1. INTRODUCTION

An autosegmental analysis of any suprasegmental phenomenon involves at least the following five parameters (cf. Clements & Sezer, this volume):

(1) a. the set of P-bearing segments
b. the set of P-segments
c. the set of neutral segments
d. the set of opaque segments
e. the domain of association

In this article we will be concerned with a number of issues concerning opaque segments and domains.

Most studies carried out within the framework of autosegmental phonology (henceforth AP) have involved phenomena for which parameter e could be interpreted as “word”; whether this meant grammatical word or phonological (or prosodic) word has not always been made explicit. Some examples can also be found, however, in which the domain of association is not the word but the metrical foot, i.e. a prosodic domain that is independently defined in terms of the metrical theory of stress. In Hayes (1980) for example it is claimed that vowel harmony in Eastern Cheremis is bound to the domain of the stress foot and in Zubizarreta (1979) a similar situation is shown to hold for Laxing Harmony in Andalusian Spanish. That the metrical foot can be an autosegmental domain has also been suggested by Safir (1979) and Yip (1980) in their studies of Capanahtuan and Chinese tonology.

Examples like these show that in the analysis of some cases of harmony at least we need both the autosegmental theory of association and a theory of phonological domains. In the area of segmental rules Selkirk (1981) has clearly demonstrated that metrical phonology (henceforth MP) can be utilized successfully as a theory of phonological domains (or phonological constituency structure). She develops a richly articulated typology of
phonological rules in terms of the way they make reference to grammatical and phonological domains. The examples we have already quoted show that autosegmental rules too must refer to prosodic domains and this suggests that Selkirk's typology, proposed within a purely segmental framework, carries over to a theory that makes use of autosegmental rules. The main part of this article is devoted to substantiating and illustrating this point. The examples that we will provide show that autosegmental association can be bound to various phonological domains, both smaller and larger than the foot.

In section 3 an autosegmental treatment of emphasis in Arabic will be given, showing the relevance of the syllable as the domain of association. In section 4 an example of the foot as the relevant domain is discussed involving nasalization in Applecross Gaelic. Finally, in section 5, we will analyze nasalization in Guarani. We will claim that a general treatment of the issue of precedence of association (in cases where there are two potential spreaders) can only be given if we view nasalization in Guarani as being bound to the "stress group", a domain which is larger than the foot but smaller than the phonological word.

In our analysis of nasalization in Applecross Gaelic and Guarani we will encounter opaque elements and in section 6 we will deal with the behaviour of these separately. We will argue that it cannot be maintained that such elements are not subject to spreading (as Halle and Vergnaud 1981 do). On the contrary, we will provide analyses of nasalization in Capanahua and Sundanese that show that opaque segments are subject to spreading due both to the general association convention and to language specific rules.

2. TOWARDS AN INTEGRATED MODEL

The emergency of both AP and MP has led to drastic changes in our conception of phonological representations. Taken independently we can schematize these changes as follows. Within AP uni-linear representations such as those under (2) have been replaced by multi-linear representations such as those under (3). MP, on the other hand has brought about a replacement of type (2) representation by type (4) representations.

(2) unilinear, non-hierarchical

\[
\begin{array}{ccccccc}
+F_1 & -F_1 & +F_1 & -F_1 & +F_1 \\
-F_2 & +F_2 & -F_2 & +F_2 & -F_2 \\
+F_3 & +F_3 & +F_3 & +F_3 & +F_3 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}
\]
(3) multi-linear, non-hierarchical

\[
\begin{array}{cccc}
- & - & + & - \\
+ & F_2 & F_1 & F_2 & F_1 & F_2 \\
+ & F_1 & + & F_1 & - & + & F_1 \\
X & X & X & X & X & X \\
\end{array}
\]

(4) uni-linear, hierarchical

\[
\begin{array}{cccccccc}
\vdots & \vdots \\
\end{array}
\]

Given the necessity of both types of change the obvious question is what the theory will look like if both are combined. Can different hierarchical structures be found at all levels or is there only one such hierarchy defined at some central tier, the most likely candidate being the X-tier? It is the latter, more restricted position that most phonologists have adopted.

But what does it mean to say that the spreading of some feature is bound to a particular domain? Here we must distinguish between two cases. The spreading autosegment may or may not be lexically bound to a P-bearing segment. If it is lexically bound there is no problem. When we say that the spreading is bound to domain D, this means, of course, the D containing the P-bearing unit to which the autosegmental is lexically bound. But a string may comprise several D's and we will therefore run into problems if an autosegment is not associated with a particular segment in the underlying representation while its spreading is bound to a particular domain. To illustrate this point, how do we derive (5b) from (5a):

(5) a. \ [+F_1] \\
\((x \times x) \sigma \) \((x \times x \times x) \sigma \) \((x \times x \times x) \sigma \) \((x \times x \times x) \sigma \)

In real life (5) would be an example in which whole syllables are characterized by the absence or presence of a particular feature, such that it would be arbitrary to associate this presence or absence with one of the segments constituting the syllable. In this article we will not provide detailed examples of cases like (5), though the possibility exists that this is precisely the right approach to emphasis in at least some dialects of Ara-
bic (cf. section 3). We suspect, however, that more examples will be found once we look for them. If this turns out to be the case we must be able to say not only that a particular sequence of \(x \)'s belongs to a domain \(D_i \) but also that a particular (sequence of) autosegment(s) belongs to this same \(D_i \) without there being any underlying connection between both sequences. The following figure visualizes the overall conception of phonological representation that such a state of affairs presupposes:

\[
\begin{array}{c}
\text{word level autosegments} \\
\text{foot level autosegments} \\
\text{syllable level autosegments} \\
\text{segment level autosegments}
\end{array}
\]

The strongest claim is that autosegments within each domain are associated with their P-bearing units according to the same universal association conventions.

As an alternative to this view it might be proposed that autosegments are assigned to the nodes in the phonological hierarchy and that the autosegments percolate to the \(x \) slots. This is in fact the view of Hart (1981) who defends a version of the autosegmental theory that shares a number of properties with the present proposal. There are, however, several reasons for rejecting such an approach. First, it will be impossible, given the percolation device, to manipulate the connections between autosegments and P-bearing segments in the way that is familiar (and motivated) in many autosegmental studies. Secondly, it is unclear how opaque segments could be handled, and thirdly, it is equally unclear how the parts of whole melodies (e.g. tonal melodies) can percolate to the right P-bearing elements.

