Redundant Values

Donca Steriade
Massachusetts Institute of Technology

1. Introduction
1.1. The issue
I would like to address in this paper what I believe to be the central issue for the theory of underspecification: are predictable feature values ever missing from phonological representations? I will suggest that only one type of predictable value is systematically absent from underlying representations: those predictable from feature cooccurrence restrictions.

1.2. Assumptions
Let me begin by listing the considerations that I will not use as criteria in looking for the evidence of underspecified values. I will not assume that we must eliminate predictable information from lexical entries. I will not assume that phonological rules apply always simultaneously to multiple targets; in other words, I will not rule out the sequential iterative mode of rule application. This means that nothing, in my view, prevents a rule of vowel harmony from operating sequentially, by successive spreading and delinking steps, as shown in (1):

(1) F - F - F - F F - F - F - F - F - F
 V C V C V C V -> V C V C V C V -> V C V C V C V -> V C V C V C V

Since I do not rule out the type of operation shown in (1), I am excluding an abundant but ultimately misleading source of arguments for underspecification.

The considerations I will appeal to in determining when a redundant value is missing will involve primarily the terms in which locality conditions on phonological rules must be stated. I will assume that if a rule propagating F has applied to a string, then any segment intervening between target and trigger was unspecified for F when the rule applied. This is represented schematically in (2), where (a) is the rule, (b) is a surface string resulting from the rule and (c) is the underlying representation of the string in (b).

(2) (a) F
 x...y
(b) F - F F
 x...z...y
(c) F (αF)
 x...z...y

Similarly I assume that dissimilation rules apply under strict adjacency between the target and the trigger autosegment. Therefore if any segment z intervenes on the surface between the
target and the trigger of a dissimilation rule, it will count here as underlyingly unspecified for the dissimilating feature.

I will use other phenomena as sources of evidence for underspecification, but only when they confirm conclusions drawn from the study of locality conditions on assimilation and dissimilation.

Evidence that a segment such as /z/ in (2) is transparent to harmony or disharmony is then sufficient to determine that /z/ is underspecified for F: but the converse doesn't hold. We cannot conclude from the sole fact that some segment /z/ is not transparent with respect to a process involving F that /z/ is specified for F. For instance, the fact that low vowels block the Turkish Rounding Harmony (cf. Clements and Sezer (1982)) need not be interpreted as evidence that they are specified at any stage in the derivation as [round]. The Turkish Rounding Harmony rule may involve a prosodic locality requirement which restricts spreading to adjacent syllables; and since low vowels do not undergo Rounding Harmony, they will act as blockers every time they intervene between a potential trigger and a potential target in sequences of the form /CoCaCi.../.

1.3. Types of underspecification

1.3.1. Trivial and non-trivial underspecification

Two distinctions will play a role here. The first is that between trivial and non-trivial underspecification. A segment may lack specifications for a feature value at all stages in the derivation: for instance one can argue that labials never acquire specifications for the feature [anterior], because anteriority is a feature characterizing exclusively the position of the tongue blade, an articulator that is not active in the production of a labial. In this sense, labials are trivially underspecified for [anterior]: they lack this feature underlyingly and never acquire it on the surface. A further potential source of trivial underspecification are single-valued features. I shall suggest below that [round] is one such feature, in the sense that it either takes the positive value [+round] or is absent altogether. I will further argue that a number of documented instances of underspecification can be analyzed by assuming that the relevant feature is single-valued, perhaps on a language specific basis.

Non-trivial underspecification involves segments which lack underlying values for a feature, even though they acquire such values in the course of the derivation. It is, by and large, the only type of underspecification discussed in the current literature.

My choice of terms is not meant to suggest that trivial underspecification is a trivial aspect of the theory. On the contrary, while it seems clear that this is a useful concept, we do not know at present which sounds and which features stand in the relation of trivial underspecification, whether the relation is universal or language specific, or what if anything the difference between trivial and non-trivial underspecification follows from. While I cannot offer a systematic answer to these questions, I will suggest that the significantly when w underspecification.

1.3.2. Distinctly

The second distinction is predictable values, distribution of voiced English:

\[
\begin{array}{cccccc}
\text{p} & \text{t} & \text{k} & \text{s} & \text{b} & \text{d} & \text{g} & \text{z} & \\
\text{m} & \text{n} & \text{l} & \\
\end{array}
\]

Voicing is partly for every sonorant, assume that only on voicing is also indicated by the an

\[
\begin{array}{cccc}
\text{p} & \text{t} & \text{k} & \\
\text{son} & \text{cont} & \text{voic} & \\
\text{a} [+] & \text{sonorant} \rightarrow [] & \text{b} [+] \rightarrow [-\text{voice}] & \\
\end{array}
\]

Rule (4)a intro within a segmental predictables: this r value of [voice], [segments. Rule (4) within a segmental values occur free like (4)a Redundant like (4)b Distincti of these notions is

\[
\begin{array}{cccc}
\text{R-class of} & \text{segments when} & \text{one value of} & \\
\text{D-class of} & \text{segments when} & \text{R-value fo}
\end{array}
\]
suggest that the view of underspecification theory changes significantly when we take into account the possibility of trivial underspecification.

1.3.2. Distinctive and Redundant values

The second distinction drawn here is that between two types of predictable values. To make this distinction clear I will use the distribution of voicing in a segmental inventory similar to that of English:

```
(3)
  p  t  k  s
  b  d  g  z
  m  n  l  r
```

Voicing is partly predictable in this system. It is predictable for every sonorant, since all sonorants are voiced. Further, if we assume that only one value of [voice] is present underlyingly, then voicing is also predictable for half of the obstruents, as indicated by the analysis in (4):

```
(4)
  p  t  k  s  b  d  g  z  m  n  l  r
  son  --  --  --  --  --  --  --  +  +  +
  cont  --  +  +  +  --  +  +  --  --  +
  voice +  +  +  +  --  --  --  --  --  --
```

a. [+sonorant] \rightarrow [+voice]
b. [+] \rightarrow [-voice]

Rule (4a) introduces a non-underlying specification [+voice] within a segmental class, that of sonorants, where the feature is predictable: this rule is equivalent to the statement that only one value of [voice], [+voice], is present within the class of sonorant segments. Rule (4b) introduces the non-underlying feature value within a segmental class, that of obstruents, where the both of its values occur freely. I will call the values introduced by rules like (4a) Redundant values (R-values) and those introduced by rules like (4b) Distinctive values (D-values). A more precise definition of these notions is attempted below:

```
(5)
- R-class of segments with respect to F: the class of segments where a feature co-occurrence constraint blocks one value of F.
- D-class of segments with respect to F: a class of segments where both values of F are allowed.
- R-value for F: the value of F present within its
```
R-class.
- D-value for F: a value of F present within its D-class.
- R-rule for F: a redundancy rule introducing an R-value.
- D-rule for F: a redundancy rule introducing a D-value.

A different classification of redundancy rules has been proposed by Archangeli (1984) and Archangeli and Pulleyblank (1986). These authors distinguish Default rules and Complement rules: the former class expresses universal restrictions on feature-cooccurrence such as [-low] \rightarrow [high]. In addition, Default rules introduce what are considered to be universally unmarked feature values such as [+high] for [high]. In contrast, Complement rules are language specific rules which introduce the opposite value of an underlying specification for F, in case no appropriate Default rule is available for the task. Roughly then, the proposed distinction is that between universal and language specific redundancy rules. In contrast, the terms defined in (5) characterize distinctive and non-distinctive assignments of feature specifications, regardless of their universality: according to (5), a feature-cooccurrence constraint need not be universal in order to define the R-class of a feature and therefore its R-value and corresponding R-rule.

1.4. Overview

I begin by showing that we have rather abundant evidence for the claim that R-values are underlyingly absent. I will then discuss the more limited evidence that D-values may also be absent. Finally, I will indicate an alternative interpretation of some of the attested patterns of underspecification, which allows us to further reduce the cases of non-trivially missing values.

2. Missing R-values

In this section I present the evidence establishing that redundant specifications are absent underlyingly.

