are of course not available when both or other consonants are found

+ + + + + + stop (closure)
+ + - + + + voiced
+ - - + + - nasal
+ + + - + - vowel (back)
- - - + + + labial

Evidence for the composite structure of speech sounds emerges also when

illustrated in (1), where each sound is represented as a complex of features

To the memory of Beveridge Hall

ARTICULATORY IMPLEMENTATION
ON DISTINCTIVE FEATURES AND THEIR
In the field of speech, the acoustic properties of the speaker and only sounds that are produced in the vocal cords can be represented in the acoustic properties of the speaker. The acoustic properties of the speaker are influenced by the speaker's vocal cords, which produce sound waves. These sound waves are then filtered by the vocal tract, which is the part of the vocal system that shapes the sound into a recognizable form.

The acoustic properties of the speaker can be represented in the acoustic properties of the vocal tract, which is the part of the vocal system that shapes the sound into a recognizable form. The acoustic properties of the vocal tract are influenced by the shape of the vocal tract, which is determined by the position of the tongue, lips, and jaw. These movements are controlled by the muscles of the vocal tract, which are affected by the neural signals that are sent to the muscles by the brain.

The neural signals that are sent to the muscles of the vocal tract are influenced by the neural signals that are sent to the muscles of the body by the brain. These neural signals are generated by the brain in response to the sensory input that is received by the brain, which includes the sensory input that is received by the ears and the sensory input that is received by the eyes.

The neural signals that are sent to the muscles of the vocal tract are then carried by the neural signals that are sent to the muscles of the body, which are carried by the spinal cord and the peripheral nervous system. These neural signals are then sent to the muscles of the vocal tract, which are then used to produce the sound waves that are then filtered by the vocal tract and then sent to the ears, where they are heard as sound.

The neural signals that are sent to the muscles of the vocal tract are also influenced by the neural signals that are sent to the muscles of the body by the brain. These neural signals are generated by the brain in response to the sensory input that is received by the brain, which includes the sensory input that is received by the ears and the sensory input that is received by the eyes.

The neural signals that are sent to the muscles of the vocal tract are then carried by the neural signals that are sent to the muscles of the body, which are carried by the spinal cord and the peripheral nervous system. These neural signals are then sent to the muscles of the vocal tract, which are then used to produce the sound waves that are then filtered by the vocal tract and then sent to the ears, where they are heard as sound.

The neural signals that are sent to the muscles of the vocal tract are also influenced by the neural signals that are sent to the muscles of the body by the brain. These neural signals are generated by the brain in response to the sensory input that is received by the brain, which includes the sensory input that is received by the ears and the sensory input that is received by the eyes.

The neural signals that are sent to the muscles of the vocal tract are then carried by the neural signals that are sent to the muscles of the body, which are carried by the spinal cord and the peripheral nervous system. These neural signals are then sent to the muscles of the vocal tract, which are then used to produce the sound waves that are then filtered by the vocal tract and then sent to the ears, where they are heard as sound.

The neural signals that are sent to the muscles of the vocal tract are also influenced by the neural signals that are sent to the muscles of the body by the brain. These neural signals are generated by the brain in response to the sensory input that is received by the brain, which includes the sensory input that is received by the ears and the sensory input that is received by the eyes.

The neural signals that are sent to the muscles of the vocal tract are then carried by the neural signals that are sent to the muscles of the body, which are carried by the spinal cord and the peripheral nervous system. These neural signals are then sent to the muscles of the vocal tract, which are then used to produce the sound waves that are then filtered by the vocal tract and then sent to the ears, where they are heard as sound.

The neural signals that are sent to the muscles of the vocal tract are also influenced by the neural signals that are sent to the muscles of the body by the brain. These neural signals are generated by the brain in response to the sensory input that is received by the brain, which includes the sensory input that is received by the ears and the sensory input that is received by the eyes.

The neural signals that are sent to the muscles of the vocal tract are then carried by the neural signals that are sent to the muscles of the body, which are carried by the spinal cord and the peripheral nervous system. These neural signals are then sent to the muscles of the vocal tract, which are then used to produce the sound waves that are then filtered by the vocal tract and then sent to the ears, where they are heard as sound.

The neural signals that are sent to the muscles of the vocal tract are also influenced by the neural signals that are sent to the muscles of the body by the brain. These neural signals are generated by the brain in response to the sensory input that is received by the brain, which includes the sensory input that is received by the ears and the sensory input that is received by the eyes.