The model adopted here allows for the possibility that a given feature is represented as an autosegment at various levels simultaneously. We do not know at present to what extent this must be restricted. Hart adduces one example (concerning nasalization in Parintintin) in which a feature is present at three levels: the segmental level, the syllable level and the word level. We think that the data are not conclusive in this case and we therefore hypothesize that a given feature can occur at no more than two

3. THE SYLLABLE

In all Arabic dialects the presence or absence of secondary articulation affects the place of a stressed syllable in the foot. The following example illustrates this point (exhibit additon 1963, 31). Nex, a phatic series of shirkal, will be presented independently as a function of the shape of the underlying representation of the input.

Independent of two tiers, O and C, of features is necessary and on the pharyngeals \(\beta \) with \([+E]\) at the level it means that the \(\beta \) is.

Using capital letters, the underlying representation above:

\[
\begin{array}{c}
+ \\
\text{Rab} \\
+ \\
\text{Tien} \\
+ \\
\text{Raagil}
\end{array}
\]
Prosodic Domains and opaque segments

Examples will be found where we must be able to assign a domain D_i to a segment $n(s)$ belongs to this section between both conceptions of phonoposes:

- Level autosegments
- Vowel autosegments
- Syllable autosegments
- Foot level autosegments
- Phonological autosegments

Which domain are associated with segments by and that the autosegmental view of Hart (1981) that shares a number of, however, several possibilities given between autosegmental (and motivated) clear how opaque segments are to the right P-bearing.

...that a given feature simultaneously. We do not have to assume that a feature is level and the word is case and we therefore no more than two.

Prosodic levels simultaneously, and only if one of these levels is the segmental level. We will make use of this possibility in our analyses in the characterization of so-called neutral segments.

3. THE SYLLABLE AS THE RELEVANT DOMAIN: EMPHASIS IN ARABIC

In all Arabic dialects whole syllables can be characterized by the presence or absence of a phonetic property referred to as emphasis, involving the secondary articulations of velarization or pharyngealization. In most dialects the presence of emphasis is conditioned by the presence of a particular emphatic consonant in the syllable. If one such consonant is present in all segments in the same syllable are emphatic.

The following triggering segments, which Broselow (1979) terms independent emphatics occur in all major dialects: T, D, S, Z, L, R (and, though the sound is used rarely, q). Furthermore, most of these dialects exhibit additional contrasting pairs, especially in the labial series” (Lehn 1963, 31). Next to the emphatic set there is a set of non-emphatic (plain) consonants, including the six plain consonants corresponding to the emphatic series above. For this phenomenon of emphasis the following treatment will be proposed.

Independent emphatics have a phonological representation consisting of two tiers. On one tier we find the feature emphasis (or whatever set of features is necessary to characterize the corresponding phonetic property) and on the other tier we find all other features. The so-called true pharyngeals h and q are “inherently” emphatic, i.e. they are associated with [+E] at the segmental level and not at the syllable level. This then means that the true pharyngeals are formally neutral segments.

Using capitals to symbolize independent emphatics we get the following underlying representations (the examples, involving (near) minimal pairs, are taken from Lehn 1963, 32-3):

(7)

+	Rab: 'lord'	rab	'it sprouted'
+	Ttin: 'mad'	tiin	'figs'
+	Raagil: 'man'	raakib	'passenger'
Prosodic Domains

(10) b. \([-E]\)

The derivation with

(11) a. +

Raa \(\text{Ab}\)

b. +

Raa \(\text{Ab}\)

It seems to us that universal association ‘unmarked’ feats from Halle & Vergnaud (1982) are segmentally utilized segment sets. We therefore posit that emphatics are assigned by a.

Lehn (1963) opposition emptiness types. Given segment \([+E]\) to the syllable. It would the syllable, with the stress, for such a pattern therefore predict to be involved here.

We conclude that the syllable associated

4. THE FOOT A CROSS GAELIC

In Applecross C all except a few

primary stress.
Prosodic Domains and opaque segments

(10) b. \([-E] \rightarrow [+E] / [+E]\)

The derivation would then involve two steps rather than one:

(11) a. \[\begin{array}{ccc}
+ & + & + \\
R & a & b
\end{array}\]
\[\rightarrow\]
\[\begin{array}{ccc}
+ & + & + \\
R & a & b
\end{array}\]

b. \[\begin{array}{ccc}
+ & + & + \\
R & a & b
\end{array}\]
\[\rightarrow\]
\[\begin{array}{ccc}
+ & + & + \\
R & a & b
\end{array}\]

It seems to us that rules like (10a) or (10b) duplicate the effect of the universal association conventions and we therefore prefer to make use of the ‘unmarked’ feature value approach. Note, however, that we deviate here from Halle & Vergnaud in one respect. We cannot assume that all segments are segmentally specified with the unmarked feature value, since we have utilized segmental specification for the characterization of neutral segments. We therefore assume that segments not belonging to the set of independent emphatics are unspecified at the segmental level. Unmarked values are assigned by rule at the end of the derivation.

Lehn (1963) claims that there are dialects of Arabic in which the opposition emphatic versus non-emphatic has been extended to all consonant types. Given this type of situation it is arbitrary to assign the autosegment \([+E]\) to any one of the consonants that constitute an emphatic syllable. It would be more straightforward to assign the autosegment to the syllable, without any underlying association line. Our model allows for such representations, as we have demonstrated in section 2, and it therefore predicts the possibility of the dialect difference that seems to be involved here.

We conclude that the above analysis represents a clear case of syllable domain association (cf. Selkirk 1980, 577).