2.1. The height of low vowels

The impossibility of simultaneous [+high, +low] specifications establishes that the height of low vowels is a R-value. The height of low vowels is also, frequently, a missing value in height harmony systems, both in the sense that low vowels do not spread their [+high] specifications and in the sense that low vowels are transparent to the spreading of height values from other segments. Before reviewing the evidence that low vowels are neutral in height harmony, we must however determine that low vowels do have surface specifications for [high]. This can be easily seen in cases where both mid and low vowels spread [+high]. For instance, Latin /i/ lowers to /e/ when tautosyllabic with a non-high vowel. For independent reasons, the class of tautosyllabic /i/ sequences reduces in Latin to /ai/ and /oi/, these assimilate in height and become /æi/ and /œi/. Phenomena of this type indicate that low vowels are as [+high] on the surface as the mid vowels. It then becomes quite significant that low vowels may lack [+high] specifications at a stage where the mid vowels are already [+high]: we observe this next.

2.1.1. Pasiego

In the Pasiego dialect assimilates non-low vow vowel. Low vowel do no is, in essence, the an presented in McCarthy of the relevant aspect distribution is also capitals.

(6)

a. /beb/ 'drink'
 bii-its
 beb-aimus
 beb-imus
b. el ma'/ 'the evil'
 en ku'wnta because o
 po la ku'xe 'down the

The forms in (6a, b) when stressed, the height the stem vowel surfaces as in /beb-aimus/ and /be/ as /be/ and /be/ across the intervening: The lack of trigger height harmony of Pasiego values at the stage we be underlyingly associat the fact that they repr the distribution of height.

2.1.2. Menomini

The vowel system of Menomini includes a low vowel, /a/ tense /e/ and /o/, and for short or long. The mi high when followed in postconsonantal glide.

(7)

a. ko'm 'snow'; kumuk 'he dances'; ni
b. moiskamow 'he comes up

The forms in (7a) illu harmony; (7b) shows the triggers of height harm rule. Given that the tri [+high] feature, low vowel the height of other vowel harmony must be explai
In the Pasiego dialect of Montañés Spanish a harmony rule assimilates non-low vowels to the height of a non-low stressed vowel. Low vowels do not undergo, trigger or block the rule. This is, in essence, the analysis of the Pasiego height harmony rule presented in McCarthy (1984). The examples below illustrate some of the relevant aspects of this process. Lax vowels, whose distribution is also discussed by McCarthy, are written in capitals.

(6) a. /beb:/ 'drink'
 sibt/ 'feel'
 bib-i's
 sint-i's
 beb-emus
 sent-emus
 beb-anus
 sint-an's

b. el ma'l 'the evil'
 en khi'ma 'because of'
 nol ka'ke 'down the street'
 il ma'di'ru 'the log'
 in il kali'ru 'in the lane'
 po il ArrU'yU 'along the arroyo'

The forms in (6) a show that both mid and high vowels trigger, when stressed, the height harmony rule. The underlying quality of the stem vowel surfaces intact only when the stressed vowel is low, as in /beb-emus/ and /sibt-an's/. The forms in (6) b show that the low vowel fails not only as a trigger but also as a blocker; thus the preposition/po/ undergoes height harmony in /pU il ArrU'yU/ across the intervening low vowel.

The lack of trigger or blocker behavior of low vowels in the height harmony of Pasiego indicates that these vowels lack height values at the stage when harmony applies. That low vowels cannot be underlyingly associated with any value for [high] follows from the fact that they represent the R-class of segments for [high]; the distribution of height values is defective in this class (1).

2.1.2. Menominii

The vowel system of Menomini (Bloomefield 1939, Cole 1984) includes a low vowel, /a/, three mid vowels, the lax /e/, and the tense /e/ and /o/, and two high vowels /i/ and /u/. Each vowel may be short or long. The mid tense long vowels /e:/ and /o:/ raise to high when followed in the word by a high vowel or by a postconsonantal glide.

(7) a. ko:n 'snow'; Kusnyak 'lumps of snow'
 nemsnaw 'he dances'; nimmit 'when he dances'
 ne:skonaw 'he comes up from under water'; muskamit 'if he emerges'

The forms in (7) a illustrate alternations resulting from height harmony; (7) b shows that a low vowel intervening between the triggers of height harmony and its targets will not block the rule. Given that the trigger of Menomini height assimilation is a [high] feature, low vowels will understandably have no effect on the height of other vowels. However, their transparency to height harmony must be explained. The explanation is the same as for
2.1.4. Ngba

A height disharmony operates in Ngba, a Central African language analyzed by Thomas (1963) and Ito (1984). The Ngba vowels are: /e(ː)/, /E(ː)/, /o(ː)/, /O(ː)/, /a(ː)/, /ɪ(ː)/, /ʊ(ː)/. Within a single morpheme, vowels of the same height may occur only if they are entirely identical; thus the two high vowels /ɪ/ and /ʊ/ are incompatible with each other, although each may co-occur with itself in morphemes of the form CiCi, CuCu. Similarly, distinct mid vowels may not co-occur morpheme-internally. The only pair of non-high vowels exempted from this restriction is formed by the low vowel /a/ and any one of the mid set /e, ø, E, O/: /ka/ ‘chain’, /ma/ ‘have’, /kahə/ ‘slave’. Following Ito (1985), one can assume that the automorphic VCV sequences with identical vowels involve multiply linked vocalic autosegments rather than distinct but identical ones. Given this, the height disharmony system of Ngba could be formulated as the prohibition against [high][high] sequences in underlying representations. But in order to explain the neutrality of /a/, the fact that /a/ may co-occur with a mid vowel even though both are [high], we must assume that /a/ lacks underlying specifications for [high].

The Ngba data is also interesting in that it suggests that both values of [high] occur underlyingly within the D-class for [high] of non-low vowels. In order to exclude underlying sequences of [high][high], or [high]-[high], both D-values for this feature must be present at the stage where the disharmony constraint is active: the stage of underlying representations.

2.2. The backness of /a/ in triangular systems

Many vowel systems have a simple low vowel, both in the sense that no other vowel is phonetically low and in the sense that this low vowel does not have any direct counterpart for features such as [back], [round] or [ATR]. Trubetzkoy (1939) refers to such systems as triangular vowel systems.

In a triangular system, the backness of the low vowel will be predictable from its [low] specification and thus will qualify as a R-value. The present section will show that this R-value is absent underlyingly.

The low vowels discussed next are those of Ainu and Tamil, both of which have triangular five-vowel systems. It is not entirely clear whether these low vowels display trivial or non-trivial under-specification for [back]: I have no information as to whether these low vowels are front, back, central or of contextually varying backness. For present purposes, however, this distinction is of secondary importance: I will concentrate only on the underlying absence of redundant [back] specifications. It will matter little how this absence is resolved on the surface.

2.2.1. Ainu

Ito (1984) discusses the following pattern of vocalic dissimilation in Ainu: transitive verbal stems take the form CV-CVj, where Vj is either a copy of the preceding vowel (as in /ten-e/ ‘to measure’, /ten-o/ ‘to measure’, value for backness is vowel. This second ci /pok-i/ ‘to lower’, involving a single, m cases (e.g. /pok-i/) dissimilation it is specification. Signif that it concur with /pamos/ to think’.

We need, as Ito not analysis of the Ainu n /a/ lacks backness sp why, of the five vow backness values. The i.e. a R-value, only

2.2.2. Tamil glide—

According to Christi, not occur underlying phonological rules app back vowels (o, u) occ back glide /a/. In c occur underlyingly af the disharmony cons attributable to th specifications. The interest of the of the Ngba height d underlying representati could be ordered rel constraint on underlying all redundancy rules, vocoids (/e, i, y/) and th backness at the under our terms, this shows t underlyingly. The extreme appears then to be lim /a/.

2.3. Redundant [back]

Hungarian has a much feature [back]. Within the two sets of (OCK) vowels is of a third set (with any vowel: /pela/ /god/ ‘short’. This neutral. Non-native co-occurrence: /börö/. Suffixal vowels agree when this vowel is /par-fü-neh/ ‘perfume-Dr stem vowel belongs to
When harmony applies (2).

ng pattern of vocalic stems take the form of the preceding vowel (as in /tem-e/ 'to measure', /yok-o/ 'to aim') or else a high vowel whose value for backness is distinct from that of a preceding non-low vowel. This second category includes stems like /šin-u/ 'to rub', /pok-i/ 'to lower'. Ito analyzes the cases like /yok-o/ as involving a single, multiply linked vowel. In the second class of cases (e.g. /pok-i/) the suffixal vowel is high and undergoes assimilation: it is [-aback] in the context of a stem [aback] specification. Significantly, /a/ is neutral in this process in that it cooccurs with both /u/ and /i/: /kar-i/ 'to rotate' and /ram-u/ 'to think'.

