Home
Syllabus
Lectures
Recitations
Projects
Problem sets
Exams
References
Matlab
Fall 2003
Fall 2002
Fall 2001
|
6.867 References
References
Optional papers (also listed with lectures):
-
C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition.
Knowledge Discovery and Data Mining, 2(2), 1998.
postscript
- R. Schapire, "A brief introduction to boosting", In Proceedings
of the Sixteenth International Joint Conference on Artificial
Intelligence, 1999. postscript
- J. Friedman, T. Hastie, and R. Tibshirani, "Additive Logistic
Regression: a Statistical View of Boosting",
postscript
Books:
- Jordan, "Introduction to Probabilistic Graphical Models", draft
version available electronically
here
(MIT only access)
- R. Duda, P. Hart, and D. Stork. "Pattern Classification", 2nd
edition, Wiley Interscience, 2001.
- C. M. Bishop. "Neural Networks for Pattern Recognition",
Oxford University Press, 1995.
- T. Mitchell, "Machine Learning". McGraw Hill, 1997.
- T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical
Learning: Data Mining, Inference and Prediction". Springer-Verlag, 2001.
- T. Cover and J. Thomas. "Elements of Information theory",
Wiley Interscience, 1991.
|