possible: [ˈɪvŋ]. Our subject's reorderings of English words and
phrases always conformed to this principle of syllabification.

There are other principles that do not hold absolutely, but do
appear to exert pressures that affect syllabification. One of these is
the principle that stressed syllables attract phonemes. One clear type
of example of this in our own data was with words pairs in which a
suffix shifted the pattern of word stress. For example, the word
telegraph has a stressed first syllable, and it was syllabified as
[ˈteləgraф], with the [l] sound included in the first syllable. In
contrast, the word telegraphy has its stress on the second syllable,
and it was syllabified as [ˈteləgræf], with the [l] shifted to the second
syllable. This type of effect of stress on syllabification occurred within
other word pairs of this type also (e.g., for the [t] in *photograph* vs. *photography*).

Syllabification was also affected by the vowel quality in combination with stress. This probably occurred because people do not like to end stressed syllables with a lax vowel. Thus, the tendency would be to syllabify a word like *father* as [faːθər], with the first syllable closed. In contrast, if the first vowel of a stressed syllable is tense, as in the word *sofa*, the tendency is to leave the first syllable open, resulting in the syllabification [soːfa]. If the first syllable is unstressed, which neutralizes the distinction between a tense and lax vowel, the tendency is again to leave the first syllable open. For example, the word *machine* would be divided as [mæʃin] according to these considerations. All of this is in accord with the fact that few words in English end with stressed, lax vowels.

Before we can adequately quantify our subject's responses with respect to vowel quality and syllabic stress, there are two other factors that have to be considered. One is that there was a strong tendency to preserve the morphological structure of the word. Our subject received 31 words in which a division could be placed either at a morpheme boundary or elsewhere without violating phonotactic constraints, and she preserved the morpheme boundary in 27 of these 31 words. An inspection of the examples showed that morphological boundaries were generally preserved regardless of the vowel quality and stress. For example, the word *finalize* was syllabified as [faːnaliza], with the [l] attached to an unstressed vowel, whereas it would be more likely for the [l] to be included in the last syllable instead if it were not for the morphemic nature of the suffix *ize* [aɪz].

A second factor that has to be considered is geminate spelling. When a word was spelled with a double consonant, our subject almost always divided the word in the middle of the consonant, so that the same consonant was included in two syllables. For example, the word *balloon* was divided as [bæləʊn]. This syllabic division within a consonant may occur because there are different principles that pull the medial consonant toward the first versus the second syllable. Indeed, many believe that the primary function of the geminate consonant spelling is to reflect the presence of a phoneme in two syllables. Our subject did occasionally make ambisyllabic responses in cases in which the spelling was not geminate, also. For example, she divided *elephantitis* as [ɪl.e.fənt.i.tɪs], with the first [t] ambisyllabic. In this example, notice that the ambisyllability serves the purpose of preserving the morphological unit *elephant*, in a situation in which the [t] consonant otherwise would have been attracted to the word ending.

There are many other cases where it would have helped to resolve, but the relative rarity of the speech, other than in cases her view of the task. In a p

Put-obliged to *get rid of a s* being that she did not use a would have liked to.

Now we can usefully quality. In order to quantiti there was a morpheme bou influence the results, and v where we had by far the la this analysis, in fact, we on consonant at the first syllal the sample with a stressed, with a stressed, tense rowe When there was a stressed, syllable was left open only : first syllable ended in a stre the time, and when the fis 100% of the time.

It is worth noting the larger number of subjects h games that require syllabif Zukowski, 1990). The result agreement with our own re used ambisyllability somev The ambisyllabic res occurred because two or mo conflict. For example, some discussed a principle where attached to the beginning or previous syllable. This is t This principle would encour word *sofa* in the second syll mal onset are in conflict, w ambisyllabic treatment of []

Another principle of: contour. A rating of sonorit and lowest for stop conson in sonority and fricatives ei stops. Treiman and Zukow
for the [t] in photograph vs.

by the vowel quality in

y occurred because people do
d a lax vowel. Thus, the tendency

as [əzə], with the first

vowel of a stressed syllable is

to leave the first syllable

free. If the first syllable is

an action between a tense and

the first syllable open. For

divided as [ma.tən] according to

cord with the fact that few

vowels.