4. THE FOOT AS THE RELEVANT DOMAIN: NASALIZATION IN APPLEGROSS GAEIC

In Applegross Gaelic primary stress is assigned to the initial syllable of all except a few root morphemes. Affixes or clitic elements never receive primary stress. Compare the following examples:
(12) a. /həʊn/ /‘meeting’
 /ˈæŋk/ /‘angel’
 /ˈmɔ, ə t + iŋa/ /‘mothers’
 b. /ˈyə tʃə n ə ŋ/ /‘seeing him’
 /kə ˈbʊ + viə, t/ /‘how much’
 /ˈkætɪnə/ /‘Catherine’

The type (12a) examples, which include as we have indicated the vast majority of monomorphemic words, and also their inflected forms, can be seen as constituting a single foot, i.e.:

(13) a.
 b.
 c.
 s w s w s w w
 kʰə ˈnə ŋ i ˈæŋk mə ˈri ˈçən

Foot trees are left-branching in other words. The forms under (12b), which comprise for the most part prefixes and preclitics, but also a very few monomorphemic words, appear as follows:

(14) a.
 b.
 c.
 w s w w w
 w s w
 yə + ˈčkə n ə ŋ kʰə ˈbʊ + viə, t kʰə ˈtɪnə

Pre-stress syllables are considered as extrametrical; they are joined as weak sisters to the feet in the word tree.

The occurrence of nasalization in Applecross Gaelic is subject to the following conditions (Ternes 1973):

(15) a. “the centre of nasal assimilation lies in the vocalic nucleus of the stressed syllable of a stem . . . From the centre, nasalization extends in a forward and backward direction unless or until checked by one of the conditions below’.

b. “in the backward direction, nasalization comprises the consonantal onset of the stressed syllable, but never extends beyond”. It is this restriction that is to be explained by the fact that nasal assimilation is foot-bound.

c. “in the forward direction, nasalization extends as far as the end of the word, including suffixes . . .” All syllables following the stressed syllable will be included in the same foot as the stressed syllable.

(16) a. Comp /ˈʃəɾı / /ʃəɾı
 b. Nasal /tʰə ˈɾɪ / /stɾəɾı
 c. Nasal /sNə / /kʰ ə ʃəɾı
 d. Nasal /sə̞ əɾ / /mə ɾ ə correlates
 e. Nasal /kʰ ə ɾ /

It is important to note the syncopation:

(17) mʊxk
 mə ˈhar

Hence we will assume that the segmental mid vowels will lexicon: this is the root morph.

(18) a. + mux
 d. − mara, v
d. "nasality does not extend beyond stops" (in either direction).
e. "the vowel phonemes /e, o, a/ never function as the centre of nasalization. They are never nasalized, whether stressed or unstressed, nor does nasality extend beyond one of these phonemes".

Examples of nasalization are:

(16) a. **Complete nasalization**
 \[/\text{f}\text{n}\text{e}\text{.v}ar/ \rightarrow [\text{ʃ}\text{n}\text{e}\.\text{v}ar] \] ‘grandmother’
 \[/\text{fr}\text{f}a\text{.v}/ \rightarrow [\text{ʃ}\text{r}\text{f}a\text{.v}] \] ‘root’

b. **Nasalization blocked by stop to the left**
 \[/t\text{h}\text{r}\text{f}ar/ \rightarrow [\text{ʃ}\text{h}\text{r}\text{f}ar] \] ‘plate’
 \[/\text{str}\text{a}\text{.r}/ \rightarrow [\text{ʃ}\text{r}\text{a}\text{.r}] \] ‘string’

c. **Nasalization blocked by a stop to right**
 \[/\text{m}\text{n}\text{e}\text{.v}an/ \rightarrow [\text{ʃ}\text{m}\text{n}\text{e}\.\text{v}an] \] ‘thread’
 \[/\text{k}\text{h}\text{t}\text{isp}ak\text{x}/ \rightarrow [\text{k}\text{h}\text{ʃ}\text{i}\text{sp}ak\text{x}] \] ‘wasp’

d. **Nasalization blocked by e/o/o**
 \[/\text{s}\text{u}L\text{a}\text{.x}k\text{a}\text{n}/ \rightarrow [\text{s}\text{u}L\text{a}\text{.x}\text{k}\text{a}\text{.n}] \] ‘to compare’
 \[/\text{m}\text{a}\text{.ri}\text{.c}an/ \rightarrow [\text{m}\text{a}\text{.ri}\text{.c}an] \] ‘mothers’

e. **Nasalization blocked by margin of foot**
 \[/\text{k}\text{h}\text{o} + \text{v}\text{f}a\text{.t}/ \rightarrow [\text{k}\text{h}\text{o} + \text{ʃ}\text{f}a\text{.t}] \] ‘how much’

It is important to note that nasals themselves have nothing to do with nasalization synchronically. Compare the following contrast:

(17) \text{mu}x\text{k} ‘pig’ – \text{mu} \text{r} ‘sea’
\text{m}a\text{.h} \text{a}r ‘mother’ – \text{m}a\text{.h} \text{a}r ‘dead person’

Hence we will assume that nasal consonants are associated with \[+\text{N}\] at the segmental level but not at the autosegmental level. Stops and high mid vowels will have an autosegment \[−\text{N}\] associated with them in the lexicon: this is the way in which opaque segments are characterized (cf. Clements & Sezer, this volume). The predictability of this will be captured in terms of redundancy rules.

All root morphemes can be lexically classified as \(+\text{N}\) or \(−\text{N}\):

(18) a. \(+\) – b. \(−\) – c. \(+\) – d. \(−\) – e. \(+\) – f. \(+\)
 \[\text{mu}x\text{k} \quad \text{mu} \quad \text{t}\text{h}\text{a} \text{t} \text{h} \text{r} \text{i} \text{a} \text{n}\text{o} \]
 \[\text{m}a\text{.h} \text{a}r \quad \text{t}\text{h}\text{e} \text{i}\text{sp}a\text{x} \text{k} \quad \text{m}a\text{.h} \text{a}r \]
The rule of nasalization can now be formulated as follows:

(19) **Nasalization in Applecross Gaelic**
 a. the set of P-bearing segments: all sonorants
 b. the set of P-segments: [+N], [−N]
 c. the set of neutral segments: nasal consonants
 d. the set of opaque segments: obstruents, e, o, a
 e. the domain of association: the stress foot

The following examples show the result of the rule:

(20) a. \[\text{m} \text{x}k \]_F
 b. \[k^h \text{a} \]_F
 c. \[t^h \text{hnan} \]_F
 d. \[k^h \text{a} \text{i} \text{spaxk} \]_F
 e. \[\text{ma} \text{h} \text{a}r \]_F

A technical problem must be dealt with here. The free autosegment must be so located that it can be associated with the mainstressed vowel, without violating the condition that lines may not cross.