The neural signals that are sent to the muscles of the vocal tract are then carried by the neural signals that are sent to the muscles of the body, which are carried by the spinal cord and the peripheral nervous system. These neural signals are then sent to the muscles of the vocal tract, which are then used to produce the sound waves that are then filtered by the vocal tract and then sent to the ears, where they are heard as sound.

The neural signals that are sent to the muscles of the vocal tract are also influenced by the neural signals that are sent to the muscles of the body by the brain. These neural signals are generated by the brain in response to the sensory input that is received by the brain, which includes the sensory input that is received by the ears and the sensory input that is received by the eyes.

The neural signals that are sent to the muscles of the vocal tract are then carried by the neural signals that are sent to the muscles of the body, which are carried by the spinal cord and the peripheral nervous system. These neural signals are then sent to the muscles of the vocal tract, which are then used to produce the sound waves that are then filtered by the vocal tract and then sent to the ears, where they are heard as sound.

The neural signals that are sent to the muscles of the vocal tract are also influenced by the neural signals that are sent to the muscles of the body by the brain. These neural signals are generated by the brain in response to the sensory input that is received by the brain, which includes the sensory input that is received by the ears and the sensory input that is received by the eyes.

The neural signals that are sent to the muscles of the vocal tract are then carried by the neural signals that are sent to the muscles of the body, which are carried by the spinal cord and the peripheral nervous system. These neural signals are then sent to the muscles of the vocal tract, which are then used to produce the sound waves that are then filtered by the vocal tract and then sent to the ears, where they are heard as sound.
by A. R. Bell (1985), has recently been subjected to a detailed criticism by
the IPA system for its over-interpreting vowels, which was originally introduced
by A. R. Bell (1985).

This seems rather unrealistic.

In terms that are totally different from those of the consonants and
to a different understanding of vowels, this system is taken into account.
But, the IPA system is an instrument to a different understanding of
the consonants and vowels that are more detailed. Therefore, it is not
possible to make a precise comparison of the consonants and
vowels in the IPA system. The understanding of the consonants and
vowels in the IPA system is based on different understanding of
the consonants and vowels, which is more detailed than the IPA system. The
understanding of the consonants and vowels in the IPA system is based on
different understanding of the consonants and vowels, which is
more detailed than the IPA system.

The IPA system is an instrument to a different understanding of
the consonants and vowels, which is more detailed than the IPA system. The
understanding of the consonants and vowels in the IPA system is based on
different understanding of the consonants and vowels, which is
more detailed than the IPA system.

The IPA system is an instrument to a different understanding of
the consonants and vowels, which is more detailed than the IPA system. The
understanding of the consonants and vowels in the IPA system is based on
different understanding of the consonants and vowels, which is
more detailed than the IPA system.

The IPA system is an instrument to a different understanding of
the consonants and vowels, which is more detailed than the IPA system. The
understanding of the consonants and vowels in the IPA system is based on
different understanding of the consonants and vowels, which is
more detailed than the IPA system.

The IPA system is an instrument to a different understanding of
the consonants and vowels, which is more detailed than the IPA system. The
understanding of the consonants and vowels in the IPA system is based on
different understanding of the consonants and vowels, which is
more detailed than the IPA system.

The IPA system is an instrument to a different understanding of
the consonants and vowels, which is more detailed than the IPA system. The
understanding of the consonants and vowels in the IPA system is based on
different understanding of the consonants and vowels, which is
more detailed than the IPA system.

The IPA system is an instrument to a different understanding of
the consonants and vowels, which is more detailed than the IPA system. The
understanding of the consonants and vowels in the IPA system is based on
different understanding of the consonants and vowels, which is
more detailed than the IPA system.

The IPA system is an instrument to a different understanding of
the consonants and vowels, which is more detailed than the IPA system. The
understanding of the consonants and vowels in the IPA system is based on
different understanding of the consonants and vowels, which is
more detailed than the IPA system.

The IPA system is an instrument to a different understanding of
the consonants and vowels, which is more detailed than the IPA system. The
understanding of the consonants and vowels in the IPA system is based on
different understanding of the consonants and vowels, which is
more detailed than the IPA system.

The IPA system is an instrument to a different understanding of
the consonants and vowels, which is more detailed than the IPA system. The
understanding of the consonants and vowels in the IPA system is based on
different understanding of the consonants and vowels, which is
more detailed than the IPA system.