y our subject's responses with

ss, there are two other factors

here was a strong tendency to

the word. Our subject

d be placed either at a

ut violating phonotactic

home boundary in 27 of these

showed that morphological

ardless of the vowel quality

se was syllabified as

stressed vowel, whereas it

ded in the last syllable

ature of the suffix ize [əzə].

ider is geminate spelling.

onsonant, our subject

ddle of the consonant, so

two syllables. For example,

This syllabic division

e are different principles

first versus the second

inary function of the

he presence of a phoneme
dy make ambi syllabic

not geminate, also. For

at t a.təs], with the first [t]

the ambi syllabic serves

al unit elephant, in a

ise would have been

There are many other cases in which an ambi syllabic response
could have helped to resolve two conflicting principles of syllabification,
but the relative rarity of this type of response in our subject's
speech, other than in cases of geminate spelling, could have reflected
her view of the task. In a posttest interview, she mentioned that she
felt obliged to "get rid of a speech sound once it was used," the effect
being that she did not use ambi syllabic nearly as often as she
would have liked to.

Now we can usefully return to the effects of stress and vowel
quality. In order to quantify these effects, we omitted cases in which
there was a morpheme boundary or a geminate spelling that could
influence the results, and we just examined first syllabic divisions,
where we had by far the largest number of stimulus examples. For
this analysis, in fact, we only included words that had just one
consonant at the first syllabic boundary. There were 27 such words in
the sample with a stressed, lax vowel in the first syllable; 28 words
with a stressed, tense vowel; and 17 words with an unstressed vowel.
When there was a stressed, lax vowel in the first syllable, that
syllable was left open only 33% of the time. In contrast, when the
first syllable ended in a stressed, tense vowel, it was left open 75% of
the time, and when the first syllable was unstressed, it was left open
100% of the time.

It is worth noting that there are other studies in which a
larger number of subjects have been taught to carry out language
games that require syllabification (Fallows, 1981; Treiman &
Zukowski, 1990). The results of these studies generally are in good
agreement with our own results, except that these native speakers
used ambi syllabic somewhat more often than our subject did.

The ambi syllabic responses in these studies presumably
occurred because two or more principles of syllabification were in
conflict. For example, some investigators (e.g., Fallows, 1981) have
discussed a principle whereby as many consonants as possible are
attached to the beginning of a syllable rather than the end of the
previous syllable. This is termed the "principle of maximal onset." This
principle would encourage the placement of the medial [f] in the
word sofa in the second syllable. In this example, stress and maxi-
mal onset are in conflict, which theoretically could result in an
ambi syllabic treatment of [f].

Another principle of interest is one that involves the sonority
contour. A rating of sonority or audibility would be highest for vowels
and lowest for stop consonants, with glides and liquids intermediate
in sonority and fricatives either intermediate as well, or else equal to
stops. Treiman and Zukowski (1990) found that some syllabifications
that previously had been attributed to the principle of maximal onset actually involve the sonority contour. Subjects appeared to prefer syllabifications that resulted in an inverted-U shape for the sonority changes within a syllable (i.e., syllabifications that allowed each syllable to rise steadily in sonority until the central vowel was reached, and then to decline steadily in sonority until the end of the syllable was reached). According to this principle, syllabifications would differ for bisyllabic words with medial ([s] + stop), as in the word estate, versus words with other medial consonant pairs, such as (stop + [r]) as in the word Madrid. In the case of ([s] + stop), the entire cluster should not be assigned to the second syllable, because in that case the sonority contour of that second syllable would decrease or remain flat when going from [s] to the stop consonant. Accordingly, these investigators found that words like estate were usually syllabified with the cluster split (e.g., [es.tet]). In contrast, words like Madrid were usually syllabified with the entire cluster assigned to the second syllable (e.g., [ma.drid]).

A re-examination of our own data from the woman who reordered syllables indicates that she was consistent with Treiman and Zukowski (1990), and this was true for a wider variety of words than they used. The first medial cluster was split in the words with an [s] + stop: mister, mistake, Easter, question, frustrate, and suspicious. In contrast, the first medial cluster was assigned to the following syllable in other words: asleep, liquid, algebra, eloquent, and ludicrous. (In the last two cases, the cluster occurred between the second and third syllables.) Other than morpheme boundaries, there was only one exception that we could find to this pattern: the medial cluster was split within the word apron ([ə.pɾɔn]). Notice that in this instance, both syllables still had an inverted-U-shaped sonority contour. It may be noteworthy that this well practiced subject followed the linguistic principle with less variability than in the means obtained from naive subjects by Treiman and Zukowski (1990).