We need, as Ito notes, one assumption in order to simplify the analysis of the Ainu melodic dissimilation: the assumption is that /a/ lacks backness specifications. Beyond this, we must explain why, of the five vowels of Ainu, it is precisely /a/ which lacks backness values. The reason is that backness is non-distincive, i.e. a R-value, only in the low range.

2.2.2. Tamil glide-vowel sequences

According to Christdas (1986), the Tamil front vowels (e,i) do not occur underlyingly (i.e. morpheme-internally, before phonological rules apply) after the front glide /y/. Nor do the back vowels (o,u) occur in underlying representations after the back glide /w/. In contrast, the unique low vowel of Tamil can occur underlyingly after both /y/ and /w/. The behavior of /a/ in these systems is often attributed to the absence of its redundant [back] specifications.

The interest of the Tamil data extends further: as in the case of the Ngbaka height disharmony, the Tamil constraint holds of the underlying representations. It is not a phonological rule, which could be ordered relative to a redundancy rule, but rather a constraint on underlying segment sequences: as such it must precede all redundancy rules. Christdas points out that both the front vowels (e,i,y) and the back ones (o,u,w) must be specified for backness at the underlying stage when this disharmony applies. In our terms, this shows that both R-values for [back] must be present underlyingly. The extent of underspecification for [back] in Tamil appears then to be limited to the absence of the R-value: that of /a/.

2.3. Redundant [back] values in Hungarian

Hungarian has a much discussed rule of harmony involving the feature [back]. Within native roots vowels may belong to either of the two sets {o,i,u,a,ɛ,ı} {ɛ,ı,u,ʊ,ʌ} but not to both. The vowels of a third set {ɛ,i,u} may co-occur within native roots with any vowel: /pelda/ 'example', /tömeg/ 'crowd', /bika/ 'bull', /róvid/ 'short'. This third set is generally referred to as neutral. Non-native roots have no restrictions on vowel co-occurrence: /búro/ 'bureau', /parfüm/ 'perfume'.

Suffixal vowels agree with the backness of the last stem vowel, when this vowel is non-neutral: /búro-nak/ 'bureau-DAT', /parfüm-nek/ 'perfume-DAT'. Matters are more complex when the last stem vowel belongs to the set of {ɛ,i,u}. Kontra and Ringen
(1986) have shown that stems ending in /e/ or /i:/ preceded by a back vowel take suffixal back vowels: /papir-nak/ ‘paper-DAT’, /produkts-nak/ ‘productive-DAT’, /anként-nak/ ‘meeting-DAT’. This rule appears to hold for the majority of lexical items and for most speakers, although it does not hold absolutely. On the other hand, stems like /magnes/ ‘magnet’, which contain back vowels followed by short /a/, take primarily front suffixes. Kontra and Ringen conclude, in line with Ringen’s earlier findings (1979, 1980), that short /e/, i.e. /æ/, is not transparent to [back] harmony in contemporary Hungarian; but that /ɛ:/, /e:/ are.

What must be explained is why there should be a disparity between the inventories of long and short neutral segments of Hungarian: why short /e/ is not neutral while long /æ/ is. The explanation will invoke the distinction between D-values and R-values for [back].

If we were to group the Hungarian vowels according to their surface specifications for height, backness and rounding, the following picture would emerge:

(8)

<table>
<thead>
<tr>
<th>Short vowels</th>
<th>Long vowels</th>
</tr>
</thead>
<tbody>
<tr>
<td>front</td>
<td>front</td>
</tr>
<tr>
<td>-R</td>
<td>-R</td>
</tr>
<tr>
<td>+R</td>
<td>+R</td>
</tr>
<tr>
<td>high /i/</td>
<td>/i:/</td>
</tr>
<tr>
<td>/u/</td>
<td>/u:/</td>
</tr>
<tr>
<td>mid /õ/</td>
<td>/õ:/</td>
</tr>
<tr>
<td>/o/</td>
<td>/o:/</td>
</tr>
<tr>
<td>low /ɛ/</td>
<td>/ɛ:/</td>
</tr>
<tr>
<td>/a/</td>
<td>/a:/</td>
</tr>
</tbody>
</table>

The tables in (8) reveal an important disparity between the long and the short vowel systems of Hungarian: the low and mid short vowels are paired as to backness, with /ɛ:/ (= /æ/) opposed to /õ:/ (= /o/) and /i:/ opposed to /u:/, while the long vowel system has no backness contrast in the low range and no direct back counterpart for the mid vowel /õ:/. On the other hand, in both the long and the short vowel systems, backness is non-distinctive among unrounded high vowels: neither /i:/ nor /i:/ have direct back counterparts.

We may explain now why /e/ (i.e. /æ/) is not neutral: /e/ is paired for backness with /a/ and it thus belongs to the D-class of [back]. In contrast, /ɛ:/ has no back counterpart and it therefore belongs to the R-class. As in the other systems studied so far, the neutral vowels turn out to systematically belong to the R-class. Both the long and the short /i:/ are neutral, because they both lack a minimally different [+back] vowel. In this case too, membership in the R-class translates into neutral behavior.

Our analysis does however classify long /a:/ as belonging to the R-class for [back] as well, despite the fact that /a:/ does not behave as a neutral vowel. In light of this fact one may have to acknowledge that no two-way correlation can be established between R-status and neutral behavior: the neutral vowels of Hungarian all belong to the R-class for [back] but not all vowels of this class are neutral. This would suggest an analysis of Hungarian harmony along the following lines:

Stage a: Underlying r

Stage b: R-rule 1: [front] harmony

Stage c: R-rule 2: [front] harmony

Stage d: R-rule 3: [front] harmony

Aside from the rules of Hungarian, assumptions that need Beddor’s (1987) considerations. Spread of harmony: F, place both in form/parfum-tol/. In each belonging to the D-cl backness of suffixal belonging to the D-cl must be feature-changing earlier by Vago (1988) in harmony and proto Alternation/Strict (Yu2

2.4. The rounding /a:/ in some of the not necessarily for b one (a, e, œ, i, u) by a rule suffixal backness can be pred/round] and [back]. choice, one must cou values as underlying demonstration of the from derivationally e.
along the following lines:

(9)

Stage a: Underlying representations: all D-values for [back] are present. Vowels specified at this stage:

\(\{a, e, o, õ, u, û, ŏ, ŭ, ū, ŭ, ū\} \)

Stage b: R-rule 1: [+low] \text{-->} [+back]

Vowels specified at this stage:

all of the above plus /a/.

Stage c: Harmony (iterative, feature-changing):

[+back] [+back]

V...V

Stage d: R-rule 2: [low, [round]] \text{-->} [back]

(affects /i/, /i/, /e/)

Aside from the relative order between harmony and the redundancy rules of Hungarian, the analysis above relies on a number of assumptions that need spelling out. First, I adopt Farkas and Beddor’s (1987) conclusion that both [+back] and [-back] must be spread by harmony: Farkas and Beddor show that harmony must take place both in forms like /bûrōː-tol/ and in forms like /parfûm-tol/. In each of these cases, the last stem vowel - one belonging to the D-class for [back] - is the one determining the backness of suffixal vowels. If both [+back] and [-back] values belonging to the D-class are present when harmony operates, harmony must be feature-changing. This conclusion had already been reached earlier by Vago (1976). Second, I follow Ringen (1980) and Kiparsky (1981) in assuming that neutralizing applications of harmony are prohibited morpheme internally by the Alternation/Strict Cycle Condition: this is why /bûrōː-tol/ becomes /bûrûː-tol/, rather than /bûrōː-tol/. Third, I assume that structure preservation prohibits harmony from affecting the vowels of the R-class (cf. footnote 1). Finally, in order to account for the fact that stems consisting exclusively of neutral vowels take in general front suffixes (cf. Kontra and Ringen’s 1986 experimental results), I assume that Hungarian suffixes are in the unmarked case specified as [-back].