For example in (18e) the floating [N] must be placed “above” the first vowel /a/ and not above the /s/. However, if stress is predictable (as it in fact is in most cases), the information where to place the floating segment is not available in the lexicon. To solve this problem we suggest that lexical items are classified in terms of a morphological feature [N]. After stress has been assigned a rule will introduce the appropriate autosegment at the appropriate place. It is important to note that it would be insufficient for such a rule to introduce the autosegment in the domain of the strongest (or unique) foot (as a floating autosegment) for such a foot may contain an opaque segment. In that type of situation the floating autosegment must be linearly ordered before or after the opaque segment, depending on the position of the stressed vowel with respect to the opaque segment. In other words, the rule would have to introduce the autosegment so that the stressed vowel is ‘accessible’ to it. It appears to be more straightforward then to assume that the rule simply says: associate the appropriate autosegment with the stressed vowel. The difference between the two possibilities is not insignificant for the following reason.

Once the autosegment has been introduced certain P-bearing segments are in the scope of two autosegments, which results in an ambiguity with respect to their association:
Prosodic Domains and opaque segments

(21) a. + - b. + - c. + -

\[\text{m u x k m u x k m u x k} \]

Since only (21b) satisfies the actual form, we want to be able to rule out (21c) on principled grounds. Given (21a) as our point of departure we can assume (22) (as has been suggested in the autosegmental literature):

(22) **Precedence Convention I**

The spreading of a free autosegment takes precedence over the spreading of a bound autosegment.

(22) will not be any use, however, if we take (23) to be the representation that feeds the association conventions:

(23) + -

\[\text{m u x k} \]

It will not be any help to say that in addition to (or in place of) (22) there is a second convention (as has also been suggested):

(24) **Precedence Convention II**

Rightward spreading takes precedence over leftward spreading

Though this will give the correct result in the case of (23) it will produce the wrong form in the case of (25):

(25) - - +

\[\text{k u h t h a l a} \]

The /r/ must come out nasalized, and (24) would result in an oral sound.

The conclusion seems to be that we must prefer the first possibility, i.e. a rule that introduces the appropriate autosegment at the right spot, but without an association line. We will accept this conclusion for the moment, but return to the issue in section 5, where we will be confronted with the same problem in our analysis of nasalization in Guarani.

Let us note two other aspects of our analysis that deserve mention. Firstly, we could assume that nonnasal morphemes are simply unmarked and that they will surface with the unmarked value for the feature nasal, i.e. [−nasal]. This is, after all, the kind of approach we choose in the case of emphasis in Arabic (see section 3). It is indeed true that this is possible,
but it should be noted that this would not lead to any simplification in the analysis as far as the rule component is concerned. We will leave this issue undecided here.

Secondly, we could follow Halle & Vergnaud (1981) and say that opaque (i.e., lexically bound) segments are not subject to spreading. This would solve our ambiguity problem, without making use of any precedence convention whatsoever. We think, however, that it is incorrect to say that opaque segments need never spread. It will be shown that in the case of Guarani opaque segments do spread, and we also refer to Clements & Sezer, this volume. We will come back to this issue in section 6.

5. THE STRESS GROUP AS THE RELEVANT DOMAIN: NASALIZATION IN GUARANI

The facts of nasalization in Guarani have been analyzed by various authors both in metrical terms (Sportiche 1977; Vergnaud & Halle 1978) and in autosegmental terms (Goldsmith 1975; Hart 1981; Poser 1981, this volume). Standard segmental treatments have been offered as well in Lunt (1973), Rivas (1974). We will analyze the facts in autosegmental terms. At the appropriate points we will compare our analysis with other autosegmental treatments (especially that of Poser 1981, this volume).

The basic facts of nasalization in Guarani, as reported in Gregores and Scarz (1967), are as follows. Each utterance can be partitioned into oral and nasal spans, which typically comprise several segments. Nasal spans consist of contiguous strings of sonorants, possibly interrupted by (voiceless) obstruents, which "remain unaffected by the opposition nasal versus nonnasal" (G&S, 67). Except for a few cases each nasal span contains either a nasal consonant ([m], [n] or [ŋ]) or a stressed nasalized vowel. Oral spans on the other hand always contain a stressed oral vowel.

Confining ourselves to monomorphic utterances for the moment let us consider the following examples:

\[
\begin{align*}
(25) & \ a. \ [\text{tupâ}] \ & \text{‘god’} & b. \ [\text{tupâ}] \ & \text{‘bed’} \\
& \ [\text{pûfût}] \ & \text{‘navel’} & [\text{purût}] \ & \text{‘to be pregnant’} \\
& c. \ [\text{mûnû}] \ & \text{‘never’} & [\text{mûnû}] \ & \text{‘husband’} \\
& d. \ [\text{kûnûmûnt}] \ & \text{‘man’, ‘male’} & [\text{kûnûmûnt}] \ & \text{‘bean’}
\end{align*}
\]

Within the autosegmental framework we could assume underlying representations as in (27):

\[
\begin{align*}
(27) & \ a. \ + & \text{tupa} \\
& c. \ + & \text{Máro}
\end{align*}
\]

The surface form

\[
\begin{align*}
(28) & \ [-N] \\
& c. \ - & \text{Máro}
\end{align*}
\]

Obstruents are

\[
\begin{align*}
(29) & \ a. \ + & \text{tupa} \\
& c. \ + & \text{Máro}
\end{align*}
\]

\[
\begin{align*}
(30) & \ \text{Nasalization at the end of a word} & \\
& a. \ the \ se & \\
& b. \ the \ se & \\
& c. \ the \ se & \\
& d. \ the \ se & \\
& e. \ the \ d
\end{align*}
\]

Before we turn to discuss one other

Prosodic Domains
Prosodic Domains and opaque segments

We will leave this and say that to spreading. This use of any prece-
t it is incorrect to shown that in the refer to Clements section 6.