It should be mentioned that the sonority contour principle cannot account for everything that has been attributed to the maximal onset principle. For example, it cannot determine what syllabification will result when there is a single medial consonant, as in the word solo.

There were at least 7 instances in which the principles that we have discussed could not fully account for our subject's syllabification. These are cases that had a stressed first syllable with a tense vowel, but were still not left open in the syllabification. We believe that in some or all of these cases, the first syllable may have had morphemic value to the subject, although it would not be a standard morpheme within English. was syllabified as [fæn.ai.a]

To sum up, our subject revealed the likely involve were phonotactic constrain additionally there were inf stress, vowel quality, maxi summate or compete with he be expected on the basis of although there may be no predicted all of the finding.

Now let us turn our relevant to the psychologic a bright and linguistically (throughout his kindergarten when he was 5;3, he was te some examples. In 19 tests throughout the year, he wa phrases to transform. Mar second time and some add presented, at various ages development and resolve sc knowledge, this is the first conventional speech game.

The sessions were al terminated while he was st Pig Latin would not be lost rules of Pig Latin by the th time he could explain these he made a variety of errors though he was praised for following incorrect ones. T linguistic units and divid this point in his developm Latin without making erro throughout most of the stu the spoken language to rel improve, his intuitions abc

The rules of Pig Latin consonant cluster, or the fi pronounce that consonant by the sound [et] as in the would be transformed to [i
the principle of maximal onset subjects appeared to prefer an inverted-U shape for the sonority conditions that allowed each central vowel was sonority until the end of the is principle, syllabifications redial ([s] + stop), as in the redial consonant pairs, such as the case of ([s] + stop), the second syllable, because second syllable would a [s] to the stop consonant, hat words like estate were (e.g., [est=tet]). In contrast, led with the entire cluster dratd). from the woman who is consistent with Treiman or a wider variety of words was split in the words with question, frustrate, and cluster was assigned to the liquid, algebra, eloquent, a cluster occurred between an morpheme boundaries. d find to this pattern: the apron [esp rən]. Notice that an inverted-U-shaped sonority is well practiced subject variability than in the seinan and Zuzowski (1990). sonority contour principle n attributed to the cannot determine what single medial consonant, as which the principles that we our subject's syllabification-first syllable with a tense syllabification. We believe syllable may have had would not be a standard morpheme within English. For example, in the word finalize, which was syllabified as [kain ali. aiz], the root fin [kain] might mean “end.”

to sum up, our subject's self-determined syllabic boundaries revealed the likely involvement of a number of constraints. There were phonotactic constraints that were obeyed absolutely, and additionally there were influences of morphemic structure, syllabic stress, vowel quality, maximal onset, and sonority contour that could summate or compete with one another. Each of these factors might be expected on the basis of other linguistic and psycholinguistic work, although there may be no single linguistic theory that would have predicted all of the findings.

now let us turn our attention to the second special subject relevant to the psychological description of syllables. The subject was a bright and linguistically capable boy who was studied (Cowan, 1989) throughout his kindergarten year. At the beginning of the study, when he was 5:3, he was taught the rules of Pig Latin and was given some examples. In 19 test sessions spaced at irregular intervals throughout the year, he was given 163 words and 29 multi-word phrases to transform. Many of the original stimuli were presented a second time and some additional words and sentences were presented, at various ages up until 7:2, in order to chart the course of development and resolve some ambiguities in the data. To our knowledge, this is the first study of the developmental acquisition of a conventional speech game.

the sessions were always started at the child's request and terminated while he was still enjoying the game, so that interest in Pig Latin would not be lost. The child appeared to understand the rules of Pig Latin by the third session, at the age of 5:6, and at that time he could explain these rules to the investigator. Nevertheless, he made a variety of errors in his Pig Latin transformations, even though he was praised for correct answers and gently corrected following incorrect ones. These errors provided evidence about what linguistic units and dividing points were most accessible to him at this point in his development. An older child might well learn Pig Latin without making errors, but this subject was pre-literate throughout most of the study, so that he had only his intuitions about the spoken language to rely upon. As his reading skills began to improve, his intuitions about Pig Latin changed as well.

the rules of Pig Latin are as follows. One is to remove the first consonant cluster, or the first consonant if there is no cluster, and pronounce that consonant or cluster at the end of the word, followed by the sound [et] as in the word day. For example, the word spring would be transformed to [spring et]. The child was simply told to move
the first “sound” to the back of the word and add [ə], and the
meaning of the term “sound” was clarified through examples.