2.4. The rounding of back vowels

In some of the most common vowel systems, the non-low vowels must be specified for either rounding or backness underlyingly but not necessarily for both. If the system is a standard triangular one \((a, e, o, õ, u, û, ŏ, ŭ, ū)\), the rounding of \((o, u)\) can be predicted from their backness by a rule such as [+back] \text{-->} [round] \(\{O, ŭ\}\); alternatively, backness can be predicted from rounding by the inverse statement \([+round] \text{-->} [+back]\). It appears however that, when there is a choice, one must count [round] values as redundant and [back] values as underlying rather than vice versa. I sketch next a demonstration of the fact that [round] is missing in such systems from derivationally early representations.

2.4.1. Maori
Like other Malayo-Polynesian languages, Maori (Kupka 1968) prohibits the morpheme-internal co-occurrence of labial segments: morphemes of the shape /mnp/ /mav/ /mp/ /w/ /wpu/ /wawu/ /pw/ do not occur.

Within the triangular vowel system of Maori, the roundness and backness of /o/ stand in the mutually predictable relation mentioned above: they can be analyzed as being either basically round or as basically back, with derived rounding, or, denying underspecification, as underlyingly both round and back. The ban against co-occurring labial segments provides us with grounds for choosing between analyses. A first relevant fact is that the rounded vowels (o, u) are not incompatible with automorphic labials and not incompatible with each other. A second observation is that a sequence of labial consonants separated by a rounded vowel is as ill-formed as one in which the labials are separated by unrounded vowels: neither /nwaw/ nor /nwawa/ occur. Both observations suggest strongly that the labiality of (o, u) is simply absent at the stage when the constraint against morpheme-internal labial sequences is active. Given the possibility to analyze the vocalic labiality as an R-value, its underlying absence is not surprising.

Evidence confirming this suggestion comes from Cantonese, a language in which redundant rounding coexists with distinctive rounding.

2.4.2. Cantonese

The following is a summary of Yip's (1987) account of Cantonese Labial disharmony, with a few added comments of my own concerning the status of various [round] specifications.

Cantonese has a set of labial segments /p, f, m, w/, a set of front rounded vowels /y, 0, u/ and a set of back rounded vowels /u, o, o/. (Capitalized, as before, designate lax values.) The vowel inventory of Cantonese includes, in addition, the front unrounded /i, i, e, E/, and the low tense and lax vowels /a, A/. Note that all non-low back vowels are rounded but not all rounded vowels are back in this language. So the statement [+back] → [+round] is still appropriate, while the statement [+round] → [+back] is not, or at least not as a statement about directly observable distributional restrictions. Cantonese is then a language in which the rounding of back vowels is transparent and unambiguously an R-value. It is also, as Yip shows, a language in which redundant rounding is absent underlying.

There are three apparently distinct Labial disharmony constraints operating within a Cantonese syllable: an onset Labial may not be followed by a front rounded vowel (0, 0, 0, y); a rounded vowel, front or back, may not be followed by a Labial consonant; an onset Labial may not be followed by a coda Labial. The first constraint rules out syllables like /po/ but allows /po/. The second rules out /0p/ as well as /op/. The third eliminates sequences like /pmw/. Yip argues that a single constraint underlies all three prohibitions;

\[
(10) \quad [\ldots \text{Lab Lab} \ldots]
\]

This constraint is ac the relevant segments specifications are intr the front rounded vowels deduced from their back syllables are formed, the labial values present an ill-formed while /po/ are acceptable. Next, the incorporation of codas consonant cannot be in because this would now incorporated into a /p/

The important point h of syllabification, w the front vowels \(\circ\) labiality. The recu absent at that stage.

2.5. R-values for ATR

If a vowel system uti vowel, the low vowel w two high vowels, a fron [+ATR]. We have then tw of ATR; one is expressi other by [+high] → [+ATR] the ATR value of low applies, the ATR value both statements may app (1986) discuss the gas neutrality in ATR harm [+ATR] specifications. language in which the absent.

2.5.1. Kimande

Recently, Schindlwein language spoken in Zaire which low vowels are ti triangular, with ATR dis!

\[
\begin{align*}
\text{i} & : u \\
\text{I} & : U \\
\text{e} & : c \\
\text{E} & : \circ
\end{align*}
\]

There are two ATR harm
es, Maori (Krupa 1968) once of labial segments; /wpwv/, /whmv/, /whmv/.

Maori, the roundness and only predictable relation is being either basically ad rounding, or, denying round and back. The band uses us with grounds for relevant fact is that the tible with tautomorphemic er. A second observation is separated by a rounded Labial are separated by / /k/mova/ occur. Both possibility of (o,u) is simply against morpheme-internal possibility to analyze the underlying absence is not comes from Cantonese, a oexists with distinctive

987) account of Cantonese ents of my own concerning ins. (p,f,m,w), a set of front rounded vowels (u, U, 0, lax vowels.) The vowel position, the front unrounded vowels (a, A). Note that not all rounded vowels are [back] -> [round] is round -> [back] is not, but directly observable; then a language in which clearly and unambiguously an language in which redundant

inct Labial disharmony syllables: an onset Labial vowel (0, 6, y); a rounded by a Labial consonant; a coda Labial. The first / but allows /po/. The / The third eliminates at a single constraint

(10)

* [... Lab Lab...]

This constraint is activated in different ways depending on when the relevant segments are syllabified and when their Labial specifications are introduced. Thus, the underlying Labials are the front rounded vowels (the vowels whose rounding cannot be deduced from their backness) and the labial consonants. When CV syllables are formed, the first stage in syllabification, the only labial values present are the underlying ones: this is why /p6/ is ill-formed while /po/ (a /p/ followed by a mid back vowel) is still acceptable. Next, the R-rule specifies back vowels as round: after this stage both /o/ and /6/ will count as Labials. The syllabic incorporation of codas takes place after this stage: a labial consonant cannot be incorporated into a /CA/ or /Ca/ syllable, because this would now violate (10). Nor can a labial coda be incorporated into a /pV/ syllable, for the same reason.

The important point here is the fact that at the earliest stage of syllabification, when CV units are formed, only the rounding of the front vowels (6, 0, y) is incompatible with consonantal labiality. The redundant [round] value of the back vowels is absent at that stage.

2.5. R-values for ATR

If a vowel system utilizes ATR distinctions and has a single low vowel, the low vowel will be [-ATR]. If a vowel system has only two high vowels, a front and a back one, both will invariably be [+ATR]. We have just two potential limitations on the distribution of ATR: one is expressed by the statement [-low] -> [-ATR], the other by [+high] -> [+ATR]. If the first statement is appropriate, the ATR value of low vowels is redundant; if the second one applies, the ATR value of high vowels is redundant. Obviously, both statements may apply to any given language. Cole and Trigo (1986) discuss the case of Bari suffixal high vowels, whose neutrality in ATR harmony can be related to their predictable [+ATR] specifications. I will examine here the facts of Kinande, a language in which the redundant [-ATR] value of low vowels is absent.

2.5.1. Kinande

Recently, Schindwein (1987) has shown that Kinande, a Bantu language spoken in Zaire, has an ATR harmony rule with respect to which low vowels are transparent. The Kinande vowel system is triangular, with ATR distinctions among the non-low vowels:

(11)

<table>
<thead>
<tr>
<th>i</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>o</td>
</tr>
<tr>
<td>E</td>
<td>O</td>
</tr>
</tbody>
</table>

A

There are two ATR harmonies, but only one displays the effect of
interest here. This rule spreads [+ATR] leftward onto mid and high vowels. It does not affect a low vowel, nor is it blocked by it.