Nasalization in

by various authors Halle 1978) and in Poser 1981, this red as well in Lunt autosegmental terms, is with other autosegmental volume).

ed in Gregores and be partitioned into al segments. Nasal bly interrupted by the opposition nasal ich nasal span con stressed nasalized pressed oral vowel. s for the moment

ed t be pregnant

a. + + b. – –
 tupa puru?a puru?a
 c. ++ +’+’
 d. + – + –
 Mário MéNa kwiMa Na kuMaNa

The surface forms result from application of the general association convention supplemented by one language-particular rule to derive the prenasalized consonants (cf. the postoralization rule in Goldsmith 1975):

V

[-N]

C

Obstruents are not affected by the nasality flow. They are specified as \([\sim-nasal]\) at the segmental level; they are thus neutral. Nasal consonants on the other hand are lexically bound to an autosegment; they are opaque.

We have to assume precedence convention 1 (see (22)) : association with floating autosegments takes precedence over association with bound ones, as we have already seen in the case of Gaelic. It is, moreover, quite clear that opaque segments (i.e. nasals) must spread. Finally, one must note that the present approach toward the prenasalized consonants presupposes that both \([+N]\) and \([-N]\) are taken as autosegments.

The rule of nasalization can now be formulated as follows:

 Nasalization in Guarani
 a. the set of P-bearing segments: all segments
 b. the set of P-segments: \([-N]\), \([+N]\)
 c. the set of neutral segments: obstruents
 d. the set of opaque segments: nasals
 e. the domain of association: ?

Before we turn our attention to the domain specification we must first discuss one other aspect of the analysis proposed so far.
Just as in the previous case of nasalization in Applecross Gaelic there is a technical problem relating to stress and the position of the floating autosegment. Stress falls in the majority of cases on the final syllable, in some cases on the penultimate (cf. 26c) and rarely on the antepenultimate. We have expressed this fact in our underlying representations in (27) by leaving out stress, except in (27c). This means that we cannot, strictly speaking, decide where to locate the floating autosegment in morphemes that have regular stress and in addition contain opaque segments. The floating segment must come to rest to the right of the rightmost opaque segment, but by stipulating this fact we repeat essential information that is also expressed in the stress rule. We propose to solve this problem in the same way as in the case of Applecross Gaelic. Morphemes are classified in terms of a morphological feature [+N]. After stress placement a rule will assign the appropriate autosegment to each morpheme.

One will recall that we discussed two possible formulations for such a "spell-out" rule in the previous section. The rule may introduce the autosegment, in such a way that it floats at the right spot (i.e. so that the stressed vowel is accessible) or it directly associates the autosegment with the stressed vowel. In section 4 we chose the first possibility, because it was only under this formulation of the rule that we could handle the fact that spreading of autosegments that are associated with stressed vowels takes precedence over spreading of autosegments that are associated with other segments. We will now show that we can make the same choice here only if we specify the domain of spreading to be the stress group, i.e. a constituent defined in terms of metrical structure, that is smaller than the phonological word, but somewhat larger than the foot.

Let us first see what happens if we choose the second possibility: the spell-out rule introduces a bound autosegment. In that case the following intermediate representations will result:

\[
(31) \quad \begin{array}{c}
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\text{tupa} & \text{puru} & \text{Maro} & \text{kWiMa} & \text{kuMaNa}
\end{array}
\]

The correct surface forms result if we assume that:

\[
(32) \quad \text{Precedence Convention III}
\]

Leftward spreading takes precedence over rightward spreading

Poser (1981, this volume) makes use of (31) and (32) in his analysis of Nasalization in Guaraní. But since there are cases in other languages where (24) (i.e. rightward precedence) leads to the correct result (cf. rounding harmony as discussed in Clements & Sezer, this volume) Poser assumes that the precedence convention is parametrized.
We will now discuss the consequences of choosing the first possibility. There will be no problems in monomorphemic forms. The rule that introduces the autosegment leads to intermediate representations as in (27). Problems arise, however, if we consider polymorphemic words.

Prefixation introduces no complications. Prefixes are always unstressed and as a result they have no (morphological) specification for nasality. Sonorants of prefixes will therefore be associated with the leftmost autosegment of the stem:

(33)

a.
se + tupā `my bed'
ne + tupā `thy bed'
ore + tupā `our bed'
pene + tupā `your bed'

b.
se + tupā `my god'
ne + tupā `thy god'
ore + tupā `our god'
pene + tupā `your god'

c.
ro + yo + pitivō `we help each other'

d.
te + re + puka `I would like thee to laugh'

These cases show that the domain of spreading is in any case not the morpheme.

Suffixes may be stressed or unstressed. The latter category poses no problems. Like prefixes stressless suffixes harmonize with the stem. Gregores and Suárez mention only three suffixes that belong to this category, all unproductive. Nearly all the productive suffixes that they mention are stressed. Let us now consider a few examples with stressed suffixes:

(34)

a.

ôw aivi + vé `to be older' (cf. [ôwaivi] `to be old')
b. –
hešă + vé ‘to see better’ (cf. [hešă] ‘to see’)

It will be immediately clear that we run into trouble here. The spell-out rule has introduced two floating autosegments and this leads to an ambiguity with respect to association. There is no possibility of solving this ambiguity without making use of a rule that associates the autosegments with ‘their’ stressed vowels, but such a move would make an analysis that uses the second formulation of the spell-out rule virtually identical to an analysis using the first formulation.

A possible way out might be to assume that we derive the surface forms cyclically. This will work in the case of (34):

(35) a. 1st cycle b. 2nd cycle
+ +
[ŋʷ aivi] [ŋʷ aivi] vė

(The general spreading convention will only add lines of course).

We will get less satisfactorily results, however, if we consider derived words containing stems that have penultimate stress:

(36) a. 1st cycle b. 2nd cycle
+ + *
[maːr o] [maːr o] vė

The correct surface form is not [maːrọvé], however, but: [mårọvē]. The orality of the suffix spreads into the stem up to the stressed vowel of the stem. Facts like these have been considered problematic for an autosegmental analysis by Goldsmith (1975), though they form no problem in Poser’s solution:

(37) a. –
xwa ‘hole’

b. –
maːro + vė

We are now faced with the following problem. In the case of Applecross Gaelic we had to assume that the spell-out rule introduced a floating
autosegment to get the precedence facts right. In the case of Guarani we have to assume that the spell-out rule introduces a bounded autosegment and, in addition, we have to assume that the spreading convention must be parameterized, laying an extra burden on the language-specific grammar. It seems to us that it would be preferable if the spell-out rule takes the same form in both analyses, whichever of the two formulations comes out as being the preferred one. We will now show that this result can be obtained only if we assume that the domain of association in Guarani is not the (phonological) word but a smaller metrical constituent, usually equal to the foot.