Unlike our first special subject, whose skill was primarily
relevant to the issue of the boundaries between syllables, errors in Pig
Latin are more relevant to the issue of the internal structure of
syllables. Previous linguistic work, as well as research with
language games, suggests that the natural major subsections of a
syllable are its “onset” and “rime” (Fudge, 1969; Treiman, 1986). The
onset is the initial consonant or consonant cluster, and the rime is
the vowel along with the final consonant or consonant cluster. In
turn, the rime can be further divided into the “peak,” or vowel
nucleus of the syllable, and the “coda,” or final consonant or
consonant cluster. However, the peak is more closely associated with
the coda than with the onset, so that the structure of the syllable is
hierarchical. In these terms, Pig Latin involves shifting the onset of
the first syllable to the end of the word.

On one- and two-syllable words considered together, the child’s
performance increased from just under 50% correct in the early
sessions to over 90% correct a little more than one year later, at the
age of 6;6, when literacy was beginning. Thus, in many instances,
the subject was able to correctly shift the location of the onset of
the first syllable. There were 49 stimulus words with a wide variety of
initial consonant clusters, but there were only 2 instances in which
these clusters were incorrectly split instead of being removed as an
onset unit.

At the age of 8;6, performance on three-syllable words was still
only at 30% correct, suggesting that the need to remember a long
word while manipulating its parts was difficult. Nevertheless,
within the next few months he acquired the ability to converse
fluently in Pig Latin, except for the longer words and some persistent
errors.

There were a number of error types, but only a few of them
seem relevant to the psychological structure of syllables, and those
are the ones we will discuss. In one frequent type of error, an
inappropriately long portion of the word was shifted to the end. For
example, the word potato should have been transformed as
[stæterəpət], but instead, it was transformed as [ætermətə]. An
inspection of these errors indicated that the child was erroneously
taking word stress into account. When the first syllable was
unstressed, he skipped over that syllable and divided the word after
the onset of the first stressed syllable. Thus, instead of dividing
potato after [p], he divided it after the first [t]. It proved to be
impossible to train him out of this error; he apparently considered
the word’s first “sound” to be that of the first stressed syllable. TI
subjects, unstressed syllables are stressed syllables. Even at the
that age the noun permit was not the verb permit (with its
syllable salient is reminiscent of boundary phonemes, which we
readers syllables and also have research with language games.

Another possible role of multiword utterances through the small, unstressed function word order rather than be, your milk was transformed as
your not transformed, and go as crstel with to and the not 1
stress plays an important role into units (see Gletman & W)
evidence of this principle.

In another type of error correctly but too long a portion of a
formed word, either with or without errors may have occurred be
blending the onset alone with forget to halt his pronunciation
point. In any case, it was the endings that was relevant to
was a consonant-vowel-consonant end. For example, Jello
[stæterəpət], and melt was trans In other instances, it was ju
rescued at the end. For instance, stupa transformed as [stætrəpət] rat
portions rescued at the end ty example, [ætə] is not a possible
syllable of boxtop.