(12)

a. s01On - ire → solom - ire 'harvest-past'
 \ / \
 +ATR +ATR

b. s01On - an - ire → solom - an - ire 'harvest-reciprocal-past'
 \ / \
 +ATR +ATR

For lack of space, I cannot discuss here Schindewin's analysis of this process. My own suggestion is that the neutral status of Kinande /a/ follows from the distinction between D-values and R-values proposed here: in Kinande, the ATR specification of the low vowel is redundant because no ATR contrast exists within the relevant height range. Moreover, Kinande /a/ is the only vowel with a redundant specification for ATR: all other vowels are 'paired' in their ATR values and thus belong to the D-class. Confirming this is the observation that /a/ is never transparent in systems where it has a [+ATR] counterpart, such as Igbo (Ringen 1979) and Rukwa (Hall and Yokwe 1978).

2.6. R-values for [anterior]

A clear instance of missing R-values is found in the sibilant harmony rule of Ineseño Chumash. My source on this language is Poser (1982), whose data comes from the unpublished dissertation of R.B.Applegate.

Chumash has a lexical contrast between /ʃ/ and /s/: the differentiating feature is, according to Poser, [anterior]. There is no corresponding contrast between the Chumash coronal stops: /t/, /l/ and /n/ come in only one variety, all three being alveolar.

Within a word, the rightmost sibilant, /ʃ/ or /s/, triggers [anterior] harmony onto preceding sibilants:

(13)

a. k-sunon-us 'I obey him' : k-šunon-š 'I am obedient'
b. usla 'with the hand': usla-siq 'to press firmly by hand'
c. usati 'of throwing': š-uxš-ši 'throw over to'

Intervening segments are transparent to the sibilant harmony. In particular, the coronals /t/, /n/, and /l/ fail to block or trigger the rule:

(14)

a. š-api-tšo-il 'I have good luck'; s-api-tšo-us 'he has good luck'
b. k-šunon-š 'I am obedient'; k-sunon-us 'I obey him'
c. ha-s-xintila 'his Indian name'; ha-s-xintila-waš 'his former Indian name'

Note that underlying /ʃ/ is turned to /s/ (as in (13)b) and underlying /s/ is turned to /ʃ/ (as in (14)a).
The distribution of [lateral] is frequently limited to the class of sonorants in segment inventories like that of English, which lack obstruents with lateral release. Within the class of sonorants, the vocoids are always redundantly [lateral]; in order that lateral airflow occur one may need a constriction narrower than that defining a [non-lateral] segment. The nasals lack, universally perhaps, a lateral/non-lateral contrast. This leaves one class of segments with which the feature [lateral] can freely associate: the consonantal non-nasal sonorants, also known as liquids. This is the D-class for [lateral]. The restrictions on feature co-occurrence mentioned above define vocoids, nasals and obstruents as R-classes for this feature.

I assume, as elsewhere, that dissimilation operates under strict adjacency between elements of the relevant tier, in this case that of [lateral] specifications. It appears then that only one of the non-lateral segments of Latin is present on this tier when dissimilation applies; this is the liquid /r/, whose [lateral] value blocks dissimilation by interrupting the adjacency between stem and suffixal /l/ in forms like /litor-alis/:

\[
\begin{array}{cccc}
\text{[lateral]} & \text{[non-lateral]} & \text{[lateral]} \\
\text{lit} & \text{or} & \text{a} & \text{lis}
\end{array}
\]

Since no other non-laterals, not even the coronals /s/, /n/, block dissimilation, one is led to assume that they are unspecified for [lateral]. This can again be related to the fact that the non-liquids are redundant non-laterals; in contrast, /r/’s [lateral] specification is a R-value. I am not aware of any reason why the non-liquids of segment inventories like that of Latin should ever be as specified [lateral]; it may well be then
that this is a case of trivial underspecification.

2.8. Redundant laryngeal features

The redundant status of sonorants relative to the feature [voice] has already been mentioned here. I will outline now the evidence that R-values for [voice] are missing underlyingly.

2.8.1. Lyman's Law and Rendaku in Japanese

Ito and Mester (1986) have provided an explicit argument that sonorants are unspecified for [voice] in Japanese. The Japanese consonant inventory is identical in relevant respects to (3) above: only voiced sonorants occur. Ito and Mester's argument is based on the interaction between a voicing dissimilation (Lyman's Law, LL) and a rule which voices stem-initial obstruents in the second member of compounds (Rendaku, R). Lyman's Law is responsible for the fact that no two voiced obstruents can surface within a stem; and for the apparent failure of Rendaku in precisely the case where its output would contain a stem-internal sequence of two voiced obstruents. The latter fact is illustrated below:

(16)

a. /garasu tana/ 'glass shelf' \rightarrow/ garasu dana (R)

b. /kami kaze/ 'divine wind' \rightarrow/ kami gaze (R) \rightarrow/ kami kaze (LL)

As the contrast between /garasu dana/ and /kami kaze/ indicates, a voiced sonorant like /n/ does not trigger Lyman's Law; Ito and Mester attribute this to the fact that its [voice] value is still missing at the relevant stage. Confirming this suggestion is the observation that when /n/ separates two voiced obstruents, Lyman's Law applies, as if their [voice] autosegments are directly adjacent:

(17)

a. /taikutsu sinogi/ 'time killing' \rightarrow/ taikutsu jinogi/ (R) \rightarrow

\rightarrow/ taikutsu sinogi (LL).

b. [+voice] [+voice] [+voice]

\rightarrow/ jinogi \rightarrow/ sinogi

3. Missing D-values

It is a common assumption in the recent literature on underspecification that only one value of any given feature may be present underlyingly. In many cases this entails that some segments with D-values for the relevant feature must be underlyingly unspecified for it. For instance, if we take [+voice] as the underlying value, the voiceless obstruents of Japanese must be represented as unspecified. Similarly, this entails that if [+lateral] is underlying, then the [+lateral] value of /r/ must be absent in the early stages.

I have suggested earlier, following in this Christdes (1986), that both D-values must sometimes be present underlyingly. I will examine now what appear to be the strongest cases for missing D-values. As it turns out, only two clear arguments of this sort have so far been found.

3.1. Voiceless obstruents

Ito and Mester (1986) determining whether a /j/ for [voice]. If it is, if it is not, it will be are, by this test, u [g...t...b], /g/ underg /t/.

(18)

a. /sona Kotoba/ 'feminine'

b. [+voice] [+voice] g ot o b a

I see no alternative voicing value of Japanese Lyman's Law operates.

3.2. Front vowels in

In what follows I wi Finnish [back] harmony distinctive and redund surface vowel qualities respect to [back]: (a, & no direct [back] count harmony rule propagating not triggered or blocked similar to Hungarian:

(19)

a. talo:ssaa 'house-iness'

b. lume:ssa 'snow-iness'

Parisi:ssa 'Paris-in'

Native stems are gen are either all back or mixing freely the vowels

(20)

a. martyri: 'martyr', jo

b. syntaksi: 'syntax', ty

According to Campbell whose last non-neutral vocalic suffixes: both /acceptable, in different learned, more prestige colloquial. In contrast last non-neutral vowel
have so far been found.

3.1. Voiceless obstruents in Japanese

Ito and Mester (1986) have developed the test outlined above for determining whether a Japanese segment is underlyingly specified for [voice]. If it is, it will trigger and/or block Lyman's Law. If it is not, it will be transparent to it. Voiceless obstruents are, by this test, unspecified for [voice]; in a sequence [g...t...b], /g/ undergoes Lyman's Law despite the intervening /i/.

(18)

a. /onna kotoba/ 'feminine speech' → onna gotoba (R) → onna kotoba (LL)

b. [+voice] [+voice] [+voice] → gotoba → kotoba

I see no alternative to Ito and Mester's conclusion that the voicing value of Japanese voiceless obstruents is missing when Lyman's Law operates.