Since the vast majority of native lexical words in the language have final stress, we assign a right-dominant unbounded foot at the right edge of each word. If we assume that this foot assignment procedure is cyclic we explain why adding prefixes leads to no change whatsoever in the placement of main stress and we also predict that suffixation leads to a rightward shift of the stress. The same result would also be obtained if metrical structure was assigned postcyclically, but in that case we would not predict the secondary accents that Gregores and Sáurez give in their phonemic representations. Words that have penultimate or antepenultimate stress have to be handled as exceptional, somehow or other. We will assume here that poststress syllables are marked as extrametrical. In the case of the unstressed suffixes this means that these suffixes are, as a whole, extrametrical. In (37) we give some examples of words with their metrical structure:

(37) a.

\[
\begin{align*}
\text{xwa} & \quad \text{tupá} & \quad \text{puru?á} & \quad \text{marakayá} \\
\text{'hole'} & \quad \text{'bed'} & \quad \text{'to be pregnant'} & \quad \text{'cat'}
\end{align*}
\]

b.

\[
\begin{align*}
\text{máro} & \quad \text{apóyo} & \quad \text{akatúa} \\
\text{'never'} & \quad \text{'thick milk'} & \quad \text{'right hand'}
\end{align*}
\]
Comparing the metrical structure of märo (in 37b) and märové (in 37e) one will see that the post-stress 'stray' syllable in märo becomes part of the second foot in märové.

If we now say that the domain of association in Guaraní is the foot, our spell-out rule can introduce floating autosegments into the appropriate foot domain (as in Applecross Gaelic). The ambiguity that we noted in (34) can no longer arise since the two floating autosegments will always belong to different feet. We also explain why the orality or nasality of the suffix only spreads into the stem if it has penultimate stress, as can be seen by examining the forms in (37e). All remaining cases where an ambiguity exists involve at most one floating autosegment. This means that we can appeal to precedence convention (22) for those cases. Of course we will also have cases in which two bound autosegments are involved (cf. 27d). It is not clear whether leftward or rightward precedence applies here since both will give the same result. Since rightward precedence is independently motivated on the basis of other languages and leftward precedence is not, leads to the incorrect results that the prec
precedence is not, it is clear that we can dispense with the latter. This leads to the interesting result that we do not require to assume (as Pozer does) that the precedence convention is parametrized.

We conclude that nasalization in Applecross Gaelic and Guarani can be handled in the same terms as we assume that harmony in the latter language is not bound to the word domain, but to a smaller metrical domain, so far assumed to be the metrical foot. Let us now look somewhat more closely at the precise characterization of this metrical domain.

In our analysis it is the case that word final, post-stress syllables fall outside the scope of any foot; they are stray syllables that are adjoined in the word tree as weak sisters to the preceding foot. It turns out, however, that the sonorants in those post-stress syllables receive the same value for nasality as the sonorants belonging to the preceding foot. The domain of spreading is apparently the foot plus any following stray syllables. Let us call this constituent (following Gregores & Sáez) the stress group.

It is important to note the following. We claim that nasalization in Guarani is bound to the stress group and we therefore put forward our analysis as an example showing the relevance of both metrical and auto-seneral phonology for the treatment of harmony. Unlike the examples in the previous sections, however, association in Guarani is not bound to one of the familiar metrical domains (such as syllable, foot etc.). The crucial point is that the span over which nasality spreads must be defined in terms of metrical structure: a stress group comprises of all syllables that are minimally governed by a stressed syllable.

Let us finally remark that our analysis arrives at the same interpretation of the domain of spreading as that of Gregores & Sáez. They say: "By delimiting the nasal spans in this way, their boundaries coincide with — and confirm — those of the stress groups delimited at the previous level". (p. 68). 'Stress groups' are defined as follows: "each stressed syllable in a macrosegment belongs in the same constitute with all the immediately preceding unstressed syllables, and if it is the last stressed syllable in the macrosegment — with the following one (or more, up to three) syllables. A stressed syllable flanked by other stressed syllables stands, of course, alone. We may call each of these structural units a stress group; in it, the stressed syllable must be interpreted as the nucleus, and the unstressed syllables, in coordinate construction with each other, as the satellite". (p. 65).

6. PRECEDENCE CONVENTIONS, OPAQUE SEGMENTS AND LANGUAGE-SPECIFIC RULES

Our study of nasalization in Applecross Gaelic and Guarani has affirmed
the claim (already extensively discussed in Goldsmith 1976) that the
general association convention must be supplemented by general precedence conventions, since cases arise in which P-bearing segments are in the
scope of more than one P-segment. We have made use of Precedence Conven-
tion I, repeated here for convenience:

(22) **Precedence Convention I**
The spreading of a free autosegment takes precedence over the
spreading of a bound autosegment.

In this section we will discuss some of the alternative approaches for
dealing with the precedence facts. We will furthermore address a claim advanced by Halle & Vergnaud (1981), which involves a more radical version
of (22):

(38) spreading conventions only apply to free autosegments

We will show that this claim cannot be upheld, referring to our analysis
of Guarani, where opaque elements are spread due to the general association
convention. In addition we will give an analysis of nasalization in two
other languages (Capanahua and Sundanese) in which we make use of
language-specific association rules that stipulate unidirectional spreading
of opaque elements.

We found that (22) leads to the right result provided that nasalization
in the two languages is bound to the foot and the stress group respectively.
The possibility of generalizing over the two cases of nasalization does not crucially depend, however, on our decision to introduce *floating*
autosegments. Earlier we expressed the opinion that it seemed more
straightforward to associate such autosegments directly with the stressed
vowels, not in the least because the spell-out rule that introduces floating segments must also locate the stressed vowel to guarantee accessibility.
Suppose then that we select the more direct formulation of the spell-out
rule, how could we in that case explain the precedence relations in the
two cases. We suggest that then the following precedence convention is
needed:

(39) **Precedence Convention IV**
The spreading of metrically stronger autosegments takes precedence over the spreading of metrically weaker autosegments.