What is of the greatest CV versus a CVC sequence of
the transformed word was the words. First, among th
and add [s], and the
ified through examples,
whose skill was primarily
between syllables, errors in
the internal structure of
well as research with
ural major subsections of
ge, 1969; Treiman, 1986). The
ant cluster, and the rime is
at or consonant cluster. In
to the “peak,” or vowel
or final consonant or
is more closely associated with
structure of the syllable is
involved shifting the onset of
considered together, the child's
50% correct in the early
than one year later, at the
Thus, in many instances,
location of the onset of the
words with a wide variety of
only 2 instances in which
end of being removed as an
three-syllable words was still
need to remember a long
difficult. Nevertheless,
the ability to converse
words and some persistent
s, but only a few of them
ure of syllables, and those
ent type of error, an
was shifted to the end. For
en transformed as
d as [kropet]. An
the child was erroneously
first syllable was
and divided the word after
us, instead of dividing
[U]. It proved to be
is apparently considered
the word's first “sound” to be the point up to and including the onset
of the first stressed syllable. This suggests that, at least in preliterate
subjects, unstressed syllables are much less salient units than are
stressed syllables. Even at the age of 7,2 this error was still made. At
that age the noun *permit* was transformed correctly, as [rmitpej],
but the verb *permit* (with its stress on the second syllable) was
transformed instead as [upmitpej]. This role of stress in making a
syllable salient is reminiscent of the function of stress in attracting
boundary phonemes, which was observed in the woman who
orders syllables and also has been noted in much of the other
research with language games.

Another possible role of stress was seen in the transformation of
multiword utterances throughout most of the study. Specifically,
the small, unstressed function words were recited in the intact,
forward order rather than being transformed. For example, *Drink
your milk* was transformed as [drink se jot mike], with the word
your not transformed, and *go to the store* was transformed as [go ti
ti stored], with to and the not transformed. It is quite likely that
stress plays an important role in children's segmentation of speech
into units (see Gleitman & Wanner, 1982, pp. 17-24 for further
evidence of this principle).

In another type of error, the onset of the word was removed
correctly but too long a portion was recited at the end of the trans-
formed word, either with or without the final [s] sound. These
errors may have occurred because the child would have had difficulty
blending the onset alone with the suffix [s], or simply because he
forgot to halt his pronunciation of the shifted portion at the correct
point. In any case, it was the nature of these overly long word
endings that was relevant to syllable structure. In some instances, it
was a consonant-vowel-consonant (CVC) sequence that was recited at
the end. For example, *Jello* was transformed as [elodze] instead of
[elodge], and *melt* was transformed as [eltmeel] instead of [elmeel].
In other instances, it was just a consonant-vowel (CV) sequence that
was recited at the end. For example, *boxtop* was transformed as
[ekapotb] rather than [ekapot], and the name *Jean* was
transformed as [indedge] rather than as [indge]. These CV or CVC
portions recited at the end typically were not entire syllables; for
example, [mi] is not a possible syllable of *melt* and [bs] is not a
possible syllable of *boxtop*.

What is of the greatest interest here is that the recitation of a
CV versus a CVC sequence from the beginning of the word at the end
of the transformed word was related to two phonological properties of
the words. First, among the cases in which a CVC sequence was
produced, the vowel of this sequence was lax 89% of the time. In contrast, among the cases in which a CV sequence was produced, the vowel was lax only 21% of the time. Thus, the subject usually left the sequence open, rather than including the following consonant, only if the vowel was tense.

Second, the type of consonant following the first vowel made a difference in these types of errors. This consonant was a liquid (ll or [r]) or a nasal ([n], [m], or [ŋ] as in ring) in 89% of the instances in which a CVC sequence from the beginning of the word was produced at the end, but only 18% of the instances in which a CV sequence was produced. These differences are to be expected because of the greater sonority of liquids and nasals than of most other consonants, such as stop consonants and fricatives. The greater the sonority, the more tightly bound the consonant may be to the nuclear vowel of the syllable (Ladefoged, 1982, p. 222). Thus, once again, there is a striking parallel between the syllable-related properties of transformed speech in the two subjects whose language transformations we have described.

Finally, there were errors that revealed the role of morphemes in speech segmentation. One interesting error type emerged for the transformation of words with a plural suffix during the retest sessions, although plurals had been transformed correctly at an earlier age. In these errors, the singular form of the word was transformed and then [s] or [z] was added. For example, the word bells was transformed as [bɛlz] rather than as [bɛlz]. An interesting error also emerged that suggested that there may be sequences of morphemes that are loosely associated, but still separate. In particular, the phrase zip up was transformed as [zione]. Notice that the suffix [z] was placed at the end, suggesting that the phrase was treated as a single unit, but that the [s] was placed after the first syllable, suggesting instead that the phrase was treated as two units. Although the role of morphemes cannot be observed in any great detail in this corpus, it is clear that both syllable structure and morphology have to be considered in order to understand this child's interpretation of Pig Latin.