3.2. Front vowels in Finnish

In what follows I will restate Kiparsky's (1981) analysis of Finnish [back] harmony in terms of the distinction between distinctive and redundant specifications. Finnish has eight surface vowel qualities, of which six form minimal pairs with respect to [back]: (a, â, o, õ, u, y). The front vowels (e, i) have no direct [back] counterparts and behave as neutral segments: the harmony rule propagating stem [back] values onto suffixal vowels is not triggered or blocked by /i/ or /õ/. In this respect Finnish is similar to Hungarian:

(19)

a. talo-ssa 'house-inessive', mykä-ssa 'mute-inessive'
b. lume-ssa 'snow-inessive', lase-i-ssa 'glass-plural-inessive'
Parisi-ssa 'Paris-inessive', Bysanti-ssa 'Byzantium-inessive'

Native stems are generally harmonic: their non-neutral vowels are either all back or all front. Loanwords may be disharmonic, mixing freely the vowels of the two sets:

(20)

a. marttyri 'martyr', jonglör 'Juggler', analyysi 'analysis'
b. syntaksii 'syntax', tyranni 'tyrant', dösa 'bus', följetongi 'feuilleton'

According to Campbell (1980), disharmonic forms like /analyysi/, whose last non-neutral vowel is front, take either front or back vocalic suffixes: both /analyysi-ä/ and /analyysi-a/ are considered acceptable, in different styles. /Analyysi-a/ is considered more learned, more prestigious, while /analyysi-ä/ counts as colloquial. In contrast, the stem type illustrated in (20)b, whose last non-neutral vowel is back, takes consistently back suffixes:
Campbell (1980) and Kiparsky (1981) report that \textit{/följetongi-ä/}, \textit{/tyranni-Kö/} are definitely impossible pronunciations. It appears that, until recently, the low front vowel \textit{/ä/} had an effect similar to that of back vowels: a disharmonic stem whose last non-neutral vowel was \textit{/ä/}, would take exclusively front suffixes. This is the pattern described by Campbell: \textit{/hydrofääri-ä/} but \textit{/hydrofääri-lä/}. Paul Kiparsky, however, informs me that in contemporary Finnish front \textit{/ä/} behaves like \textit{/ö/} and \textit{/y/}; all three are disregarded by harmony, if a back vowel precedes them. The generalization is then, at least for this recent variety of Finnish, that all front vowels optionally behave as neutral segments in disharmonic stems. The only obligatorily neutral vowels are the unpaired \textit{e, i}, the R-class for \textit{[back]}.

There are then two patterns to account for: the prestigious \textit{/analyyysi-a/}, \textit{/följetongi-a/} and the colloquial \textit{/analyyysi-ä/}, \textit{/följetongi-ä/}. Kiparsky (1981) points out that the only difference between the two is whether front, non-neutral vowels are transparent or opaque. The shared characteristic of the two styles, the impossibility of \textit{/följetongi-ä/}, reveals that back vowels are invariably opaque. This suggests that only \textit{[+back]} is underlyingly present, as shown below:

\begin{align*}
 \text{(21)} & \\
 \text{a. analyyysi-a} & \quad \text{b. följetongi-a} \\
 \text{ [+back]} & \quad \text{ [+back]}
\end{align*}

To account for the prestigious pattern, in which both (a) and (b) will surface with suffixal back vowels, one need only assume that the representations in (21) are the input to harmony:

\begin{align*}
 \text{(22)} & \\
 \text{a. analyyysi-a} & \quad \text{b. följetongi-a} \\
 \text{ [+back]} & \quad \text{ [+back]}
\end{align*}

Kiparsky explains the fact that \textit{[+back]} spreads only across the morpheme boundary rather than stem-interally (\textit{/analyyysi-a/}, \textit{/följetongi-a/}) by assuming that harmony is cyclic, subject to the Strict Cycle. The derivation is completed by specifying as \textit{[+back]} the vowels untouched by harmony.

To derive the alternative paradigm \textit{/följetongi-ä/}, \textit{/analyyysi-ä/}, Kiparsky postulates that the front non-neutral vowels are opaque in the colloquial style: although still unspecified for \textit{[back]}, they cannot be crossed by harmony:

\begin{align*}
 \text{(23)} & \\
 \text{*[+back]}
\end{align*}

\text{U __ _ _}, where \text{U} is a non-neutral vowel \textit{(a, ë, y)}.

The spirit of Kiparsky without filters like [2] describe the opacity of Rather, the colloquial's all D-values are present in the input representation as shown in (24):

\begin{align*}
 \text{(24)} & \\
 \text{a. a a a a i y y s i} & \quad \text{b. [+back]} [\text{+back}] [\text{+back}]
\end{align*}

Harmony in both sets: possibility we have explored observe that only the suffixal specification is cyclic, which prevent crossed association line:

Kiparsky's analysis of argument for missing D-
no straightforward extent of Finnish described by all back vowels are opaque.

3.3. Round harmony in Mongolian has seven transcribed as \textit{a, ø, o, front (ó, ū) are in fact front}. This indicates, that the Mongolian 'front' values. In this harmony \textit{/ö/}. With this in mind, the features ATR, [round]

\begin{align*}
 \text{(25)} & \\
 \text{round high u} & \quad \text{high o} \\
 \text{ rounding high} & \quad \text{high a}
\end{align*}

\text{From this classification /u/ for (round). Looking the structural isomorphisms and the Mongolian system unique segment, /i/ it only transparent vowel in}

\begin{align*}
 \text{(26)} & \\
 \text{a. uls-aas 'from the coun} & \quad \text{b. ger-ees 'from the house}
\end{align*}
The spirit of Kiparsky's analysis is, however, better served without filters like (23), which would in principle allow us to describe the opacity of any random segment to any harmony type. Rather, the colloquial style simply shows that harmony applies when all D-values are present but before R-values are. Assuming this, the input representations to harmony in colloquial Finnish will be as shown in (24):

(24) a. analyyysi-ä b. føljetongi-ä
 [+back][+back][+back][+back] [+back][+back][+back][+back][+back]

Harmony in both sets of forms will be feature changing, a possibility we have explicitly left open at the outset. Finally, observe that only the rightmost [back] value can dislodge the suffixal specification: this is the joint effect of strict cyclicity, which prevents internal harmony, and of the ban on crossed association lines.

Kiparsky's analysis of the prestigious paradigm is a compelling argument for missing D-values. One notes, however, that there is no straightforward extension of the analysis to the earlier variety of Finnish described by Campbell: that in which low front /a/ and all back vowels are opaque.

3.3. Round harmony in Mongolian

Mongolian has seven distinct vowel qualities, traditionally transcribed as (a, e, o, ö, i, u, ü). The vowels transcribed as front (ö, ü) are in fact phonetically [+ATR] rather than uniformly front. This indicates, as Djamouri and Rialland (1985) point out, that the Mongolian 'front' harmony is really a rule propagating ATR values. In this harmony system, /a/ is the [+ATR] counterpart of /e/. With this in mind, we group the Mongolian vowels according to the features ATR, [round] and [high]:

(25) -ATR +ATR
 round high u o
 -high i ei
 -round high a e

From this classification two R-classes emerge: /i/ for ATR and /u/ for [round]. Looking first briefly at the ATR harmony we note the structural isomorphism between the Hungarian short vowel system and the Mongolian system: both have an R-class consisting of a unique segment, /i/. It is not surprising then that /i/ is the only transparent vowel in the Mongolian ATR system.

(26) a. uil-aas 'from the country'; tögüööd 'having played'
b. ger-ees 'from the house'; xür-eed 'having reached'
c. saa1-xii1-aar ‘having shaken violently’
 nui1-xii1-aar ‘having folded’

 d. xiiliig-oes ‘from the mute’

The suffixal alternations caused by ATR harmony are illustrated in (26), with data from Djamouri and Rialland (1985). The forms in (c-d) indicate that /i/ is transparent.

We may consider now the more problematic case of Mongolian Round harmony. The fact is that in this case we have an unexpected transparent segment: /i/.

(27)

a. tso1-ad ‘having played’; adoo1-g-oos ‘from now on’
 tso1-oos ‘from the state’

b. ob-i-xii1-ood ‘having seemed furious’
 mol1-i-lg-ood ‘having flattened’

c. odoo1-taad ‘having sent’; oguu1-uul-eed ‘having made speak’

The forms in (a) illustrate the basic [+round] alternations. Those in (b) show that /i/ is transparent and that it fails to undergo [round] harmony. Those in (c) show that /u/ and /u/ are opaque and that they fail to trigger [round] harmony. Leaving aside for the moment the characterization of transparent and blocking segments, let us simply note that [round] harmony operates in Mongolian only between non-high vowels.