The IPA system is an instrument to a different understanding of
the consonants and vowels, which is more detailed than the IPA system. The
understanding of the consonants and vowels in the IPA system is based on
different understanding of the consonants and vowels, which is
more detailed than the IPA system.
ON DISTINCTIVE FEATURES

A model of contextual control of this feature: Since these are three active attributes and since a given arrangement of these attributes is used in a given context, it is possible to produce contextual cues to the model of these attributes, which are then used to determine the contextual cue. Contextual cues are thus produced by these contextual cues, and the model of contextual control of this feature is used to determine the contextual cue.

Conversational cues are thus produced by these contextual cues, and the model of contextual control of this feature is used to determine the contextual cue. Contextual cues are thus produced by these contextual cues, and the model of contextual control of this feature is used to determine the contextual cue.

The contextual model is as follows:

- **Speaker**: [F+] [G-] [H-] [I+] [J-] [K-] [L-] [M-] [N+] [O-] [P+] [Q-] [R-] [S-] [T+] [U-] [V-] [W+] [X-] [Y-] [Z-]
- **Listener**: [A+] [B+] [C+] [D+] [E+] [F-] [G+] [H+] [I-] [J+] [K+] [L+] [M+] [N+] [O+] [P+] [Q+] [R+] [S+] [T+] [U+] [V+] [W+] [X+] [Y+] [Z+]

These contextual cues are used to determine the contextual cue. Contextual cues are thus produced by these contextual cues, and the model of contextual control of this feature is used to determine the contextual cue.

The contextual model is as follows:

- **Speaker**: [F+] [G-] [H-] [I+] [J-] [K-] [L-] [M-] [N+] [O-] [P+] [Q-] [R-] [S-] [T+] [U-] [V-] [W+] [X-] [Y-] [Z-]
- **Listener**: [A+] [B+] [C+] [D+] [E+] [F-] [G+] [H+] [I-] [J+] [K+] [L+] [M+] [N+] [O+] [P+] [Q+] [R+] [S+] [T+] [U+] [V+] [W+] [X+] [Y+] [Z+]

These contextual cues are used to determine the contextual cue. Contextual cues are thus produced by these contextual cues, and the model of contextual control of this feature is used to determine the contextual cue.

The contextual model is as follows:

- **Speaker**: [F+] [G-] [H-] [I+] [J-] [K-] [L-] [M-] [N+] [O-] [P+] [Q-] [R-] [S-] [T+] [U-] [V-] [W+] [X-] [Y-] [Z-]
- **Listener**: [A+] [B+] [C+] [D+] [E+] [F-] [G+] [H+] [I-] [J+] [K+] [L+] [M+] [N+] [O+] [P+] [Q+] [R+] [S+] [T+] [U+] [V+] [W+] [X+] [Y+] [Z+]

These contextual cues are used to determine the contextual cue. Contextual cues are thus produced by these contextual cues, and the model of contextual control of this feature is used to determine the contextual cue.

The contextual model is as follows:

- **Speaker**: [F+] [G-] [H-] [I+] [J-] [K-] [L-] [M-] [N+] [O-] [P+] [Q-] [R-] [S-] [T+] [U-] [V-] [W+] [X-] [Y-] [Z-]
- **Listener**: [A+] [B+] [C+] [D+] [E+] [F-] [G+] [H+] [I-] [J+] [K+] [L+] [M+] [N+] [O+] [P+] [Q+] [R+] [S+] [T+] [U+] [V+] [W+] [X+] [Y+] [Z+]

These contextual cues are used to determine the contextual cue. Contextual cues are thus produced by these contextual cues, and the model of contextual control of this feature is used to determine the contextual cue.

The contextual model is as follows:

- **Speaker**: [F+] [G-] [H-] [I+] [J-] [K-] [L-] [M-] [N+] [O-] [P+] [Q-] [R-] [S-] [T+] [U-] [V-] [W+] [X-] [Y-] [Z-]
- **Listener**: [A+] [B+] [C+] [D+] [E+] [F-] [G+] [H+] [I-] [J+] [K+] [L+] [M+] [N+] [O+] [P+] [Q+] [R+] [S+] [T+] [U+] [V+] [W+] [X+] [Y+] [Z+]

These contextual cues are used to determine the contextual cue. Contextual cues are thus produced by these contextual cues, and the model of contextual control of this feature is used to determine the contextual cue.