(39) predicts that the spreading of the autosegment that is associated
with the stressed vowel takes precedence and this is precisely what
happens in both Gaelic and Guarani. It is important to note that an

analysis that mái
in Guarani be hot
The alternative
rani shows that phonology is eve
think, however, i
decide whether (t
hat (22) is indep
systems) we there
address (38).

Halle & Vergn
distinct types do
one direction onl
(H&V, 1). They	
terms and unidir
rectionality there
systems. In bidir
triggering and op
applies to the tre
ment. Opaque el
with a P-bearing
is made in the -
opaque, and each

9).

We do not agn
the case of Guar
subject to spread
the framework c
(see the forms in
analysis, morev
imply that the h
t with the fact that

If we conclu
be analyzed aut
elements are not
is a difference be
that only the op
association rules.

Suppose langi
for opaque elem
at all. In the abs
convention will

ions. Let us fur
analysis that makes use of this convention still requires that nasalization in Guaraní be bound to the stress group.

The alternative treatment of nasalization in Applecross Gaelic and Guaraní shows that the interaction between autosegmental and metrical phonology is even more intricate than we have suggested thus far. We think, however, that a larger number of cases is required before we can decide whether (39) is really a principle of universal grammar. Assuming that (22) is independently motivated (for example by the analysis of tonal systems) we therefore favour the floating analysis at this point. Let us now address (38).

Halle & Vergnaud (1981) claim that harmony processes “fall into two distinct types depending on whether the harmonic features propagate in one direction only, or whether the propagation occurs in both directions” (H & V, 1). They propose handling bidirectional harmony in autosegmental terms and unidirectional harmony in metrical terms. Apart from the directionality there is another difference between the two types of harmony systems. In bidirectional harmony systems “a distinction is made between triggering and opaque elements. The general association convention only applies to the triggering element which must always be a floating autosegment. Opaque elements, i.e., autosegments that are lexically associated with a F-bearing unit are not subject to spreading. “No such distinction is made in the case of directional harmony: all triggering elements are opaque, and each opaque element induces a harmony of its own” (H & V, 9).

We do not agree with the distinction that H & V make. Take for example the case of Guaraní. We have seen that opaque elements (the nasals) are subject to spreading. This would imply that the harmony is metrical in the framework of H & V. However, spreading in Guaraní is bidirectional (see the forms in 29c & d where nasality spreads in both directions). Our analysis, moreover, makes use of floating autosegments, which would imply that the harmony is autosegmental. But this would be incompatible with the fact that opaque elements are subject to spreading.

If we conclude for this (and other) reason(s) that all harmony should be analyzed autosegmentally, it can no longer be upheld that opaque elements are not subject to spreading. It may be true though that there is a difference between opaque elements and floating elements in the sense that only the opaque elements may be referred to by language-specific association rules, whereas floating autosegments cannot.

Suppose language-specific rules can prescribe three kinds of behaviour for opaque elements: spread leftward, spread rightward or don’t spread at all. In the absence of any language-specific rule the general association convention will guarantee that an opaque element spread in both directions. Let us furthermore assume that the general association convention
applies after the language-specific spreading rules (this follows from the Elsewhere Condition). We will now give two examples where a theory along these lines seems to be required to handle cases of nasalization in other languages than Applecross Gaelic and Guarani.

Our first example concerns nasal spreading in Capanahua. It is also discussed in H&V and in Anderson, this volume. In the descriptive source (Loos 1969) the following facts are reported.

A contiguous sequence of vowels and glides (w, y, ñ, h) is nasalized if it precedes a nasal consonant (n, m). Nasal consonants, however, are deleted before a continuant strident consonant, glide, liquid or word boundary. If a nasal is deleted the nasalization on the preceding vowels and glides remains, but, and this is the surprising feature, vowels and glides that stand after the deleted nasal are also nasalized. Consider the following example:

(40) a. /poyan/ 'arm' [pɔyɑ]
 /bawin/ 'catfish' [bawĩ]
 /ciʔun/ 'by fire' [ciʔun]
 /boon/ 'hair' [bɔɔ]

b. /waran/ 'squash' [warã]
 /cɪpɔŋki/ 'downriver' [cɪpɔŋki]
 /bimɨ/ 'fruit' [bɨmi]
 /banaŋi/ 'plant it' [banaŋi]

d. /wirangɨ/ 'push it' [wirãŋi]
 /wiranyăʔ?aw?i/ 'push it sometime' [wirãŋiyãʔaw?i]

The forms in (40a) show the non-local character of nasal spreading and the effect of nasal deletion before a word boundary. The forms in (40b) show the blocking character of consonants (i.e. r and p in this case). The forms in (40c) show spreading to the left. Finally, the forms under (40d) show the bidirectional nature of spreading following nasal deletion before a glide. We propose the following analysis.

All consonants are autosegmentally specified as [+N] or [−N] at the word level. There is a language-specific rule that prescribes the leftward spreading of [+N] and, ordered before this, a rule that deletes nasals before glides and word boundary, setting the [+N] autosegment afloat. We explain, given this analysis, why spreading is bidirectional after nasal deletion has applied: the language-specific spreading rule cannot apply to a floating autosegment (its SD is simply not met). Thereafter the general association convention takes over, leading to bidirectional spreading. In (41) we give some sample derivations:

(41) a. —
 [poʊɪ̯]

b. —
 [ci̯ˈpɔŋki̯]

c. —
 [wirãŋi̯]

The leftward nasal Capanahua are "_"-value may conventions.

The present spreading (cf. A Sundanese is d (1981) gives an going to propo the following fa.

A string of c ized if a nasal c serve as an illus.

(42) a. /ɲita/
 /ɲat/
b. /muʔa/
 /moʔa/
c. /pah/

The forms in (42b) the bloc The forms in (4 form) the fact -as follows.