(28)

[+round]

[−high] [−high]

It is clear that the distinction between D-values and R-values cannot help explain why /i/ is transparent while /u/ and /u/ are opaque. If anything, the line of argument pursued in the preceding sections would make one expect that only /u/ should be transparent, as it is the only vowel whose [round] specifications are predictable: [+high, −ATR] → [+round]. Every other vowel has its [+round] counterpart. Let us admit then that harmony operates in this case after the redundant roundness of /u/ has been introduced.

We must still explain the behavior of /i/. One option would be to assume that distinctive [−round] values are absent when harmony takes place. This will mean that all unrounded vowels are unspecified for [round] at that stage. A non-high unrounded vowel will be a target of harmony, as (28) states. A high unrounded vowel will not be a target but neither will it block the rule, as a derivation of /mol1iigd-ood/ indicates:

(29)

[+round]...

[−high] [−high]

Finally, the vowels are non-triggers specific blocker sequence in /odu

(30)

[+round] [+round]

[−high] [−high] [−high]
' having made speak'

'c [round] alternations.

In case of Mongolian Round
we have an unexpected

- low on on'

Finally, the vowels /u/ and /u/ will block harmony because they are non-triggers specified as [+round]. (30) below represents the blocker sequence in /odulaaad/:

(30)

[+round] [+round]

| |

| o d uu l a d

[-high] [+high] [-high]

It appears then that an optimal analysis of [round] harmony in Mongolian must rely on the absence of the D-value [-round]. However, unlike features like [back], [high], [anterior] and [lateral], [round] does not appear to be a double-valued feature. There are no instances of [-round] assimilation or dissimilation and no other kind of evidence that unrounded segments have any specification for this feature. Mongolian may then illustrate trivial underspecification for [round], rather than the non-trivial absence of D-values.

By deciding that [round] is single-valued we can also avoid the assumption of language-specific orderings between redundancy rules introducing R-values and D-values. Recall that the analysis of Finnish front harmony requires that the redundant [-back] value of /i,e/ be introduced after the distinctive [-back] value of /o,a,y/; the former is absent when harmony applies whereas the latter is present, at least in the colloquial style. In contrast, the Mongolian R-value for [round], that of /u/, must be present when [round] harmony applies. If we assume that the D-value [-round] is introduced at some point, this must happen after harmony, as indicated above. Thus, the assumption that [round] is double-valued forces us to stipulate that the relative order of R-rules and D-rules is a language specific matter. In contrast, if [round] fails to possess a second value, this issue does not arise.

I conclude from this that Mongolian harmony fails to establish the need for non-trivially absent D-values.

4. Conclusion

The picture emerging from this survey differs in some significant respects from that presented in some of the more recent work on underspecification, especially in Archangeli (1984) and Archangeli and Pulleyblank (1986). Let us review these differences.
We have seen here that the linguistically significant boundary is that separating distinctive and non-distinctive assignments of feature values. Thus, Latin liquid dissimilation distinguishes two types of [-lateral] values: the distinctive one (that of /r/) and the redundant one (that of the non-liquids). Finnish [back] harmony distinguishes two types of [-back] values: the distinctive one (that of /k, o, y/) and the redundant one (that of /i, e/). Similarly, Kimande ATR harmony requires special status for /u/, the only vowel whose ATR specification is non-distinctive. Finally, Chumash sibilant harmony distinguishes two types of [+anterior] segments: the sibilant /s/, whose anteriority is distinctive, and the stops, whose anteriority is redundant.

The alternative distinction proposed by Archangeli and Pulleyblank, that between Default assignments predictable from universal facts and Complement assignments predictable from language-specific facts appears to play no role in the functioning of phonological systems that I am aware of. This distinction would, for instance, separate the [-lateral] specifications of vocoids and nasals from that of other segment classes: vocoids and nasals are, perhaps, universally non-lateral whereas other segments, such as the obstruents and the liquids, have language-specific assignments of [-lateral]. As we have seen, however, the language-specific non-laterality of obstruents is as irrelevant in Latin as the universal non-laterality of nasals and vowels. Similarly, the distinction between universally mandated feature values and language-specific ones is not the appropriate one for Chumash [anterior]: markedness facts require us to set up [-anterior] as the marked value and thus dictate, in Archangeli and Pulleyblank's terms, a Default rule of the form [+] --> [-anterior] / [-coronal]. But this approach will incorrectly lump together Chumash /s/ and /t/ by specifying them simultaneously. What is needed is a stage where both /s/ and /t/ are specified, but not yet /t/.

At the outset of this search for evidence of underspecification, I had decided to rely primarily on the typology of transparent segments. In a number of cases, my conclusions about missing values were also drawn from the typology of non-triggers: segments which are expected to trigger a rule by virtue of their surface specifications for some feature yet fail to do so. Both types of evidence support the idea that R-values are missing underlyingly.

In contrast, there is little evidence for missing D-values. First, we have seen that in some cases both D-values for a feature must be present in underlying lexical entries (cf. sections 2.1.3 (Ngomba) and 2.2.2 (Tamil)). Second, the clear-cut arguments for the elimination of D-values from underlying representations reduce to two: the voicing of Japanese obstruents and the backness of Finnish non-neutral vowels (4). The disparity between the strength of the case for underspecification of R-values and D-values is striking and invites reanalysis of the Finnish and Japanese data. I have no clear suggestions on this score at present but it seems possible to experiment with the idea that the appearance of missing D-values may be the effect of the Finnish [back] actini basis.

As a final remark, the relations express by Kawasaki (1987) point between the backness o + (round) reflect different sort of rel segment class def [sonorant], [sonorant] feature ha instance [voice] has sonorants; [lateral] of obstruents and voiced within the class of c fricatives are coronal obstruents, continuant vowels, within the CI type of redundant rel no unambiguous feature be restricted a content feature suc For instance, I know [+sonorant] or where that, aside from R-ru one other type of R- is a structure feature able to extend this p systems, we must exe height as well: this [low] define relative [sonorant], [sonorant] among consonants. l restrictions such as l.

This proposal has the possibility of de The case I have in mi that of Nyangumala, Pulleyblank (1986:395 the following values:

\begin{align*}
\text{(31)} & \quad \begin{array}{ccc}
\text{high} & + & \text{round} \\
\text{u} & & \\
\text{a} & & \\
\end{array}
\end{align*}

In choosing to leave the [+high] value of it is the only [+rc] [+high]. Yet both
ally significant boundary distinctive assignments of
illaion distinguishes two
one (that of /t/ and
ïdual), Finnish [back] values: the distinctive
it one (that of /i,e/). D
|cal status for /æ/, the
|on-distinctive. Finally, two types of [+anterior]
|ority is distinctive, and

ed by Archangeli and
gments predictable from
ments predictable from
role in the functioning
of. This distinct
|teral specifications of

t classes: vocoids and
|lateral whereas other
|e liquids, have language
|e have been, however, the
|unts is as irrelevant in
|as nasals and vowels.
|erally mandated feature
|the appropriate one for
|uire us to set up
|dicate, in Archangeli and
|e form [t] -> [+anterior] /nincorrectly lump together
|
simultaneously. What is
|re specified, but not yet

ence of underspecification

tology of transparent
|clusions about missing
|of non-triggers: segments
|virtue of their surface
|o do so. Both types of
|issing underlingly:

re for missing D-values:
ith D-values for a feature
ories (cf. sections 2.1.3

 clear-cut arguments for
ng representations reduce
nts and the backness of
irty between the strength
-values and D-values is

nish and Japanese data.
|at present but it seems
| the appearance of missing

D-values may be the effect of features such as Japanese [voice] and
Finnish [back] acting as single-valued on a language specific
basis.