In summary, we have reviewed corpora of evidence from two very different types of language reordering. There are some striking similarities between the two, and together they paint a rather coherent picture of the mental representation of syllabic structure. At least the following principles appear to hold:

(1) Syllabic segmentation is accomplished in such a way that phonotactic constraints are met.

(2) Speech is divided at pheme boundaries are used.

(3) In literate subjects, although the spell phological properties.

(4) The pattern of strong, stressed syllables tend structure within syllables unstressed syllables.

(5) Vowel quality is strong tendency to end.

(6) Syllabification is of sonority, with an attempt sonority across each syll.

(7) Finally, at least syllabification, the principle.

These principles from games are consistent with sources as well. Take, for example, speech errors in English a two words with related meaning begun [bɪgən] and starte [stɑrte] form “begarted” [tɪgɑrtcɪd]. Divisions occurred at syllable native informants, rather psychological validity of syllables usually coincided with syllables among blends in which syllables occurred before rather than after the case in our example, “bega” blend includes the [g] from the basis of the corpus of e be broken down into organic onset and rime.

Evidence from other states the psychological validity phonemic transposition errors phonemes or sequences the syllables (see Fromkin, 1977 or two final consonant clusters final consonant cluster are.

Finally, there are cases in
was lax 89% of the time. In CV sequence was produced, thus, the subject usually left the following consonant now when the first vowel made a is consonant was a liquid (l) or g) in 89% of the instances in ming of the word was produced in which a CV sequence was expected because of the greater most other consonants, such as greater the sonority, the more the nuclear vowel of the syllable again, there is a striking properties of transformed speech transformations we have

revealed the role of morpheme error type emerged for the suffix during the retest transformed correctly at an lar form of the word was ded. For example, the word r than as [stizbe]. An interest that there may be sequences of but still separate. In particular as [tizapoe]. Notice that the stinging that the phrase was was placed after the first erase was treated as two units be observed in any great h syllable structure andorder to understand this child's corpora of evidence from tworing. There are some striking error they paint a rather station of syllabic structurear to hold: accomplished in such a way that

(2) Speech is divided into syllables in such a way that morpheme boundaries are usually preserved.

(3) In literate subjects, spelling is sometimes also taken into account, although the spelling is itself correlated with relevant phonological properties.

(4) The pattern of stress influences syllabification. In particular, stressed syllables tend to attract boundary consonants, and the structure within syllables is more transparent for stressed than for unstressed syllables.

(5) Vowel quality plays a role in syllabification. There is a strong tendency not to end a syllable in a stressed, lax vowel.

(6) Syllabification is accomplished with respect to the pattern of sonority, with an attempt to preserve a simple inverted-U contour of sonority across each syllable.

(7) Finally, at least when the other principles cannot explain syllabification, the principle of maximal onset often can account for it.

These principles from two special subjects with language games are consistent with evidence from other psycholinguistic sources as well. Take, for example, MacKay's (1972) analysis of speech errors in English and German. He focused on cases in which two words with related meanings had been blended (e.g., the words began [bigan] and started [starded] might accidentally be combined to form "begarded" [bigarded]). MacKay found that the majority of divisions occurred at syllabic boundaries, as determined by two native informants, rather than within syllables, confirming the psychological validity of syllables as units. Morpheme boundaries usually coincided with syllabic boundaries so defined. Moreover, among blends in which syllables were divided, the division most often occurred before rather than after the vowel. This is presumably the case in our example, "begarded," in which the second syllable of the blend includes the [g] from began and then the [a] from started. On the basis of the corpus of errors, MacKay proposed that syllables can be broken down into organized subunits that others have termed the onset and rime.

Evidence from other types of speech errors further substantiates the psychological validity of syllabic units. For example, phonemic transposition errors usually involve switches between phonemes or sequences that occupy comparable slots within different syllables (see Fromkin, 1973). That is, two onsets may be transposed or two final consonant clusters may be transposed, but an onset and a final consonant cluster are rarely transposed with one another.

Finally, there are cases in which morphemic structure is imposed on
syllables. In one example reported by Fromkin (1971), the phrase *bloody students* [bldə stədzəm] was misspoken as [blədə studiz], with the plural morpheme remaining on the last syllable rather than migrating forward along with the rest of the syllable to which it had been attached. This is closely comparable to the way in which Cowan’s (1989) child subject at one stage of acquisition applied the Pig Latin transformation to a pluralized noun and then attached the plural morpheme to the end of the transformed noun.