The contextual model is as follows:

- **Speaker**: [F+] [G-] [H-] [I+] [J-] [K-] [L-] [M-] [N+] [O-] [P+] [Q-] [R-] [S-] [T+] [U-] [V-] [W+] [X-] [Y-] [Z-]
- **Listener**: [A+] [B+] [C+] [D+] [E+] [F-] [G+] [H+] [I-] [J+] [K+] [L+] [M+] [N+] [O+] [P+] [Q+] [R+] [S+] [T+] [U+] [V+] [W+] [X+] [Y+] [Z+]

These contextual cues are used to determine the contextual cue. Contextual cues are thus produced by these contextual cues, and the model of contextual control of this feature is used to determine the contextual cue.

The contextual model is as follows:

- **Speaker**: [F+] [G-] [H-] [I+] [J-] [K-] [L-] [M-] [N+] [O-] [P+] [Q-] [R-] [S-] [T+] [U-] [V-] [W+] [X-] [Y-] [Z-]
- **Listener**: [A+] [B+] [C+] [D+] [E+] [F-] [G+] [H+] [I-] [J+] [K+] [L+] [M+] [N+] [O+] [P+] [Q+] [R+] [S+] [T+] [U+] [V+] [W+] [X+] [Y+] [Z+]

These contextual cues are used to determine the contextual cue. Contextual cues are thus produced by these contextual cues, and the model of contextual control of this feature is used to determine the contextual cue.

The contextual model is as follows:

- **Speaker**: [F+] [G-] [H-] [I+] [J-] [K-] [L-] [M-] [N+] [O-] [P+] [Q-] [R-] [S-] [T+] [U-] [V-] [W+] [X-] [Y-] [Z-]
- **Listener**: [A+] [B+] [C+] [D+] [E+] [F-] [G+] [H+] [I-] [J+] [K+] [L+] [M+] [N+] [O+] [P+] [Q+] [R+] [S+] [T+] [U+] [V+] [W+] [X+] [Y+] [Z+]

These contextual cues are used to determine the contextual cue. Contextual cues are thus produced by these contextual cues, and the model of contextual control of this feature is used to determine the contextual cue.

The contextual model is as follows:

- **Speaker**: [F+] [G-] [H-] [I+] [J-] [K-] [L-] [M-] [N+] [O-] [P+] [Q-] [R-] [S-] [T+] [U-] [V-] [W+] [X-] [Y-] [Z-]
- **Listener**: [A+] [B+] [C+] [D+] [E+] [F-] [G+] [H+] [I-] [J+] [K+] [L+] [M+] [N+] [O+] [P+] [Q+] [R+] [S+] [T+] [U+] [V+] [W+] [X+] [Y+] [Z+]

These contextual cues are used to determine the contextual cue. Contextual cues are thus produced by these contextual cues, and the model of contextual control of this feature is used to determine the contextual cue.

The contextual model is as follows:

- **Speaker**: [F+] [G-] [H-] [I+] [J-] [K-] [L-] [M-] [N+] [O-] [P+] [Q-] [R-] [S-] [T+] [U-] [V-] [W+] [X-] [Y-] [Z-]
- **Listener**: [A+] [B+] [C+] [D+] [E+] [F-] [G+] [H+] [I-] [J+] [K+] [L+] [M+] [N+] [O+] [P+] [Q+] [R+] [S+] [T+] [U+] [V+] [W+] [X+] [Y+] [Z+]

These contextual cues are used to determine the contextual cue. Contextual cues are thus produced by these contextual cues, and the model of contextual control of this feature is used to determine the contextual cue.

The contextual model is as follows:

- **Speaker**: [F+] [G-] [H-] [I+] [J-] [K-] [L-] [M-] [N+] [O-] [P+] [Q-] [R-] [S-] [T+] [U-] [V-] [W+] [X-] [Y-] [Z-]
- **Listener**: [A+] [B+] [C+] [D+] [E+] [F-] [G+] [H+] [I-] [J+] [K+] [L+] [M+] [N+] [O+] [P+] [Q+] [R+] [S+] [T+] [U+] [V+] [W+] [X+] [Y+] [Z+]

These contextual cues are used to determine the contextual cue. Contextual cues are thus produced by these contextual cues, and the model of contextual control of this feature is used to determine the contextual cue.