All supraglot as [−N] or [+N] prescribes the ri give the desired i
(41) a. \[\text{poyan} \rightarrow \text{poya} \rightarrow \text{poya}\]

b. \[\text{ciponki} \rightarrow \text{ciponki}\]

c. \[\text{wirayaśa} \text{nwi} \rightarrow \text{wirayaśa} \text{wi}\]

The leftward spreading rule could also be an alpha-rule. The facts of Capanahua are not conclusive in this respect. Note in any case that the "−" value may be allowed to spread bidirectionally due to the general conventions.

The present analysis makes crucial use of a rule that stipulates leftward spreading (cf. Anderson, this volume). Let us now look at a case where we require rightward spreading: nasalization in Sundanese. Nasalization in Sundanese is discussed in Anderson (1972) in segmental terms. Hart (1981) gives an autosegmental analysis, that differs from the one we are going to propose. The descriptive source is Robins (1957) who reports the following facts.

A string of contiguous vowels, possibly interrupted by \(h\) or \(ʔ\), is nasalized if a nasal consonant (\(m, n, n\) or \(ŋ\)) precedes. The following examples serve as an illustration of this rightward nasal spreading:

(42) a. \[\text{niar} /\text{naan} / \rightarrow \text{niar} /\text{naan} /\]

b. \[\text{moar} /\text{moekyn} / \rightarrow \text{moar} /\text{moekyn} /\]

c. \[\text{pahor} /\text{bɣghar} / \rightarrow \text{pahor} /\text{bɣghar} /\]

The forms in (42a) show the non-local character of spreading, those in (42b) the blocking character of supraglottally articulated consonants. The forms in (42c) show both the transparency of \(h/\) and (in the second form) the fact that spreading is not leftward. The analysis we propose is as follows:

All supraglottally articulated consonants are autosegmentally specified as \([-N]\) or \([+N]\) at the word level. There is a language-specific rule that prescribes the rightward spreading of \([+N]\). It is easy to see that this will give the desired result:
As in the case of Capanahua we will assume the spreading of [-N] is due to the universal spreading convention. Vowels that remain unassociated will be assigned the unmarked value, i.e., [-nasal]. There is, however, one seemingly complicating factor in the case of Sundanese that relates to the occurrence of infixes.

Robins (1957) mentions three infixes, one without a nasal (−ar−), and two containing a nasal (−um−, −im−). Both categories are extremely interesting for their own reasons. We will first look at forms of the first category (we have italicized the infix):

(44) /panai]/ (cf. 42a) [nuraifAN]

/maroekyn/ (cf. 42b) [maroeekyn]

/panah/ (cf. 42c) [narahe]

The surprising fact about the forms in (44) is that the vowels following the r of the infix are nasalized except for the first one. This is odd for two reasons. First we have seen that r blocks spreading (cf. the form in 42b) and secondly, even if the r of the infix were specified as neutral, why should the vowel immediately following it be nasal?

The explanation of these two facts leads us to assume that the rightward spreading rule applies cyclically and that there is a second rule that spreads [-N] to a tautosyllabic vowel. We cannot collapse this second rule with the rule that spreads [+N] precisely because this latter is not bound to the syllable domain but to the word domain. This shows that the word domain rule cannot be an alpha-rule, since this would result in denasalizing all vowels following the /r/ of the infix. We obtain the following derivations:

(41) a. 1c cycle

moekyn → [moekyn]

moekyn

The spreading rule reverse order, or at least [+N] spread at the second cate

(42) a. gade

b. pangil

These forms illus the local rule (fo shows, however, t of the infix exten the word domain crucial form in 42a.

We think that language-specific r i.e. lexically bound the claim advance spread. We have n that an opaque ei seen to be inconch in Mongolian vowels argues that high ro left), but all vowels This example requ in any detail here.

7. CONCLUDING R

We have addressed of autosegments. I constitute domains or language-specific that, though we I domains, nothing is
Prosodic Domains and opaque segments

b. 2e cycle
\[
\begin{array}{cccc}
+ & - & + & [-N]-spread. \\
\text{maroekyn} & \text{maroekyn} & \text{maroekyn}
\end{array}
\]

The spreading rules are not crucially ordered. Applying them in the reverse order, or simultaneously will lead to the same result. The fact that at least [+N] spreading must be cyclically ordered also follows if we look at the second category of infixes, i.e. those containing a nasal:

(42) a. gade ‘to be big’ [gade] \rightarrow gumade [guməde]
diyhs ‘to approach’ [diyhs] \rightarrow dumiyhs [dumiyhs]
b. pangih ‘to find’ [pangih] \rightarrow pinangih [pinangih]

These forms illustrate that the vowels following the nasal of the infix must be nasalized. At first sight one might propose that this is due to the local rule (formulated as an alpha-rule). The second form in (42a) shows, however, that this cannot be true: nasal spreading after the nasal of the infix extends here over two syllables. This must be due then to the word domain rule (Anderson 1972 points out the significance of the crucial form in 42a).

We think that the two analyses given above clearly show the need for language-specific rules that stipulate the direction of spreading of opaque, i.e. lexically bound autosegments. This is an interesting conclusion given the claim advanced in Halle & Vergnau that opaque elements do not spread. We have not given a crucial example showing the need to stipulate that an opaque element must not spread. The facts of Capanahua were seen to be inconclusive on this point. A possible example might be found in Mongolian vowel harmony (as discussed in Chinchor 1979). Chinchor argues that high round vowels block rounding harmony (coming from the left), but all vowels after the round blockers are themselves nonround. This example requires further study, however, so we will not discuss it in any detail here.

7. CONCLUDING REMARKS

We have addressed ourselves to two topics that relate to the spreading of autosegments. Firstly, we have shown that various prosodic categories constitute domains for such spreading, either as the result of general or language-specific association rules. It is of some importance to note that, though we have employed the metrical theory of phonological domains, nothing in our analyses depends crucially on the fact that phono-
logical domains have a binary branching structure in this theory, rather than an n-ary branching structure as suggested in Clements & Keyser (1981) and Leben (1982). Our findings are compatible with either approach to domain characterization.

Secondly, we have discussed the behaviour of opaque segments. We found that such elements are subject to spreading, either as a result of general or of language-specific rules.

The second part is somewhat more speculative than the first, but we hope that on the whole some progress has been made here towards the proper formal treatment of suprasegmental processes, in particular of those involving nasalization.