In conclusion, to understand syllables in light of these sources of behavioral evidence, it seems helpful to reconsider the distinction between competence and performance that has been so important within the field of linguistics. Whereas linguists have not been able to agree on the definition of the syllable, there is a fairly high level of agreement among disparate sources of performance data on syllables. Consequently, we believe that the theoretical question need not be whether performance data are relevant to an understanding of speakers’ underlying competence; rather, the main question is what type of competence could lead to such relative consistency in performance.

On the other hand, the picture that emerges is not one of total invariance in syllabic representation across behavioral contexts. There would appear to be developmental changes in syllabic representation as phonology is differentiated from suprasegmental cues, as the morphological system is refined, and as written language is acquired (Cowan, 1989; Cowan et al., 1985). Even within a single developmental level, differences between speakers seem likely (see Fallows, 1981; Sherzer, 1970; Treiman & Zukowski, 1990) and, of course, many have spoken of possible language differences in the role of syllables. The present work has identified some areas of stability across behavioral contexts, and the remaining task is to determine which of these areas of stability reflect truly invariant aspects of syllabic representation.

NOTES

Those who would like to receive a copy of a demonstration of several backward talkers (including the woman who reordered syllables) should send a blank audiocassette tape to Nelson Cowan, Department of Psychology, University of Missouri, Columbia, MO 65211. Email address: psycowan@umcvmmb.missouri.edu.

REFERENCES

Child Language, 16,
Cowan, N., Braine, M.D.S.
and metaphonologic
fluent backward tall
679-686.
Cowan, N., Leavitt, L.A., I
backward talker. Jl
48-53.
and syllable structur
itterances. Languag
Hague: Mouton.
Gleitman, L.R., & Wanner,
state of the state of t
(eds.), Language acq
Cambridge Universi
Ladafoed, P. (1962). A co
Harcourt Brace Jovi
MacKay, D.G. (1972). The
from errors in speech
Morais, J., Carey, L. A. E
awareness of speech
spontaneously? Cogn
Motley, M.T. (1985, Septem
American, 253, 116-1
Sapir, E. (1949). The psy
Mandelbaum (ed.), S lan
language, culture, ar
of California Press.
reality of phonology: An
Treiman, R. (1986). The d
English syllables. Jo
Treiman, R., & Zukowski, J
English syllabicificatio
66-85.
omkin (1971), the phrase spoken as [bladent studiz],
the last syllable rather than
the syllable to which it had
the way in which
of acquisition applied the
noun and then attached the
formed noun.
bles in light of these sources
reconsider the distinction
has been so important
inches have not been able
there is a fairly high level of
formance data on
the theoretical question nee
vant to an understanding of
main question is who
aristic consistencies in

t emerges is not one of total
ose behavioral contexts.
changes in syllabic
iated from suprasegmental
ed, and as written
en et al., 1985). Even within
between speakers seem
Freiman & Zukowski, 1990)
sible language differences in
as identified some areas of
the remaining task is to
rely reflect truly invariant

REFERENCES

Child Language, 16, 365-386.

and metathronological representation of speech: evidence from
fluent backward talkers. Journal of Memory & Language, 24,
679-698.

backward talker. Journal of Speech & Hearing Research, 25,
48-53.

Fromkin, V.A. (1971). The non-anomalous nature of anomalous

Hague: Mouton.

Gleitman, L.R., & Wanner, E. (1982). Language acquisition: the
state of the state of the art. In E. Wanner & L.R. Gleitman
(eds.), Language acquisition: the state of the art. Cambridge:
Cambridge University Press.

Harcourt Brace Jovanovich.

awareness of speech as a sequence of phones arise

American, 253, 116-127.

Mandelbaum (ed.), Selected writings of Edward Sapir in
language, culture, and personality. Berkeley, CA: University
of California Press.

reality of phonological descriptions. Southwestern Journal of
Anthropology, 26, 343-353.

Treiman, R. (1980). The division between onsets and rimes in

Treiman, R., & Zukowski, A. (1990). Toward an understanding of
English syllabification. Journal of Memory & Language, 29,
66-85.