As a final remark, I would like to speculate on the nature of
the relations expressed by R-rules. As Stevens, Keyser and
Kawasaki (1987) point out, some of these relations, such as the one
between the backness of non-low vowels and their roundness ([+back]
-> [+round]) reflect enhancement of perceptual salience. A
different sort of relation expressed by R-rules takes as input a
segment class defined in terms of structure features
([consonantal], [sonorant], [continuant]) and states that a
'content' feature has defective distribution within it. For
instance [voice] has restricted distribution within the class of
sonorants; [lateral] has restricted distribution within the class of
obstruents and vocoids; [coronal] has restricted distribution
within the class of continuant obstruents (in consonants where all
articulates are coronals); [nasal] is restricted within the class of
obstruents, continuant sonorants and, in languages lacking nasal
vowels, within the class of vocoids. Interestingly, the opposite
type of redundant relation is seldom if ever encountered: I know of
no unambiguous cases requiring that the distribution of a structure
feature be restricted within a segmental class defined in terms of
a content feature such as [coronal], [back], [lateral] or [voice].
For instance, I know of no language in which all coronals are
[sonorant] or where all labials are [-continuant]. Suppose then
that, aside from R-rules stemming from enhancement, there is only
one other type of R-rule: it takes the form [F] -> [G], where F
is a structure feature and G is a content feature. In order to be
able to extend this proposal to the R-rules observable within vowel
systems, we must extend the term structure feature to cover vocalic
height as well: this seems natural, in that the features [high] and
[low] define relative sonority among vowels, in the same way that
[sonorant], [consonantal] and [continuant] define relative sonority
among consonants. We can now express frequently encountered
restrictions such as [+low] -> [+back], or [+high] -> [+ATR].

This proposal has a welcome empirical consequence: it excludes
the possibility of defining a R-rule such as [+round] -> [high]. The
case I have in mind is a three-member vowel system (a,i,u) like
that of Nyangumanda. In analyzing such a system, Archangeli and
Pulleyblank (1984; 1985) use two features, [high] and [round], and
the following values:

\[
\begin{align*}
(31) & \\
\text{high} & \quad + \\
\text{round} & \quad + \\
\end{align*}
\]

In choosing to leave /u/ unspecified for height they remark that
the [high] value of this segment is predictable from the fact that
it is the only [+round] vowel in the system: thus [+round] ->
[high]. Yet both /i/ and /u/ function as high throughout the
phonology of Nyangumata. More significantly, I know of no comparable system in which one surface high vowel functions as phonologically lacking in height values while the other one behaves as [high]. This problem is not specific to Archangeli and Pulleyblank's theory of underspecification: the logic of the distinction between D-values and R-values made in (5) would also force one to leave out the height value of /u/ from a system based on the features [high] and [round]. Superficially, the relation between [round] and [high] in Nyangumata seems identical to that between [low] and [back] in Tamil and Ainu: yet, while we have good evidence that a unique low vowel is [back] in Tamil, Ainu and elsewhere, we have no evidence that a unique rounded vowel is [high] in systems like Nyangumata. The solution to this problem is to recognize that the statement [+round] [high] reverses what appears to be a constant relation between structure and content features. This observation may provide the grounds for its exclusion.

Footnotes

(1) The fact that low vowels do not undergo height harmony should be interpreted along the lines suggested by Kiparsky (1985) and Ito and Mester (1986); a segment which cannot bear an underlying specification for F (in this case [high]) cannot be subject to a lexical rule that assigns a value for F. This condition is referred to as structure preservation.

(2) The lax vowel /e(t)/ also falls to undergo height harmony (Kteeskushtemowaa/ 'your door') and blocks it (KteEituaq/ 'when they go home'). See Cole and Trigo (1986) for a possible explanation of this phenomenon.

(3) The rule [+back] [round] need not to be restricted to non-low vowels if we assume that the redundant backness of /a/ is not considered.

(4) The picture may change somewhat when tonal underspecification is evaluated in light of the distinctions proposed here. In contrast, the underspecification for [nasal], a feature not discussed here, is unlikely to alter my conclusions: as Lauren Trigo (p.c.) points out, [nasal] specifications in most consonant systems may fall into the class of R-values, by being predictable from features such as [sonorant] and [consonantal]. If this hypothesis is upheld, then the frequent existence of transparent consonants in nasal harmony systems will simply strengthen the case for the underspecification of R-values, without providing further cases of missing D-values.

References

Archangeli, D. and D. Pulleyblank 1986 The Content and Structure of Phonological Representations, ms. University of Arizona and USC.
Thomas, J. 1963 Le p
significantly, I know of no high vowel functions as
ile the other one behaves
iffic to Archangeli and
ion: the logic of the
made in (5) would also
of /u/ from a system based
peripherally, the relation
seems identical to that
yet, while we have good
back) in Tamil, Ainu and
unique rounded vowel is
solution to this problem
and) (thigh) reverses
between stricture and
uide the grounds for its
undergo height harmony
jected by Kliparsky (1985)
which cannot bear an
case (thigh) cannot be
it a value for F. This
novation.
undergo height harmony
kes it /kewETtuq/ 'when
(1988) for a possible
not to be restricted to
andant backness of /a/ is
somewhat when tonal
of the distinctions
ification for (nasal), a
alter my conclusions: as
specifications in most
of R-values, by being
Econsonantall). If
frequent existence of
systems will simply
xpression of R-values, without

in Yawelmani Phonology

the content and Structure
versity of Arizona and

USC.

Bloomfield, L. 1939 "Menomini Morphophonemics", Travaux du
Cercle Linguistique de Prague, 9, 105-115.

Campbell, L. 1980 "The Psychological and Sociological reality o
Finnish Vowel Harmony", in R. Vago (ed.) Issues in Vowel Harmony
pp. 245-270, John Benjamins.

Christias, P. 1987 Cornell University Ph.D. dissertation (in
progress).

Clements, G.N. and E. Sezer 1982 "Vowel and Consonant Disharmony
in Turkish," in H. van der Hulst and N. Smith (eds.) The Structure
of Phonological Representations Part 2, pp. 311-336, Foris.

Coie, J. 1985 "Vowel Harmony and Coalescence in Menomini," ms.,
MIT.

Coie, J. and L. Trigo 1986 "On the representation of neutral
segments in harmony systems," ms. MIT.

Djamouri, R. and A. Riailand 1985 "Harmonie vocalique,
consonantique et structures de dépendance dans le mot en Mongol

Farkas, D. and P. Bedő 1987 "Privative and Equivalent
Backness in Hungarian," this volume.

Hall, B. and E.M. Yolke 1978 "Bari Vowel Harmony: the Evolution
of a Cross-Height Harmony System," CUNYFORUM, Proceedings of NELS
9, 284-294.

Ito, J. and R.A. Mester 1986 "The Phonology of Voicing in

Kliparsky, P. 1985 "Some Consequences of Lexical Phonology,
Phonology Yearbook, 2, 85-138.

Kontra, M. and C. Ringen 1986 "Hungarian Vowel Harmony: The

Krupa, V. 1968 The Maori Language, Moscow.

McCarthy, J.J. 1984 "Theoretical Consequences of Montane Vowel

Poser, W. 1982 "Phonological Representations and
Action-at-Distance," in H. van der Hulst and N. Smith (eds.) The
Structure of Phonological Representations Part 2, Foris.

Ringen, C. 1978 "Another view of the theoretical implications of
Hungarian vowel harmony", LI, 9, 105-115.

Ringen, C. 1979 "Vowel Harmony in Igbo and Diola Fogny," SAL,
10, 247-259.

Ringen, C. 1980 "A Concrete Analysis of Hungarian Vowel
Benjamins.

Schinducke, D. 1987 "P-bearing units: a study of Kinande vowel

Stevens, K., S.J. Keyser and H. Kawasaki 1987 "Toward a Phonetic
and Phonological Theory of Redundant Features," in J. Perkell and
D.H. Klatt (eds.) Symposium on Invariance and Variability, Lawrence
Erlbaum Assoc.

Thomas, J. 1963 Le parler Nobaka de Bekana, Mouton.
Trubetzkoy, N. 1939/69 *Principles of Phonology*, English translation by C. Baltaxe, University of California Press.

The categories of *vs.* *passive* constitute morphology. Opposition means of contrasting *v* with the so-called "Tol
gical classes are ma

A glance at some
the problem of Arabic
in an autoseg
past passive, for exam
the various vowel patt
where necessary in acc
Similarly, the pattern
be reduced to a simple
McCarthy’s account
reduces the vocalisms

These patterns are abs
or more rules serving
morphological or phon
example, is deleted in
other than II, III, or
stem-prefix *t* (V, VI).

Active *u*-a-

Passive *u*-a-

The patterns of the pe
these deletes *u* in the
is a negative-alpha *u*
for the final vowel ir

Active *u*-a-
Passive *u*-a-

This system is desi